### Lecture 4: Approximation Algorithms for Knapsack Problems Advanced Algorithms

#### Sid Chi-Kin Chau

Australian National University

🖂 sid.chau@anu.edu.au

October 5, 2022

#### Packing Problem is Everywhere







### Knapsack Problem

- Knapsack problem packs a subset of items into a knapsack with a weight constraint
- Given a set of n items, the j-th item carries a value  $u_j$  and weight  $w_j$
- We want to select a subset of items with maximum total value, subject to the total weight less than  ${\cal C}$



#### Theorem (NP-Completeness)

Knapsack problem is NP-complete

Basic idea:

- $\bullet \ \mathsf{Knapsack} \in \mathsf{NP}\text{-}\mathsf{Hard}$
- 3SAT  $\leq$  SubsetSum  $\leq$  Knapsack

#### Definition (SubsetSum)

• Given n items with  $\{w_j : j = 1, ..., n\}$ , decide if there exists a subset of items such that •  $\sum_{j=1}^n w_j x_j = C$ • subject to  $x_j \in \{0, 1\}$  for all j = 1, ..., n

#### Definition (Approximation Ratio)

- $\bullet$  Consider an NP-hard maximization problem  ${\cal L}$  with an instance denoted by  ${\cal I}$ 
  - Let  $\mathsf{Opt}(\mathcal{I})$  be the optimal solution, and objective function be  $fig(\mathsf{Opt}(\mathcal{I})ig)$
  - Consider a polynomial-time algorithm  ${\mathcal A}$  that produces a solution  ${\mathcal A}({\mathcal I})$

• Define approximation ratio: 
$$\alpha_n(\mathcal{A}) = \min_{\mathcal{I}: |\mathcal{I}| \le n} \frac{f(\mathcal{A}(\mathcal{I}))}{f(\mathsf{Opt}(\mathcal{I}))} \le 1$$

- $\alpha_n(\mathcal{A})$  is the worst-case ratio considering all instances of  $\mathcal{L}$
- For NP-hard problem,  $\alpha_n(\mathcal{A}) = 1$  is impossible, unless  $\mathsf{P} = \mathsf{NP}$
- However, can we come up with a polynomial-time algorithm A, such that  $\alpha_n(A)$  is close to 1 as much as possible?

### Approximation Algorithms

- $\bullet\,$  Let x be a solution of polynomial-time algorithm  ${\cal A}$  for Knapsack
- Denote  $U(x) \triangleq \sum_{j=1}^{n} u_j x_j$
- $\bullet\,$  Denote  $x^*$  as an optimal solution of Knapsack

#### Definition

- $\alpha$ -approximation algorithm:
  - $U(x) \geq \alpha \cdot U(x^*)$  for all inputs, for fixed constant  $\alpha(<1)$
- Polynomial-time approximation scheme (PTAS):
  - $(1-\epsilon)$ -approximation algorithm for any  $\epsilon>0$
- Fully polynomial-time approximation scheme (FPTAS):
  - PTAS and additionally requires polynomial running time in  $1/\epsilon$
- PTAS can give close-to-optimal solution (with exponential running time in  $1/\epsilon$ ), but FPTAS is practically efficient (with polynomial running time in  $1/\epsilon$ )

Sid Chau (ANU)

Lec. 4: Knapsack Problems

### Linear Programming Relaxation for Knapsack

#### Definition (Knapsack-LP)

- Maximize  $\sum_{j=1}^{n} u_j x_j$
- subject to
  - $\begin{array}{l} & \sum_{j=1}^n w_j x_j \leq C \text{, and} \\ & 0 \leq x_j \leq 1 \text{ for all } j=1,...,n \end{array}$

