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Knapsack Problem

@ Knapsack problem packs a subset of items into a knapsack with a weight constraint

@ Given a set of n items, the j-th item carries a value u; and weight w;

@ We want to select a subset of items with maximum total value, subject to the total

weight less than C

Definition (Knapsack)

@ Maximize 2?21 W5y
@ subject to
Z;—;l wjz; < C, and
zj €{0,1} forall j=1,...,n

Items

Total
Value | ™

U= $2 65 $2 95 %2 41
v ¢ ¢

w;=5kg_7kg kg 2kg ,Zkg 3kg

Weight Limit: -
C=10kg @
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NP-Completeness

Theorem (NP-Completeness)

Knapsack problem is NP-complete

Basic idea:
@ Knapsack € NP-Hard
@ 3SAT = SubsetSum =< Knapsack

Definition (SubsetSum)

e Given n items with {w; : j = 1,...,n}, decide if there exists a subset of items such that
Y imwiz; =C
subject to z; € {0,1} forall j =1,....,n
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Review: Approximation Algorithms

Definition (Approximation Ratio)

@ Consider an NP-hard maximization problem £ with an instance denoted by 7
Let Opt(Z) be the optimal solution, and objective function be f(Opt(I))
Consider a polynomial-time algorithm A that produces a solution A(Z)

f(4@)
f(Opt(I)) -

Define approximation ratio: a,(A) = ming,z/<,

an(A) is the worst-case ratio considering all instances of £

For NP-hard problem, a,(A) = 1 is impossible, unless P = NP

However, can we come up with a polynomial-time algorithm A, such that
an(A) is close to 1 as much as possible?
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Approximation Algorithms

@ Let x be a solution of polynomial-time algorithm A for Knapsack
A

o Denote U(x) = 37, ujw;

@ Denote z* as an optimal solution of Knapsack

Definition
@ «-approximation algorithm:
U(z) > - U(x™) for all inputs, for fixed constant a(< 1)
@ Polynomial-time approximation scheme (PTAS):
(1 — €)-approximation algorithm for any € > 0

e Fully polynomial-time approximation scheme (FPTAS):
PTAS and additionally requires polynomial running time in 1/¢

@ PTAS can give close-to-optimal solution (with exponential running time in 1/¢),
but FPTAS is practically efficient (with polynomial running time in 1/¢)
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Linear Programming Relaxation for Knapsack

Definition (Knapsack-LP)
o Maximize » 0, ujx;
@ subject to

Z?:l W; T 5 < O, and
0<z;<1forallj=1,..,n

Theorem (Optimal solution to Knapsack-LP)

® Suppose - > 12 > ... > tn; Let k= MaXpe(1,.. n} {k: | Z?:l w; < C’}

w; = wy &
L, i<k
k v 5
oLetg;;.‘LP: %7 j=k+1
k+1 N
0, J>k+1

o z*'P js an optimal solution to Knapsack-LP
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Linear Programming Relaxation for Knapsack

Proof:
o Note that z*'P is a feasible solution to Knapsack-LP
@ Suppose Z is an optimal solution, but z # z*1P
> Note that Y7 Zjw; = Y1) a5 w; = C
@ Then there exist a pair a < b, such that ZTq < :U*LP =1and T, > m*LP
Zj, JF#a,j # b

o Construct a new solution ', such that 2y = { T+ -, Jj=a
Ty— o J=0b

where € is a small constant such that xg >0
> 7 is a feasible solution (i.e. >, zjw; = C), however,

n

’ EUgq eub >
E xjuj—w— + E ZTjuj E ZTjuj
j=1 @

because Y= > % 354 < b
Wa Wp

*LP

@ Hence, 2’ is at least as good as Z (= iteratively, we can show z*-" is as good as T)
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Linear Programming Relaxation for Knapsack

Lemma (Vertex solution to Knapsack-LP)

Vertex solution x to Knapsack-LP has at most one coordinate of x as fractional

Proof:

@ Ignore integer coordinates (i.e. z; = 0 or z; = 1), which do not incur tight linear
constraint

@ Knapsack-LP has only one linear constraint
@ Hence, the rank of A is 1

@ If more than one fractional coordinate x;, then we need at least two equality constraints
to uniquely determine vertex solution x

@ A contradiction = at most one coordinate x; must be fractional
Implication:

e We can bound the gap between z*'F and round-off |z*\7 |
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Naive Greedy Algorithm for Knapsack

Naive Algorithm

e Sort {%} in a decreasing order (say, yL > {2 > ... > &»)
o Set k + max {k=1,..,n| Z?:l w; < C}
@ Return solution =, where z; = { 1 'f] < ]f
0 ifj>k
Example
Consider an example with 2 items:
o(ulz%,wlzi), (ug = C, wy =C)
@ Greedy algorithm: Total value = uy = %
@ Optimal solution: Total value = uy = C
@ Approximation ratio = % — 0, if k— o0
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Better Greedy Algorithm for Knapsack

Algorithm Ay

@ Sort {Z—J]} in a decreasing order (say, Z—ll > 5—22 > ... > Z—Z)
2 k
o Set k«+ max{k=1,..,n| Do wi < C}
. 1 ifj<k
o Construct solution z!, such that z! = Lh=n
4 0 ifj>k
® Set jmax ¢ argmax;—i, n{u;}
. 1 ifj=4
o Construct solution x2, such that 22 = J ].max
J 0 otherwise
o If U(z!) > uj,,,, then return z!, else return z?

