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≪ Polytope ≫



What is Linear Programming (LP)

Linear programming is a relaxation of many (integer) combinatorial optimization problems

Definition (Linear Programming)
Given (ai,j)i=1,...,N ;j=1,...,M and (ci)i=1,...,N are real numbers

I Minimize objective function
∑N

i=1 cixi

I Subject to
∑N

i=1 ai,jxi ≥ bj for all j = 1, ...,M , and xi ≥ 0 for all i = 1, ..., N

Matrix form:

I Minimize (c1, . . . , cN ) ·

 x1

...
xN

 (or equivalently write minx c
Tx)

F Subject to a1,1 . . . aN,1

...
. . .

...
a1,M . . . aN,M

 ·

 x1

...
xN

 ≥

 b1
...

bM

 (or equivalently write Ax ≥ b and x ≥ 0)
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Linear Programming: Examples

Example (Fractional Set Cover Problem)
Given a set U and covers S with Cost(S) = cS for S ∈ S
Minimize

∑
S∈S cSxS , subject to

I
∑

S∈S ae,SxS ≥ 1 for all e ∈ U , where ae,S ,

{
1, if e ∈ S
0, otherwise

I xS ≥ 0 for all S ∈ S

Example (Perfect Bipartite Matching)
Given two sets of items U and V such that |U| = |V| = N

Minimize
∑

u∈U ,v∈V cu,vxu,v, subject to
I

∑
v∈V au,vxu,v = 1 for all u ∈ U and

∑
u∈U au,vxu,v = 1 for all v ∈ V

where au,v ,

{
1, if u ∈ U and v ∈ V
0, otherwise

I xu,v ≥ 0 for all u ∈ U , v ∈ V
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Linear Programming: Examples

Example (Fractional Minimum Spanning Tree)
Given a graph G = (V, E)
For each S ⊆ V, define E(S) as the set of links such that both end-vertices are in S

Minimize
∑

e∈E cexe
I Subject to

F
∑

e∈E(S) xe ≤ |S| − 1 for all ∅ 6= S ⊂ V
F

∑
e∈E(V) xe = |V| − 1

F xe ≥ 0 for all e ∈ E

Although integer minimum spanning tree problem is easy to solve, other variants of
minimum spanning trees are hard to solve (e.g. degree bound minimum spanning trees)
Fractional minimum spanning tree problems are easy to solve, and can give us insight to
approximate the integer version
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Linear Programming: Examples

Example (Fractional Network Design Problem)
Given a graph G = (V, E)
Define r(u, v) as the required number of disjoint paths between u, v ∈ V
Define δ(S) as the set of links with only one end-vertex in S ⊂ V (i.e. the cut set of S)
Minimize

∑
e∈E cexe, subject to

I
∑

e∈δ(S) xe ≥ maxu∈S,v/∈S r(u, v) for all S ⊂ V
I 0 ≤ xe ≤ 1 for all e ∈ E

Many networking problems are instances of network design problem
I Source-destination connectivity problem
I Minimum spanning tree problem
I Minimum Steiner tree problem
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Feasible Solutions of Linear Programming

Definition (Feasible Solutions)
If x satisfies (Ax ≥ b, x ≥ 0), then x is a feasible solution
The set of feasible solutions define a polytope (i.e. a multi-dimensional polygon in
multi-dimensional space), let P = {x : Ax ≥ b, x ≥ 0}
x ∈ P is called an optimal solution, if it minimizes cTx

x ∈ P is called an extreme point of a polytope P, if there does not exist y such that
x+ y ∈ P and x− y ∈ P (i.e. extreme points are the end corner points)
Extreme points are also called vertex solutions
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Visualization of Polytopes

2D/3D polytopes of LP problem can be visualized easily
A LP problem defines a class of polytopes
The geometry of polytope tells a lot about the solutions of a LP problem
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Feasible Solutions of Linear Programming

Lemma
If P is finite, then there exists an extreme point that is an optimal solution

Basic idea:
Points of tangent intersecting a hyperplane of objective function and a polytope must lie
on the boundary of P
An optimal solution must lie on the boundary of P (e.g. hyperplanes or extreme points)
If P is finite, every edge and hyperplane contains end-points, which are extreme points
Hence, we can restrict our attention to extreme points (or vertex solutions) only
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Properties of Vertex Solutions

Definition (Linear Independence & Rank)
A set of V = {v1, v2, ..., vn} is linearly independent, if none of them can be expressed as a
linear combination of finitely many vectors in V

