
Lecture 4: Approximation Algorithms for Knapsack Problems
Advanced Algorithms

Sid Chi-Kin Chau

Australian National University
�����sid.chau@anu.edu.au

October 5, 2022

Packing Problem is Everywhere

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 2 / 23

≪ Packing ≫

Knapsack Problem

Knapsack problem packs a subset of items into a knapsack with a weight constraint
Given a set of n items, the j-th item carries a value uj and weight wj

We want to select a subset of items with maximum total value, subject to the total
weight less than C

Definition (Knapsack)

Maximize
∑n

j=1 ujxj

subject to
I

∑n
j=1 wjxj ≤ C, and

I xj ∈ {0, 1} for all j = 1, ..., n

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 4 / 23

NP-Completeness

Theorem (NP-Completeness)
Knapsack problem is NP-complete

Basic idea:
Knapsack ∈ NP-Hard
3SAT � SubsetSum � Knapsack

Definition (SubsetSum)
Given n items with {wj : j = 1, ..., n}, decide if there exists a subset of items such that

I
∑n

j=1 wjxj = C
I subject to xj ∈ {0, 1} for all j = 1, ..., n

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 5 / 23

Review: Approximation Algorithms

Definition (Approximation Ratio)
Consider an NP-hard maximization problem L with an instance denoted by I

I Let Opt(I) be the optimal solution, and objective function be f
(
Opt(I)

)
I Consider a polynomial-time algorithm A that produces a solution A(I)

Define approximation ratio: αn(A) = minI:|I|≤n
f
(
A(I)

)
f
(

Opt(I)
) ≤ 1

αn(A) is the worst-case ratio considering all instances of L
For NP-hard problem, αn(A) = 1 is impossible, unless P = NP
However, can we come up with a polynomial-time algorithm A, such that
αn(A) is close to 1 as much as possible?

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 6 / 23

Approximation Algorithms

Let x be a solution of polynomial-time algorithm A for Knapsack
Denote U(x) ,

∑n
j=1 ujxj

Denote x∗ as an optimal solution of Knapsack

Definition
α-approximation algorithm:

I U(x) ≥ α · U(x∗) for all inputs, for fixed constant α(< 1)

Polynomial-time approximation scheme (PTAS):
I (1− ε)-approximation algorithm for any ε > 0

Fully polynomial-time approximation scheme (FPTAS):
I PTAS and additionally requires polynomial running time in 1/ε

PTAS can give close-to-optimal solution (with exponential running time in 1/ε),
but FPTAS is practically efficient (with polynomial running time in 1/ε)

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 7 / 23

Linear Programming Relaxation for Knapsack

Definition (Knapsack-LP)
Maximize

∑n
j=1 ujxj

subject to
I

∑n
j=1 wjxj ≤ C, and

I 0 ≤ xj ≤ 1 for all j = 1, ..., n

Theorem (Optimal solution to Knapsack-LP)
Suppose u1

w1
≥ u2

w2
≥ ... ≥ un

wn
; Let k̂ = maxk∈{1,...,n}

{
k |

∑k
j=1wj < C

}
Let x∗LP

j =

1, j ≤ k̂

C−
∑k̂

j=1 wj

wk̂+1
, j = k̂ + 1

0, j > k̂ + 1

x∗LP is an optimal solution to Knapsack-LP

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 8 / 23

Linear Programming Relaxation for Knapsack
Proof:

Note that x∗LP is a feasible solution to Knapsack-LP
Suppose x̄ is an optimal solution, but x̄ 6= x∗LP

I Note that
∑n

j=1 x̄jwj =
∑n

j=1 x
∗LP
j wj = C

Then there exist a pair a < b, such that x̄a < x∗LP
a = 1 and x̄b > x∗LP

b

Construct a new solution x′, such that x′j =

x̄j , j 6= a, j 6= b

x̄a +
ε
wa

, j = a

x̄b − ε
wb

, j = b

where ε is a small constant such that x′b ≥ 0
I x′

j is a feasible solution (i.e.
∑n

j=1 x
′
jwj = C), however,

n∑
j=1

x′
juj =

εua

wa
− εub

wb
+

n∑
j=1

x̄juj ≥
n∑

j=1

x̄juj

because ua

wa
≥ ub

wb
as a < b

Hence, x′ is at least as good as x̄ (⇒ iteratively, we can show x∗LP is as good as x̄)
Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 9 / 23

Linear Programming Relaxation for Knapsack

Lemma (Vertex solution to Knapsack-LP)
Vertex solution x to Knapsack-LP has at most one coordinate of x as fractional