#### Theorem (Optimal solution to Knapsack-LP)

• Suppose 
$$\frac{u_1}{w_1} \ge \frac{u_2}{w_2} \ge \dots \ge \frac{u_n}{w_n}$$
; Let  $\hat{k} = \max_{k \in \{1,\dots,n\}} \left\{ k \mid \sum_{j=1}^k w_j < C \right\}$   
• Let  $x_j^{*LP} = \begin{cases} 1, & j \le \hat{k} \\ \frac{C - \sum_{j=1}^{\hat{k}} w_j}{w_{\hat{k}+1}}, & j = \hat{k} + 1 \\ 0, & j > \hat{k} + 1 \end{cases}$ 

•  $x^{*LP}$  is an optimal solution to Knapsack-LP

# Linear Programming Relaxation for Knapsack

Proof:

- Note that  $x^{*\mathsf{LP}}$  is a feasible solution to Knapsack-LP
- Suppose  $\bar{x}$  is an optimal solution, but  $\bar{x} \neq x^{*\mathsf{LP}}$ 
  - Note that  $\sum_{j=1}^{n} \bar{x}_j w_j = \sum_{j=1}^{n} x_j^{*\mathsf{LP}} w_j = C$
- Then there exist a pair a < b, such that  $\bar{x}_a < x_a^{*LP} = 1$  and  $\bar{x}_b > x_b^{*LP}$
- Construct a new solution x', such that  $x'_j = \begin{cases} \bar{x}_j, & j \neq a, j \neq b \\ \bar{x}_a + \frac{\epsilon}{w_a}, & j = a \\ \bar{x}_b \frac{\epsilon}{w_b}, & j = b \end{cases}$

where  $\epsilon$  is a small constant such that  $x'_b \ge 0$ 

•  $x'_j$  is a feasible solution (i.e.  $\sum_{j=1}^n x'_j \tilde{w}_j = C$ ), however,

$$\sum_{j=1}^n x'_j u_j = \frac{\epsilon u_a}{w_a} - \frac{\epsilon u_b}{w_b} + \sum_{j=1}^n \bar{x}_j u_j \ge \sum_{j=1}^n \bar{x}_j u_j$$

because  $\frac{u_a}{w_a} \ge \frac{u_b}{w_b}$  as a < b• Hence, x' is at least as good as  $\bar{x}$  ( $\Rightarrow$  iteratively, we can show  $x^{*LP}$  is as good as  $\bar{x}$ )

# Linear Programming Relaxation for Knapsack

#### Lemma (Vertex solution to Knapsack-LP)

Vertex solution x to Knapsack-LP has at most one coordinate of x as fractional

Proof:

- Ignore integer coordinates (i.e.  $x_j = 0$  or  $x_j = 1$ ), which do not incur tight linear constraint
- Knapsack-LP has only one linear constraint
- Hence, the rank of A is 1
- If more than one fractional coordinate  $x_j$ , then we need at least two equality constraints to uniquely determine vertex solution x
- A contradiction  $\Rightarrow$  at most one coordinate  $x_j$  must be fractional

Implication:

 $\bullet$  We can bound the gap between  $x^{*\mathsf{LP}}$  and round-off  $\lfloor x^{*\mathsf{LP}} \rfloor$ 

## Naive Greedy Algorithm for Knapsack

#### Naive Algorithm

• Sort  $\left\{\frac{u_j}{w_i}\right\}$  in a decreasing order (say,  $\frac{u_1}{w_1} \ge \frac{u_2}{w_2} \ge ... \ge \frac{u_n}{w_n}$ )

• Set 
$$\hat{k} \leftarrow \max\left\{k = 1, ..., n \mid \sum_{j=1}^{k} w_j \le C\right\}$$

• Return solution x, where 
$$x_j = \begin{cases} 1 & \text{if } j \leq k \\ 0 & \text{if } j > \hat{k} \end{cases}$$

#### Example

Consider an example with 2 items:

• 
$$(u_1 = \frac{2}{k}, w_1 = \frac{1}{k}), (u_2 = C, w_2 = C)$$

- Greedy algorithm: Total value =  $u_1 = \frac{2}{k}$
- Optimal solution: Total value  $= u_2 = C$
- Approximation ratio  $= \frac{2}{kC} \rightarrow 0$ , if  $k \rightarrow \infty$