A linear mapping can be represented as a matrix x 7→ Ax
I If column vectors in A are not linear independent, then A can be replaced by another matrix

A with lower dimension. Linear independence captures inreducibility of linear mapping

Definition (Column or Row Rank)
The column (or row) rank of a matrix A is the maximum number of linearly independent
column (or row) vectors of A

Lemma (Column Rank = Row Rank)
The column rank of a matrix A is the same as the row rank of A

I Proof using Gaussian elimination
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Optimal Solutions of Linear Programming

Lemma
Given a polytope P = {x : Ax ≥ b, x ≥ 0}. For a particular x ∈ P, let A=

x be the
submatrix, such that the j-th column vector of A is in A=

x if Ajx = bj and xj > 0

If the column vectors of A=
x are linear independent, and Rank(A) = Rank(A=

x ), then x is
an extreme point of P

Basic idea:
Extreme points are uniquely determined by the tight constraints (e.g. Ax = b)
For xj > 0, xj must be uniquely determined by a constraint A=

x x = b

Linear independence can guarantee a unique solution of A=
x x = b

Hence, we can characterize the vertex solutions of LP problem by the linear independence
of matrix A
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Optimal Integer Solutions of Perfect Bipartite Matching

Example (Perfect Bipartite Matching)

Minimize
∑

u∈U ,v∈V cu,vxu,v, subject to
I

∑
v∈V au,vxu,v = 1 for all u ∈ U and

∑
u∈U au,vxu,v = 1 for all v ∈ V

I xu,v ≥ 0 for all u ∈ U , v ∈ V
I Let |U| = |V| = N

Theorem (Integrity of LP Perfect Bipartite Matching Solution)
Optimal vertex solutions for LP bipartite matching are integers {0, 1}

Proof:
Use contradiction – suppose some non-zero xu,v is fractional (e.g. xu,v < 1 for some u, v)
Since

∑
v∈V

au,vxu,v = 1, there is at least one another fractional xu,v

There are at least 2k fractional xu,v’s in 2k constraints. The fractional xu,v’s form a cycle
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Optimal Integer Solutions of Perfect Bipartite Matching

Proof (Cont.):

Divide the fractional xu,v’s in the cycle into odd and even edges
Let x′ be the same as the original x, except that the fractional value of every
odd edge is increased by ε and the fractional value of every even edge is
decreased by ε for some ε > 0

Let x′′ be the same as the original x, except that the fractional value of every
odd edge is decreased by ε and the fractional value of every even edge is
increased by ε for the same ε > 0

Therefore, the fractional solution x can not be a vertex solution since x′, x′′

are also feasible. This proves that a vertex solution must be integers {0, 1}
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How to solve Linear Programming?

Simplex Algorithm (Informal Description)
Start from an extreme point
Move to a better neighbor that improves the cost
Iterate until cannot find a better neighbor

How do we choose a neighbor when there multiple choices?
I No rule can guarantee polynomial running time of simplex algorithm in the worst case
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How to solve Linear Programming?

Transform an optimization problem into a problem of finding a point inside P
I But the solution is not exact with small tolerance

Ellipsoid Algorithm (Informal Description)
Start with a large ellipsoid which contains P
Test if the center of ellipsoid c is inside P
If not, identify the linear constraint in Ax ≥ b for which c is violated.
Find a minimum ellipsoid which contains the intersection of previous ellipsoid and the
violated constraint
Iterate with the new (smaller) ellipsoid until ellipsoid is sufficiently small

The running time of Ellipsoid Algorithm is polynomial under some assumptions
I It needs a separation oracle: Given x, check if x ∈ P or return the violated linear constraint
I Separation oracle must have polynomial running time (e.g. when there are a polynomial

number of constraints)
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Solve Integer Problems by LP-based Approximation

An Informal Recipe for LP-based Approximation Algorithm���������������
Relax the integer constraints to allows fractional solutions
Solve the fractional LP solutions by a polynomial-time LP algorithm
Transform the fractional LP solutions to integer solutions to satisfy the feasibility of
integer constraints

I For example, rounding the fractional solutions to the nearest integers

How to transform fractional LP solutions to integer solutions while satisfying the
feasibility of integer constraints?
How to guarantee that the rounding error is small? How to characterize the
approximation ratio of rounding?
����But rounding may be infeasible or give a large error
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Is Rounding always Feasible?