Proof:
Ignore integer coordinates (i.e. xj = 0 or xj = 1), which do not incur tight linear
constraint
Knapsack-LP has only one linear constraint
Hence, the rank of A is 1
If more than one fractional coordinate xj , then we need at least two equality constraints
to uniquely determine vertex solution x

A contradiction ⇒ at most one coordinate xj must be fractional
Implication:

We can bound the gap between x∗LP and round-off bx∗LPc
Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 10 / 23

Naive Greedy Algorithm for Knapsack

Naive Algorithm
Sort

{ uj

wj

}
in a decreasing order (say, u1

w1
≥ u2

w2
≥ ... ≥ un

wn
)

Set k̂ ← max
{
k = 1, ..., n |

∑k
j=1wj ≤ C

}
Return solution x, where xj =

{
1 if j ≤ k̂

0 if j > k̂

Example
Consider an example with 2 items:

(u1 = 2
k , w1 =

1
k), (u2 = C, w2 = C)

Greedy algorithm: Total value = u1 =
2
k

Optimal solution: Total value = u2 = C

Approximation ratio = 2
kC → 0, if k →∞

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 11 / 23

Better Greedy Algorithm for Knapsack

Algorithm Aks

Sort
{ uj

wj

}
in a decreasing order (say, u1

w1
≥ u2

w2
≥ ... ≥ un

wn
)

Set k̂ ← max
{
k = 1, ..., n |

∑k
j=1wj ≤ C

}
Construct solution x1, such that x1j =

{
1 if j ≤ k̂

0 if j > k̂

Set jmax ← arg maxj=1,..,n{uj}

Construct solution x2, such that x2j =
{

1 if j = jmax
0 otherwise

If U(x1) ≥ ujmax , then return x1, else return x2

Aks is a polynomial-time algorithm for Knapsack
But what is its approximation ratio?

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 12 / 23

Better Greedy Algorithm for Knapsack

Theorem (1
2
-approximation)

Aks is a 1
2 -approximation algorithm for Knapsack

Proof:
U(x∗LP) ≤ U(x1) + uk̂+1

Also, uk̂+1 ≤ ujmax

Hence, U(x∗LP) ≤ U(x1) + ujmax

If U(x1) ≥ ujmax , then
I U(x∗LP) ≤ 2U(x1) = 2 ·max{U(x1), ujmax}

Else
I U(x∗LP) ≤ 2ujmax = 2 ·max{U(x1), ujmax}

Let x∗ be optimal integer solution for Knapsack, and noting that U(x∗) ≤ U(x∗LP)

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 13 / 23

Better Greedy Algorithm for Knapsack

Is approximation ratio 1
2 tight for Aks?

Example
Consider an example with 3 items:

u1 =
2
k , w1 =

1
k

u2 =
C
2 , w2 =

C
2

u3 =
C
2 , w2 =

C
2

Greedy algorithm: Total value = u1 + u2 =
2
k + C

2

Optimal solution: Total value = u2 + u3 = C
item Approximation ratio = 2

k + 1
2 →

1
2 , if k →∞

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 14 / 23

PTAS for Knapsack

Algorithm Aks2 (input: ε)
Set m← min{d1ε e, n}, set K ′ = ∅, set xj = 0 for all j
For every subset K of m or less items out of n items

I Set w(K)←
∑

j∈K wj

I If w(K) ≤ C then
F Sort

{ uj

wj

}
in a decreasing order (say, u1

w1
≥ u2

w2
≥ ... ≥ un

wn
)

F Set k̂ ← max
{
k = 1, ..., n |

∑
j∈{1,...,k}\K wj ≤ C − w(K)

}
F Construct a solution x̃, such that x̃j =

{
1 if j ∈ K or j ≤ k̂

0 if j /∈ K and j > k̂
F If U(x) < U(x̃) then set x← x̃

Return x

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 15 / 23

PTAS for Knapsack

Theorem (PTAS)
Algorithm Aks2 is PTAS for Knapsack

Basic idea:
Aks2 uses partial exhaustive search
Similarly, at most one coordinate in x∗LP is fractional
The largest to the m-largest value items in x∗ are also in x̃

If ε goes to 0, m goes to arbitrarily large
Fix ε > 0, then m is a constant, and Aks2 is polynomial-time in n

Question: Is Greedy Algorithm Aks2 practical?
I The running time is exponential in 1

ε

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 16 / 23

Dynamic Programming for Knapsack

Dynamic Programming = Divide-and-Conquer + Optimal Structure of Subproblem
Subproblem for Knapsack:

I Given k ≤ n and value u
I Find minimum C, such that there exists a subset R ⊆ {1, ..., k} satisfying∑

j∈R

wj ≤ C and
∑
j∈R

uj = u

I If no such R exists, then C =∞ (namely, not feasible for given k and u)
Let C[k, u] be the minimum capacity that is required allocate to a subset of items in
{1, .., k} which achieves a total value u

Observe that C[k, u] = min
{
C[k − 1, u], wj + C[k − 1, u− uk]

}
(Bellman eqn.)