## Better Greedy Algorithm for Knapsack

#### Algorithm $\mathcal{A}_{ks}$

- Sort  $\left\{ \frac{u_j}{w_j} \right\}$  in a decreasing order (say,  $\frac{u_1}{w_1} \ge \frac{u_2}{w_2} \ge ... \ge \frac{u_n}{w_n}$ )
- Set  $\hat{k} \leftarrow \max \{ k = 1, ..., n \mid \sum_{j=1}^{k} w_j \le C \}$
- Construct solution  $x^1$ , such that  $x_j^1 = \begin{cases} 1 & \text{if } j \leq \hat{k} \\ 0 & \text{if } j > \hat{k} \end{cases}$
- Set  $j_{\max} \leftarrow \arg \max_{j=1,\dots,n} \{u_j\}$
- Construct solution  $x^2$ , such that  $x_j^2 = \begin{cases} 1 & \text{if } j = j_{\max} \\ 0 & \text{otherwise} \end{cases}$

 $\bullet~{\rm If}~U(x^1)\geq u_{j_{\rm max}}{\rm ,}$  then return  $x^1{\rm ,}$  else return  $x^2$ 

- $\bullet \ \mathcal{A}_{ks}$  is a polynomial-time algorithm for Knapsack
- But what is its approximation ratio?

## Better Greedy Algorithm for Knapsack

# Theorem $(\frac{1}{2}$ -approximation)

 $\mathcal{A}_{ks}$  is a  $\frac{1}{2}$ -approximation algorithm for Knapsack

Proof:

• 
$$U(x^{*\mathsf{LP}}) \leq U(x^1) + u_{\hat{k}+1}$$

- Also,  $u_{\hat{k}+1} \leq u_{j_{\max}}$
- Hence,  $U(x^{*\mathsf{LP}}) \leq U(x^1) + u_{j_{\max}}$
- If  $U(x^1) \ge u_{j_{\max}}$ , then •  $U(x^{*LP}) \le 2U(x^1) = 2 \cdot \max\{U(x^1), u_{j_{\max}}\}$

Else

$$\blacktriangleright \ U(x^{*\mathsf{LP}}) \leq 2u_{j_{\max}} = 2 \cdot \max\{U(x^1), u_{j_{\max}}\}$$

• Let  $x^*$  be optimal integer solution for Knapsack, and noting that  $U(x^*) \leq U(x^{*LP})$ 

### Better Greedy Algorithm for Knapsack

• Is approximation ratio  $\frac{1}{2}$  tight for  $\mathcal{A}_{ks}$ ?

#### Example

Consider an example with 3 items:

- $u_1 = \frac{2}{k}, w_1 = \frac{1}{k}$
- $u_2 = \frac{C}{2}, w_2 = \frac{C}{2}$

• 
$$u_3 = \frac{C}{2}, w_2 = \frac{C}{2}$$

- Greedy algorithm: Total value =  $u_1 + u_2 = \frac{2}{k} + \frac{C}{2}$
- Optimal solution: Total value  $= u_2 + u_3 = C$ item Approximation ratio  $= \frac{2}{k} + \frac{1}{2} \rightarrow \frac{1}{2}$ , if  $k \rightarrow \infty$

