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Packing Problem is Everywhere
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≪ Packing ≫



Knapsack Problem

Knapsack problem packs a subset of items into a knapsack with a weight constraint
Given a set of n items, the j-th item carries a value uj and weight wj

We want to select a subset of items with maximum total value, subject to the total
weight less than C

Definition (Knapsack)

Maximize
∑n

j=1 ujxj

subject to
I

∑n
j=1 wjxj ≤ C, and

I xj ∈ {0, 1} for all j = 1, ..., n
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NP-Completeness

Theorem (NP-Completeness)
Knapsack problem is NP-complete

Basic idea:
Knapsack ∈ NP-Hard
3SAT � SubsetSum � Knapsack

Definition (SubsetSum)
Given n items with {wj : j = 1, ..., n}, decide if there exists a subset of items such that

I
∑n

j=1 wjxj = C
I subject to xj ∈ {0, 1} for all j = 1, ..., n

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 5 / 23



Review: Approximation Algorithms

Definition (Approximation Ratio)
Consider an NP-hard maximization problem L with an instance denoted by I

I Let Opt(I) be the optimal solution, and objective function be f
(
Opt(I)

)
I Consider a polynomial-time algorithm A that produces a solution A(I)

Define approximation ratio: αn(A) = minI:|I|≤n
f
(
A(I)

)
f
(

Opt(I)
) ≤ 1

αn(A) is the worst-case ratio considering all instances of L
For NP-hard problem, αn(A) = 1 is impossible, unless P = NP
However, can we come up with a polynomial-time algorithm A, such that
αn(A) is close to 1 as much as possible?
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Approximation Algorithms

Let x be a solution of polynomial-time algorithm A for Knapsack
Denote U(x) ,

∑n
j=1 ujxj

Denote x∗ as an optimal solution of Knapsack

Definition
α-approximation algorithm:

I U(x) ≥ α · U(x∗) for all inputs, for fixed constant α(< 1)

Polynomial-time approximation scheme (PTAS):
I (1− ε)-approximation algorithm for any ε > 0

Fully polynomial-time approximation scheme (FPTAS):
I PTAS and additionally requires polynomial running time in 1/ε

PTAS can give close-to-optimal solution (with exponential running time in 1/ε),
but FPTAS is practically efficient (with polynomial running time in 1/ε)
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Linear Programming Relaxation for Knapsack

Definition (Knapsack-LP)
Maximize

∑n
j=1 ujxj

subject to
I

∑n
j=1 wjxj ≤ C, and

I 0 ≤ xj ≤ 1 for all j = 1, ..., n

Theorem (Optimal solution to Knapsack-LP)
Suppose u1

w1
≥ u2

w2
≥ ... ≥ un

wn
; Let k̂ = maxk∈{1,...,n}

{
k |

∑k
j=1wj < C

}
Let x∗LP

j =


1, j ≤ k̂

C−
∑k̂

j=1 wj

wk̂+1
, j = k̂ + 1

0, j > k̂ + 1

x∗LP is an optimal solution to Knapsack-LP
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Linear Programming Relaxation for Knapsack
Proof:

Note that x∗LP is a feasible solution to Knapsack-LP
Suppose x̄ is an optimal solution, but x̄ 6= x∗LP

I Note that
∑n

j=1 x̄jwj =
∑n

j=1 x
∗LP
j wj = C

Then there exist a pair a < b, such that x̄a < x∗LP
a = 1 and x̄b > x∗LP

b

Construct a new solution x′, such that x′j =


x̄j , j 6= a, j 6= b

x̄a +
ε
wa

, j = a

x̄b − ε
wb

, j = b

where ε is a small constant such that x′b ≥ 0
I x′

j is a feasible solution (i.e.
∑n

j=1 x
′
jwj = C), however,

n∑
j=1

x′
juj =

εua

wa
− εub

wb
+

n∑
j=1

x̄juj ≥
n∑

j=1

x̄juj

because ua

wa
≥ ub

wb
as a < b

Hence, x′ is at least as good as x̄ (⇒ iteratively, we can show x∗LP is as good as x̄)
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Linear Programming Relaxation for Knapsack