I If R ⊆ {1, ..., k − 1} with
∑

j∈R wj ≤ C and
∑

j∈R wj = U , then C[k, u] = C[k − 1, u]
I Otherwise C[k, u] = wk + C[k − 1, u− uk]

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 17 / 23

Dynamic Programming for Knapsack

Compute C[k, u] for all k ≤ n and u ≤ Utotal ,
∑n

j=1 uj recursively

We can find x∗ by backtracking from C[n, u] = max
{
C[n, u] ≤ C | u = 1, ..., Utotal

}

However, the input can be represented by |I| = O(n log(Utotal)) bits
The running time O(nUtotal) is exponential in log(Utotal)

Dynamic programming is pseudo-polynomial time algorithm (but not polynomial-time)
Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 18 / 23

FPTAS for Knapsack

How to improve dynamic programming?
I Rescale the number of columns in terms of n instead of Utotal

Let rescaling factor κ , max
{

ε·maxj=1,...,n(uj)
n , 1

}
, hence, κ ≥ 1

I Otherwise, if κ < 1, then no need to rescale
Let ûj , buj

κ c for each j = 1, ..., n
I Note that max

j=1,...,n
(ûj) = O

(
n
ε

)
Definition (RS-Knapsack (Rescaled Knapsack))

I Maximize
∑n

j=1 ûjxj

I subject to
F

∑n
j=1 wjxj ≤ C, and

F xj ∈ {0, 1} for all j = 1, ..., n

Solve RS-Knapsack by dynamic programming, as an approximation solution to Knapsack
Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 19 / 23

FPTAS for Knapsack

Theorem
The running time for solving RS-Knapsack is O(n

3

ε)
The approximation ratio between RS-Knapsack and Knapsack is (1− ε)

Proof:
By dynamic programming, the running time is O(n · n · ûj) = O(n

3

ε)

Let U(x) ,
∑n

j=1 ujxj and Û(x) ,
∑n

j=1 ûjxj

Let x∗ be an optimal solution to Knapsack, x∗RS be an optimal solution to RS-Knapsack
Since uj

κ − b
uj

κ c ≤ 1, we have

κ ≥ uj − κbuj
κ
c = uj − κ · ûj ⇒ n · κ ≥ U(x)− κÛ(x)

U(x∗RS) ≥ κÛ(x∗RS) ≥ κÛ(x∗) ≥ U(x∗)− n · κ
= U(x∗)− ε · max

j=1,...,n
(uj) ≥ (1− ε) · U(x∗)

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 20 / 23

Complex-demand Knapsack

Definition (Complex-demand Knapsack)
Maximize

∑n
j=1 ujxj

subject to
I

(∑n
j=1 w

1
jxj

)2
+
(∑n

j=1 w
2
jxj

)2 ≤ C2, and
I xj ∈ {0, 1} for all j = 1, ..., n

One can think wj as a complex number
We put a constraint on the magnitude of total complex-demand weight
Complex-demand knapsack is useful for modeling non-linear power grid flow constraint

I AC electricity power is represented by a complex number, and the magnitude of AC power
is called apparent power

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 21 / 23

Spectrum of Approximability

Why do NP-complete problems have different approximability, even though they are
reducible to each other in polynomial time?

I Polynomial-time reduction does not necessarily preserve approximation ratio
I Worst-case instances in different problems are not equally approximable

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 22 / 23

������ References

Reference Materials

Approximation Algorithms (V. Vazirani), Springer
I Chapter 8

Recommended Materials
Knapsack Problems (H. Kellerer, U. Pferschy, D. Pisinger), Springer
Combinatorial Optimization of Alternating Current Electric Power Systems (S. Chau,
K. Elbassioni, M. Khonji), Foundations and Trends in Electric Energy Systems, 2018
https://users.cecs.anu.edu.au/~sid.chau/FnT.html

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 23 / 23

https://users.cecs.anu.edu.au/~sid.chau/FnT.html