### PTAS for Knapsack

#### Algorithm $\mathcal{A}_{ks2}$ (input: $\epsilon$ )

- Set  $m \leftarrow \min\{\lceil \frac{1}{\epsilon} \rceil, n\}$ , set  $K' = \emptyset$ , set  $x_j = 0$  for all j
- $\bullet$  For every subset K of m or less items out of n items

$$\begin{aligned} & \text{Set } w(K) \leftarrow \sum_{j \in K} w_j \\ & \text{If } w(K) \leq C \text{ then} \\ & \text{ Sort } \left\{ \frac{u_j}{w_j} \right\} \text{ in a decreasing order (say, } \frac{u_1}{w_1} \geq \frac{u_2}{w_2} \geq \ldots \geq \frac{u_n}{w_n}) \\ & \text{ Set } \hat{k} \leftarrow \max \left\{ k = 1, \ldots, n \mid \sum_{j \in \{1, \ldots, k\} \setminus K} w_j \leq C - w(K) \right\} \\ & \text{ Construct a solution } \tilde{x}, \text{ such that } \tilde{x}_j = \begin{cases} 1 & \text{if } j \in K \text{ or } j \leq \hat{k} \\ 0 & \text{if } j \notin K \text{ and } j > k \end{cases} \\ & \text{ If } U(x) < U(\tilde{x}) \text{ then set } x \leftarrow \tilde{x} \end{aligned}$$

 $\bullet \ {\sf Return} \ x$ 

#### Theorem (PTAS)

Algorithm  $\mathcal{A}_{ks2}$  is PTAS for Knapsack

Basic idea:

- $\mathcal{A}_{ks2}$  uses partial exhaustive search
- $\bullet\,$  Similarly, at most one coordinate in  $x^{*\mathrm{LP}}$  is fractional
- ${\, \bullet \,}$  The largest to the m-largest value items in  $x^*$  are also in  $\tilde{x}$
- $\bullet~{\rm If}~\epsilon$  goes to 0, m goes to arbitrarily large
- Fix  $\epsilon>0,$  then m is a constant, and  $\mathcal{A}_{\rm ks2}$  is polynomial-time in n
- Question: Is Greedy Algorithm  $\mathcal{A}_{ks2}$  practical?
  - The running time is exponential in  $\frac{1}{\epsilon}$

### Dynamic Programming for Knapsack

- Dynamic Programming = Divide-and-Conquer + Optimal Structure of Subproblem
- Subproblem for Knapsack:
  - Given  $k \leq n$  and value u
  - $\blacktriangleright$  Find minimum C, such that there exists a subset  $R\subseteq\{1,...,k\}$  satisfying

$$\sum_{j \in R} w_j \le C \text{ and } \sum_{j \in R} u_j = u$$

- If no such R exists, then  $C = \infty$  (namely, not feasible for given k and u)
- Let C[k,u] be the minimum capacity that is required allocate to a subset of items in  $\{1,..,k\}$  which achieves a total value u
- Observe that  $C[k,u] = \min \left\{ C[k-1,u], \ w_j + C[k-1,u-u_k] \right\}$  (Bellman eqn.)
  - ▶ If  $R \subseteq \{1, ..., k-1\}$  with  $\sum_{j \in R} w_j \leq C$  and  $\sum_{j \in R} w_j = U$ , then C[k, u] = C[k-1, u]▶ Otherwise  $C[k, u] = w_k + C[k-1, u-u_k]$

## Dynamic Programming for Knapsack

- Compute C[k, u] for all  $k \leq n$  and  $u \leq U_{\mathsf{total}} \triangleq \sum_{j=1}^{n} u_j$  recursively
- We can find  $x^*$  by backtracking from  $C[n,u] = \max\left\{C[n,u] \leq C \mid u = 1,...,U_{\mathsf{total}}\right\}$



- $\bullet$  However, the input can be represented by  $|\mathcal{I}| = \mathsf{O}(n \log(U_{\mathsf{total}}))$  bits
- $\bullet$  The running time  ${\rm O}(nU_{\rm total})$  is exponential in  $\log(U_{\rm total})$
- Dynamic programming is *pseudo-polynomial* time algorithm (but not polynomial-time)

Sid Chau (ANU)

# FPTAS for Knapsack

- How to improve dynamic programming?
  - $\blacktriangleright$  Rescale the number of columns in terms of n instead of  $U_{\rm total}$