minx c
Tx subject to Ax = b and x ≥ 0 ⇔ minx c

Tx subject to A′x ≥ b and x ≥ 0

LP with equality constraints is equivalent to LP with inequality constraints:
I

∑N
i=1 ai,jxi = bj ⇔

∑N
i=1 ai,jxi ≥ bj and

∑N
i=1 ai,jxi ≤ bj

Example (Infeasibility of Rounding in LP Approximation)
Consider a simple linear programing problem:
Maximize 2x1 + x2, subject to

I 3x1 + 3x2 = 2
I x1, x2 ≥ 0 for all u, v ∈ V

The optimal fractional solution is fractional
However, there is no integer feasible solutions
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≪ Duality ≫

Duality [noun]: the quality or state of having two
different or opposite parts or elements – Merriam-Webster



Duality of Linear Programming

Definition (Primal)
Minimize objective function

∑N
i=1 cixi

subject to
I

∑N
i=1 ai,jxi ≥ bj for all j = 1, ...,M

I xi ≥ 0 for all i = 1, ..., N

Definition (Dual)
Maximize objective function

∑M
j=1 bjyj

subject to
I

∑M
j=1 ai,jyi ≤ ci for all i = 1, ..., N

I yj ≥ 0 for all j = 1, ...,M

Primal Dual
Objective Minimization Maximization
Variables {xi : i = 1, ..., N} {yj : j = 1, ...,M}
Linear Costs {ci : i = 1, ..., N} {bj : j = 1, ...,M}
Linear Constraints {bj : j = 1, ...,M} {ci : i = 1, ..., N}
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Duality of Linear Programming

Example (MaxFlow and MinCut)
Given a graph G = (V, E) and a set of paths P in G
Each link e ∈ E has a capacity ce

Definition (MinCut Problem)
Minimize

∑
e∈E cexe

subject to
I

∑
e∈p xe ≥ 1 for all p ∈ P

I xe ≥ 0 for all e ∈ E

Definition (MaxFlow Problem)
Maximize

∑
p∈P yp

subject to
I

∑
p∈P:e∈p yp ≤ ce for all e ∈ E

I yp ≥ 0 for all p ∈ P
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Duality of Linear Programming

Example (Covering and Packing)∑N
i=1 ai,jxi ≥ bj can be regarded as covering constraints∑N
i=1 ai,jyj ≤ ci can be regarded as packing constraints

Many covering and packing problems are dual to each other:
Primal (Covering problems) Dual (Packing problems)

Minimum set cover Maximum set packing
Minimum vertex cover Maximum matching
Minimum edge cover Maximum independent set
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Why Duality?

A change of perspective could give an alternate (maybe easier) approach
I Vertex Cover (Hard) ↔ Maximal Matching (Easy)

Combining primal and dual programs give a complete picture to solve a problem
I Primal-Dual Schema for approximation algorithms:

F Start with initial feasible solutions to the primal and dual programs
F Iteratively, modify the primal and dual solutions integrally to satisfy complementary

slackness conditions
F Output the solutions when all complementary slackness conditions are satisfied
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Duality of Linear Programming

Theorem (Weak Duality)
For any feasible solution of primal problem {xi : i = 1, ..., N} and any feasible solution of dual
problem {yj : i = 1, ...,M}, we have N∑

i=1

cixi ≥
M∑
j=1

bjyj

Proof:∑N
i=1 xici ≥

∑N
i=1 xi

(∑M
j=1 ai,jyj

)
=

∑M
j=1 yj

(∑N
i=1 ai,jxi

)
≥

∑M
j=1 yjbj

Theorem (Strong Duality)
Let an optimal solution to primal problem be {x∗i : i = 1, ..., N} and an optimal solution to
dual problem be {y∗j : i = 1, ...,M}, we have

N∑
i=1

cix
∗
i =

M∑
j=1

bjy
∗
j
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Duality of Linear Programming

Theorem (Complementary Slackness)
For an optimal solution of primal problem {x∗i : i = 1, ..., N} and an optimal solution of dual
problem {y∗j : i = 1, ...,M}, we have

Either x∗i = 0 or
∑M

j=1 ai,jy
∗
j = ci (primal complementary slackness condition)

Either y∗j = 0 or
∑N

i=1 ai,jx
∗
i = bj (dual complementary slackness condition)