Ays is a polynomial-time algorithm for Knapsack

But what is its approximation ratio?
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Better Greedy Algorithm for Knapsack

Theorem (3-approximation)

Ays is a %—approximation algorithm for Knapsack

Proof:
Ua™P) <U(") +upyy
Also, uj | < wj,,
Hence, U(z*'P) < U(at) + Wjimax
If U(2') > uj,,,, then

» U(z™P) <20U(2') = 2- max{U(a?), u;,,.}
o Else

UG < 20, = 2 max(U(a). 1)

Let 2* be optimal integer solution for Knapsack, and noting that U(z*) < U(z*F)

(]
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Better Greedy Algorithm for Knapsack

@ Is approximation ratio % tight for As?
Example
Consider an example with 3 items:
@ Ul = %, w1 = %
Q@ Uy = %, w2 = %
@ U3z = %, w2 = %
o Greedy algorithm: Total value = uq + ug = % + %
@ Optimal solution: Total value = us +ugz = C

item Approximation ratio = % + % — % if £k — oo
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PTAS for Knapsack

Algorithm As, (input: €)

o Set m < min{[1],n}, set K’ = &, set z; =0 for all j

@ For every subset K of m or less items out of n items
Set w(K) < > ek Wy
If w(K) < C then

@ Return z

Sort {:L} in a decreasing order (say, 4L > %2 > > Un)
J

w] — wg — = wy,

. . . < =
Construct a solution Z, such that Z; = { (1) Iij ; [Ig Orj _>ki€
if j and j

If U(x) < U(Z) then set z < %
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PTAS for Knapsack

Theorem (PTAS)
Algorithm Aysp is PTAS for Knapsack

Basic idea:

(]

Ayso uses partial exhaustive search
Similarly, at most one coordinate in 2*LP is fractional

The largest to the m-largest value items in z* are also in T

°

°

@ If € goes to 0, m goes to arbitrarily large

@ Fix € > 0, then m is a constant, and Ay, is polynomial-time in n
°

Question: Is Greedy Algorithm A,¢ practical?
» The running time is exponential in 1
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Dynamic Programming for Knapsack

Dynamic Programming = Divide-and-Conquer 4+ Optimal Structure of Subproblem

Subproblem for Knapsack:

» Given k£ <n and value u
» Find minimum C, such that there exists a subset R C {1, ..., k} satisfying

ijgCand ZUj:U

JER JER

> If no such R exists, then C' = oo (namely, not feasible for given k and )

Let C[k, u] be the minimum capacity that is required allocate to a subset of items in
{1, .., k} which achieves a total value u

Observe that C[k, u] = min {C[k‘ —Lu), wj+Ck—-1u— uk]} (Bellman eqn.)

» fRC{1,...,k—1} with > . pw; <Cand ) . pw; =U, then Clk,u] = Clk — 1, u]
» Otherwise Clk,u] = wy + C[]k: —1,u — uy]

JjER
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Dynamic Programming for Knapsack

e Compute C[k,u] for all k < n and u < Uporal = Z?Zl u; recursively

@ We can find z* by backtracking from C[n,u] = max{C[n,u] <Clu=1,.., Utota|}

@ However, the input can be represented by |Z| = O(n log(Utotal)) bits
@ The running time O(nUyotar) is exponential in log(Uiotal)
e Dynamic programming is pseudo-polynomial time algorithm (but not polynomial-time)
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FPTAS for Knapsack

@ How to improve dynamic programming?
» Rescale the number of columns in terms of n instead of Uyotal

o Let rescaling factor x £ max {M, 1}, hence, k > 1
» Otherwise, if K < 1, then no need to rescale

o Let @; £ |“] foreach j =1,...,n
» Note that max (a;) =O(2)

— €
Jj=1,...,n

Definition (RS-Knapsack (Rescaled Knapsack))
Maximize »°7_, u;x;
subject to

> wiz; < C, and
z; €{0,1} forall j=1,...,n

@ Solve RS-Knapsack by dynamic programming, as an approximation solution to Knapsack
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FPTAS for Knapsack

Theorem

The running time for solving RS-Knapsack is O(”?S)
The approximation ratio between RS-Knapsack and Knapsack is (1 — €)

Proof:

e By dynamic programming, the running time is O(n - n - ;) = O(”?S)
o Let U(z) £ 0 ujwj and U(x) £ Y1 i1

o Let z* be an optimal solution to Knapsack, z*R° be an optimal solution to RS-Knapsack

@ Since “ — | %] <1, we have
ﬁZuj—fiLﬁJ:uj—n-ij = n-k>U(zx)—kU(z)
K

U@*®) > kU@ > kU@*) > U@ —n-«

U(z*) —e€- jlnaxn(uj) > (1—¢)-U(z)

=1,...
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Complex-demand Knapsack

Definition (Complex-demand Knapsack)
o Maximize » 0, ujx;
@ subject to

n 2 n 2
(2= wim))” + (X, wiz;)” < C?, and
xzj € {0,1} forall j=1,...,n

@ One can think w; as a complex number
@ We put a constraint on the magnitude of total complex-demand weight

o Complex-demand knapsack is useful for modeling non-linear power grid flow constraint

» AC electricity power is represented by a complex number, and the magnitude of AC power
is called apparent power
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Spectrum of Approximability

SubsetSum
Euclidean Steiner BinPacking
Euclidean TSP IndependSet NW-Steiner

Arbitrary
Knapsack 2D-Knapsack VexCover SetCover GraphColor TSP
(FPTAS) (PTAS) (Constant) O(log n) O(n'+e) (Inapprox)
Easy® Tough®

Approximability Spectrum of NP-Complete Problems

@ Why do NP-complete problems have different approximability, even though they are
reducible to each other in polynomial time?
» Polynomial-time reduction does not necessarily preserve approximation ratio
» Worst-case instances in different problems are not equally approximable
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