• Let rescaling factor 
$$\kappa \triangleq \max\left\{\frac{\epsilon \cdot \max_{j=1,\dots,n}(u_j)}{n}, 1\right\}$$
, hence,  $\kappa \ge 1$ 

 $\blacktriangleright$  Otherwise, if  $\kappa < 1,$  then no need to rescale

• Let 
$$\hat{u}_j \triangleq \lfloor \frac{u_j}{\kappa} \rfloor$$
 for each  $j = 1, ..., n$ 

• Note that  $\max_{j=1,...,n} (\hat{u}_j) = O\left(\frac{n}{\epsilon}\right)$ 

Definition (RS-Knapsack (Rescaled Knapsack))

Maximize  $\sum_{j=1}^{n} \hat{u}_j x_j$ 

subject to

$$\sum_{j=1}^n w_j x_j \leq C$$
, and  $x_j \in \{0,1\}$  for all  $j=1,...,n$ 

• Solve RS-Knapsack by dynamic programming, as an approximation solution to Knapsack

## FPTAS for Knapsack

#### Theorem

The running time for solving RS-Knapsack is  $O(\frac{n^3}{\epsilon})$ The approximation ratio between RS-Knapsack and Knapsack is  $(1 - \epsilon)$ 

Proof:

- By dynamic programming, the running time is  ${\sf O}(n\cdot n\cdot \hat{u}_j)={\sf O}(rac{n^3}{\epsilon})$
- Let  $U(x) \triangleq \sum_{j=1}^{n} u_j x_j$  and  $\hat{U}(x) \triangleq \sum_{j=1}^{n} \hat{u}_j x_j$
- Let  $x^*$  be an optimal solution to Knapsack,  $x^{*RS}$  be an optimal solution to RS-Knapsack • Since  $\frac{u_j}{\kappa} - \lfloor \frac{u_j}{\kappa} \rfloor \le 1$ , we have

$$\kappa \ge u_j - \kappa \lfloor \frac{u_j}{\kappa} \rfloor = u_j - \kappa \cdot \hat{u}_j \implies n \cdot \kappa \ge U(x) - \kappa \hat{U}(x)$$
$$U(x^{*\mathsf{RS}}) \ge \kappa \hat{U}(x^{*\mathsf{RS}}) \ge \kappa \hat{U}(x^*) \ge U(x^*) - n \cdot \kappa$$
$$= U(x^*) - \epsilon \cdot \max_{j=1,\dots,n} (u_j) \ge (1 - \epsilon) \cdot U(x^*)$$

### Complex-demand Knapsack

#### Definition (Complex-demand Knapsack)

- Maximize  $\sum_{j=1}^{n} u_j x_j$
- subject to

$$\left(\sum_{j=1}^{n} w_j^1 x_j\right)^2 + \left(\sum_{j=1}^{n} w_j^2 x_j\right)^2 \le C^2$$
, and  $x_j \in \{0,1\}$  for all  $j = 1, ..., n$ 

- One can think  $w_j$  as a complex number
- We put a constraint on the magnitude of total complex-demand weight
- Complex-demand knapsack is useful for modeling non-linear power grid flow constraint
  - AC electricity power is represented by a complex number, and the magnitude of AC power is called apparent power

# Spectrum of Approximability



Approximability Spectrum of NP-Complete Problems

- Why do NP-complete problems have different approximability, even though they are reducible to each other in polynomial time?
  - Polynomial-time reduction does not necessarily preserve approximation ratio
  - Worst-case instances in different problems are not equally approximable

# **References**

#### **Reference Materials**

- Approximation Algorithms (V. Vazirani), Springer
  - Chapter 8

#### **Recommended Materials**

- Knapsack Problems (H. Kellerer, U. Pferschy, D. Pisinger), Springer
- Combinatorial Optimization of Alternating Current Electric Power Systems (S. Chau, K. Elbassioni, M. Khonji), Foundations and Trends in Electric Energy Systems, 2018 https://users.cecs.anu.edu.au/~sid.chau/FnT.html