Lemma (Vertex solution to Knapsack-LP)
Vertex solution x to Knapsack-LP has at most one coordinate of x as fractional

Proof:
Ignore integer coordinates (i.e. xj = 0 or xj = 1), which do not incur tight linear
constraint
Knapsack-LP has only one linear constraint
Hence, the rank of A is 1
If more than one fractional coordinate xj , then we need at least two equality constraints
to uniquely determine vertex solution x

A contradiction ⇒ at most one coordinate xj must be fractional
Implication:

We can bound the gap between x∗LP and round-off bx∗LPc
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Naive Greedy Algorithm for Knapsack

Naive Algorithm
Sort

{ uj

wj

}
in a decreasing order (say, u1

w1
≥ u2

w2
≥ ... ≥ un

wn
)

Set k̂ ← max
{
k = 1, ..., n |

∑k
j=1wj ≤ C

}
Return solution x, where xj =

{
1 if j ≤ k̂

0 if j > k̂

Example
Consider an example with 2 items:

(u1 = 2
k , w1 =

1
k ), (u2 = C, w2 = C)

Greedy algorithm: Total value = u1 =
2
k

Optimal solution: Total value = u2 = C

Approximation ratio = 2
kC → 0, if k →∞
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Better Greedy Algorithm for Knapsack

Algorithm Aks

Sort
{ uj

wj

}
in a decreasing order (say, u1

w1
≥ u2

w2
≥ ... ≥ un

wn
)

Set k̂ ← max
{
k = 1, ..., n |

∑k
j=1wj ≤ C

}
Construct solution x1, such that x1j =

{
1 if j ≤ k̂

0 if j > k̂

Set jmax ← arg maxj=1,..,n{uj}

Construct solution x2, such that x2j =
{

1 if j = jmax
0 otherwise

If U(x1) ≥ ujmax , then return x1, else return x2

Aks is a polynomial-time algorithm for Knapsack
But what is its approximation ratio?
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Better Greedy Algorithm for Knapsack

Theorem (1
2
-approximation)

Aks is a 1
2 -approximation algorithm for Knapsack

Proof:
U(x∗LP) ≤ U(x1) + uk̂+1

Also, uk̂+1 ≤ ujmax

Hence, U(x∗LP) ≤ U(x1) + ujmax

If U(x1) ≥ ujmax , then
I U(x∗LP) ≤ 2U(x1) = 2 ·max{U(x1), ujmax}

Else
I U(x∗LP) ≤ 2ujmax = 2 ·max{U(x1), ujmax}

Let x∗ be optimal integer solution for Knapsack, and noting that U(x∗) ≤ U(x∗LP)

Sid Chau (ANU) Lec. 4: Knapsack Problems October 5, 2022 13 / 23



Better Greedy Algorithm for Knapsack

Is approximation ratio 1
2 tight for Aks?

Example
Consider an example with 3 items:

u1 =
2
k , w1 =

1
k

u2 =
C
2 , w2 =

C
2

u3 =
C
2 , w2 =

C
2

Greedy algorithm: Total value = u1 + u2 =
2
k + C

2

Optimal solution: Total value = u2 + u3 = C
item Approximation ratio = 2

k + 1
2 →

1
2 , if k →∞
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PTAS for Knapsack

Algorithm Aks2 (input: ε)
Set m← min{d1ε e, n}, set K ′ = ∅, set xj = 0 for all j
For every subset K of m or less items out of n items

I Set w(K)←
∑

j∈K wj

I If w(K) ≤ C then
F Sort

{ uj

wj

}
in a decreasing order (say, u1

w1
≥ u2

w2
≥ ... ≥ un

wn
)

F Set k̂ ← max
{
k = 1, ..., n |

∑
j∈{1,...,k}\K wj ≤ C − w(K)

}
F Construct a solution x̃, such that x̃j =

{
1 if j ∈ K or j ≤ k̂

0 if j /∈ K and j > k̂
F If U(x) < U(x̃) then set x← x̃

Return x
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PTAS for Knapsack

Theorem (PTAS)
Algorithm Aks2 is PTAS for Knapsack

Basic idea:
Aks2 uses partial exhaustive search
Similarly, at most one coordinate in x∗LP is fractional
The largest to the m-largest value items in x∗ are also in x̃