Proof:∑N
i=1 x

∗
i ci ≥

∑N
i=1 x

∗
i

(∑M
j=1 ai,jy

∗
j

)
=

∑M
j=1 y

∗
j

(∑N
i=1 ai,jx

∗
i

)
≥

∑M
j=1 y

∗
j bj

By strong duality (
∑N

i=1 cix
∗
i =

∑M
j=1 bjy

∗
j ), to make the equality holds, we must require

I x∗
i > 0⇒

∑M
j=1 ai,jy

∗
j = ci

I y∗j > 0⇒
∑N

i=1 ai,jx
∗
i = bj

I
∑M

j=1 ai,jy
∗
j < ci ⇒ x∗

i = 0

I
∑N

i=1 ai,jx
∗
i > bj ⇒ y∗j = 0
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Primal vs. Dual

Primal Fractional Problem
Minimize objective function

∑N
i=1 cixi

subject to
I

∑N
i=1 ai,jxi ≥ bj for all j = 1, ...,M

I xi ≥ 0 for all i = 1, ..., N

Dual Fractional Problem
Maximize objective function

∑M
j=1 bjyj

subject to
I

∑M
j=1 ai,jyi ≤ ci for all i = 1, ..., N

I yj ≥ 0 for all j = 1, ...,M

Primal Integer Problem
Minimize objective function

∑N
i=1 cixi

subject to
I

∑N
i=1 ai,jxi ≥ bj for all j = 1, ...,M

I xi is a non-negative integer for all
i = 1, ..., N

Dual Integer Problem
Maximize objective function

∑M
j=1 bjyj

subject to
I

∑M
j=1 ai,jyi ≤ ci for all i = 1, ..., N

I yj is a non-negative integer for all
j = 1, ...,M
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Primal vs. Dual
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Approximation Algorithm by Primal-Dual Schema

Relaxed primal and dual complementary slackness conditions:
I Allow a violation gap of α ≥ 1, such that for each 1 ≤ i ≤ N ,

either xi = 0 or ci
α ≤

M∑
j=1

ai,jyj ≤ ci

I Allow a violation gap of β ≥ 1, such that for each 1 ≤ j ≤M ,

either yj = 0 or bi ≤
N∑
i=1

ai,jxi ≤ βbj

Then, we obtain an approximation ratio as αβ:
M∑
j=1

bjyj ≤
N∑
i=1

cixi ≤ αβ ·
M∑
j=1

bjyj

No violation in primal complementary slackness condition: set α = 1, but let β > 1

No violation in dual complementary slackness condition: set β = 1, but let α > 1
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SetCover Approximation by Primal-Dual Schema

Definition (SetCover)
Minimize

∑N
S∈K cSxS

subject to
I

∑
S:e∈S xS ≥ 1 for all e ∈ U

I xS ∈ {0, 1} for all S ∈ K

Definition (Primal (Fractional SetCover))
Minimize

∑N
S∈K cSxS

subject to
I

∑
S:e∈S xS ≥ 1 for all e ∈ U

I xS ≤ 1 for all S ∈ K
I xS ≥ 0 for all S ∈ K

Definition (Dual)
Maximize objective function

∑
e∈U ye

subject to
I

∑
e∈U :e∈S ye − zS ≤ cS for all S ∈ K

I ye ≥ 0 for all e ∈ U
I zS ≥ 0 for all S ∈ K
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SetCover Approximation by Primal-Dual Schema

Algorithm APDsetcover

y ← 0; x← 0; K̃ ← ∅; C1 ← ∅; k ← 1

While Ck 6= U
I For each e ∈ U\Ck, increase the corresponding ye at the

same rate, until there is some S, where e ∈ S, such that∑
e∈U :e∈S

ye = cS

I xS ← 1; K̃ ← K̃ ∪ {S}
I Ck+1 ← Ck ∪ S
I k ← k + 1

Return K̃
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SetCover Approximation by Primal-Dual Schema

Let f be the maximum number of covers in K that cover the same item

f , max
e∈U

∣∣∣{S ∈ K : e ∈ S}
∣∣∣

Theorem
The approximation ratio of APDsetcover is f

Proof:
Since each item can be covered by at most f times, the violation of dual complementary
slackness condition is at most f
Namely, 1 ≤

∑
S:e∈S xS ≤ f , noting that xS ≤ 1 for all S

The violation gaps are β = f and α = 1
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Primal-Dual Schema for Online Algorithms

The approximation ratio of APDsetcover is f = O(n), but the one of greedy algorithm
Asetcover is O(log(n)). Why do we bother with primal-dual schema?

I If f is small, APDsetcover can outperform Asetcover
I Primal-dual schema also allows online decisions - it does not depend on other unknown covers

Example of primal-dual schema for online algorithms: Ad Auction
I Match buyers with a stream of unknown keywords to maximize total revenue
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