If ε goes to 0, m goes to arbitrarily large
Fix ε > 0, then m is a constant, and Aks2 is polynomial-time in n

Question: Is Greedy Algorithm Aks2 practical?
I The running time is exponential in 1

ε
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Dynamic Programming for Knapsack

Dynamic Programming = Divide-and-Conquer + Optimal Structure of Subproblem
Subproblem for Knapsack:

I Given k ≤ n and value u
I Find minimum C, such that there exists a subset R ⊆ {1, ..., k} satisfying∑

j∈R

wj ≤ C and
∑
j∈R

uj = u

I If no such R exists, then C =∞ (namely, not feasible for given k and u)
Let C[k, u] be the minimum capacity that is required allocate to a subset of items in
{1, .., k} which achieves a total value u

Observe that C[k, u] = min
{
C[k − 1, u], wj + C[k − 1, u− uk]

}
(Bellman eqn.)

I If R ⊆ {1, ..., k − 1} with
∑

j∈R wj ≤ C and
∑

j∈R wj = U , then C[k, u] = C[k − 1, u]
I Otherwise C[k, u] = wk + C[k − 1, u− uk]
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Dynamic Programming for Knapsack

Compute C[k, u] for all k ≤ n and u ≤ Utotal ,
∑n

j=1 uj recursively

We can find x∗ by backtracking from C[n, u] = max
{
C[n, u] ≤ C | u = 1, ..., Utotal

}

However, the input can be represented by |I| = O(n log(Utotal)) bits
The running time O(nUtotal) is exponential in log(Utotal)

Dynamic programming is pseudo-polynomial time algorithm (but not polynomial-time)
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FPTAS for Knapsack

How to improve dynamic programming?
I Rescale the number of columns in terms of n instead of Utotal

Let rescaling factor κ , max
{

ε·maxj=1,...,n(uj)
n , 1

}
, hence, κ ≥ 1

I Otherwise, if κ < 1, then no need to rescale
Let ûj , buj

κ c for each j = 1, ..., n
I Note that max

j=1,...,n
(ûj) = O

(
n
ε

)
Definition (RS-Knapsack (Rescaled Knapsack))

I Maximize
∑n

j=1 ûjxj

I subject to
F

∑n
j=1 wjxj ≤ C, and

F xj ∈ {0, 1} for all j = 1, ..., n

Solve RS-Knapsack by dynamic programming, as an approximation solution to Knapsack
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FPTAS for Knapsack

Theorem
The running time for solving RS-Knapsack is O(n

3

ε )
The approximation ratio between RS-Knapsack and Knapsack is (1− ε)

Proof:
By dynamic programming, the running time is O(n · n · ûj) = O(n

3

ε )

Let U(x) ,
∑n

j=1 ujxj and Û(x) ,
∑n

j=1 ûjxj

Let x∗ be an optimal solution to Knapsack, x∗RS be an optimal solution to RS-Knapsack
Since uj

κ − b
uj

κ c ≤ 1, we have

κ ≥ uj − κbuj
κ
c = uj − κ · ûj ⇒ n · κ ≥ U(x)− κÛ(x)

U(x∗RS) ≥ κÛ(x∗RS) ≥ κÛ(x∗) ≥ U(x∗)− n · κ
= U(x∗)− ε · max

j=1,...,n
(uj) ≥ (1− ε) · U(x∗)
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Complex-demand Knapsack

Definition (Complex-demand Knapsack)
Maximize

∑n
j=1 ujxj

subject to
I

(∑n
j=1 w

1
jxj

)2
+
(∑n

j=1 w
2
jxj

)2 ≤ C2, and
I xj ∈ {0, 1} for all j = 1, ..., n

One can think wj as a complex number
We put a constraint on the magnitude of total complex-demand weight
Complex-demand knapsack is useful for modeling non-linear power grid flow constraint

I AC electricity power is represented by a complex number, and the magnitude of AC power
is called apparent power
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Spectrum of Approximability

Why do NP-complete problems have different approximability, even though they are
reducible to each other in polynomial time?

I Polynomial-time reduction does not necessarily preserve approximation ratio
I Worst-case instances in different problems are not equally approximable
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