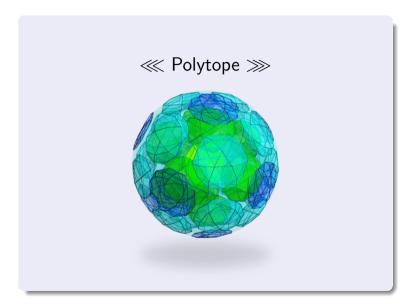
Lecture 3: Linear Programming & Approximation Algorithms Advanced Algorithms

Sid Chi-Kin Chau

Australian National University

🖂 sid.chau@anu.edu.au

October 7, 2022



What is Linear Programming (LP)

• Linear programming is a relaxation of many (integer) combinatorial optimization problems

Definition (Linear Programming)

- Given $(a_{i,j})_{i=1,\dots,N;j=1,\dots,M}$ and $(c_i)_{i=1,\dots,N}$ are real numbers
 - Minimize objective function $\sum_{i=1}^{N} c_i x_i$
 - Subject to $\sum_{i=1}^N a_{i,j} x_i \geq b_j$ for all j=1,...,M, and $x_i \geq 0$ for all i=1,...,N

• Matrix form:

$$\begin{array}{c} \mathsf{Minimize} \quad (c_1, \dots, c_N) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} \quad (\mathsf{or \ equivalently \ write \ } \min_x c^T x) \\ \\ \mathsf{Subject \ to} \\ \begin{pmatrix} a_{1,1} & \dots & a_{N,1} \\ \vdots & \ddots & \vdots \\ a_{1,M} & \dots & a_{N,M} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} \geq \begin{pmatrix} b_1 \\ \vdots \\ b_M \end{pmatrix} \quad (\mathsf{or \ equivalently \ write \ } Ax \geq b \ \mathsf{and} \ x \geq 0) \end{array}$$

Linear Programming: Examples

Example (Fractional Set Cover Problem)

- Given a set ${\mathcal U}$ and covers ${\mathcal S}$ with ${\rm Cost}(S)=c_S$ for $S\in {\mathcal S}$
- Minimize $\sum_{S\in\mathcal{S}}c_Sx_S$, subject to

$$\sum_{S \in \mathcal{S}} a_{e,S} x_S \ge 1 \text{ for all } e \in \mathcal{U}, \text{ where } a_{e,S} \triangleq \begin{cases} 1, & \text{if } e \in S \\ 0, & \text{otherwise} \end{cases}$$
$$x_S \ge 0 \text{ for all } S \in \mathcal{S} \end{cases}$$

Example (Perfect Bipartite Matching)

 $\bullet\,$ Given two sets of items ${\cal U}$ and ${\cal V}$ such that $|{\cal U}|=|{\cal V}|=N$

• Minimize
$$\sum_{u \in \mathcal{U}, v \in \mathcal{V}} c_{u,v} x_{u,v}$$
, subject to
• $\sum_{v \in \mathcal{V}} a_{u,v} x_{u,v} = 1$ for all $u \in \mathcal{U}$ and $\sum_{u \in \mathcal{U}} a_{u,v} x_{u,v} = 1$ for all $v \in \mathcal{V}$
where $a_{u,v} \triangleq \begin{cases} 1, & \text{if } u \in \mathcal{U} \text{ and } v \in \mathcal{V} \\ 0, & \text{otherwise} \end{cases}$
• $x_{u,v} \ge 0$ for all $u \in \mathcal{U}, v \in \mathcal{V}$

Linear Programming: Examples

Example (Fractional Minimum Spanning Tree)

- Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- For each $S \subseteq \mathcal{V}$, define $\mathcal{E}(S)$ as the set of links such that both end-vertices are in S
- Minimize $\sum_{e \in \mathcal{E}} c_e x_e$ • Subject to $\sum_{e \in \mathcal{E}(S)} x_e \leq |S| - 1 \text{ for all } \emptyset \neq S \subset \mathcal{V}$ $\sum_{e \in \mathcal{E}(\mathcal{V})} x_e = |\mathcal{V}| - 1$ $x_e > 0 \text{ for all } e \in \mathcal{E}$
- Although integer minimum spanning tree problem is easy to solve, other variants of minimum spanning trees are hard to solve (e.g. degree bound minimum spanning trees)
- Fractional minimum spanning tree problems are easy to solve, and can give us insight to approximate the integer version

Linear Programming: Examples

Example (Fractional Network Design Problem)

- Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Define r(u,v) as the required number of disjoint paths between $u,v\in\mathcal{V}$
- Define $\delta(S)$ as the set of links with only one end-vertex in $S \subset \mathcal{V}$ (i.e. the cut set of S)
- Minimize $\sum_{e \in \mathcal{E}} c_e x_e$, subject to

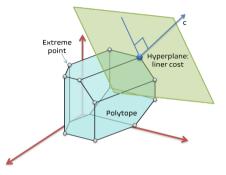
$$\sum_{e \in \delta(S)} x_e \ge \max_{u \in S, v \notin S} r(u, v) \text{ for all } S \subset \mathcal{V}$$

- $0 \leq x_e \leq 1$ for all $e \in \mathcal{E}$
- Many networking problems are instances of network design problem
 - Source-destination connectivity problem
 - Minimum spanning tree problem
 - Minimum Steiner tree problem

Definition (Feasible Solutions)

- If x satisfies $(Ax \ge b, x \ge 0),$ then x is a feasible solution
- The set of feasible solutions define a *polytope* (i.e. a multi-dimensional polygon in multi-dimensional space), let $\mathbb{P} = \{x : Ax \ge b, x \ge 0\}$
- $x \in \mathbb{P}$ is called an optimal solution, if it minimizes $c^T x$
- $x \in \mathbb{P}$ is called an *extreme point* of a polytope \mathbb{P} , if there does not exist y such that $x + y \in \mathbb{P}$ and $x y \in \mathbb{P}$ (i.e. extreme points are the end corner points)
- Extreme points are also called vertex solutions

Visualization of Polytopes



- 2D/3D polytopes of LP problem can be visualized easily
- A LP problem defines a class of polytopes
- The geometry of polytope tells a lot about the solutions of a LP problem

Lemma

If \mathbb{P} is finite, then there exists an extreme point that is an optimal solution

Basic idea:

- $\bullet\,$ Points of tangent intersecting a hyperplane of objective function and a polytope must lie on the boundary of $\mathbb P$
- ullet An optimal solution must lie on the boundary of ${\mathbb P}$ (e.g. hyperplanes or extreme points)
- $\bullet\,$ If ${\mathbb P}$ is finite, every edge and hyperplane contains end-points, which are extreme points
- Hence, we can restrict our attention to extreme points (or vertex solutions) only

Properties of Vertex Solutions

Definition (Linear Independence & Rank)

- A set of $V = \{v_1, v_2, ..., v_n\}$ is *linearly independent*, if none of them can be expressed as a linear combination of finitely many vectors in V
- \bullet A linear mapping can be represented as a matrix $x\mapsto Ax$
 - If column vectors in A are not linear independent, then A can be replaced by another matrix A with lower dimension. Linear independence captures inreducibility of linear mapping

Definition (Column or Row Rank)

• The *column* (or *row*) rank of a matrix A is the maximum number of linearly independent column (or row) vectors of A

Lemma (Column Rank = Row Rank)

- $\bullet\,$ The column rank of a matrix A is the same as the row rank of A
 - Proof using Gaussian elimination

Lemma

- Given a polytope $\mathbb{P} = \{x : Ax \ge b, x \ge 0\}$. For a particular $x \in \mathbb{P}$, let $A_x^=$ be the submatrix, such that the *j*-th column vector of A is in $A_x^=$ if $A_jx = b_j$ and $x_j > 0$
- If the column vectors of A⁼_x are linear independent, and Rank(A) = Rank(A⁼_x), then x is an extreme point of P

Basic idea:

- Extreme points are uniquely determined by the tight constraints (e.g. Ax = b)
- For $x_j > 0$, x_j must be uniquely determined by a constraint $A_x^{=}x = b$
- Linear independence can guarantee a unique solution of $A_x^{=}x = b$
- $\bullet\,$ Hence, we can characterize the vertex solutions of LP problem by the linear independence of matrix A

Optimal Integer Solutions of Perfect Bipartite Matching

Example (Perfect Bipartite Matching)

• Minimize
$$\sum_{u \in \mathcal{U}, v \in \mathcal{V}} c_{u,v} x_{u,v}$$
, subject to
• $\sum_{v \in \mathcal{V}} a_{u,v} x_{u,v} = 1$ for all $u \in \mathcal{U}$ and $\sum_{u \in \mathcal{U}} a_{u,v} x_{u,v} = 1$ for all $v \in \mathcal{V}$
• $x_{u,v} \ge 0$ for all $u \in \mathcal{U}, v \in \mathcal{V}$
• Let $|\mathcal{U}| = |\mathcal{V}| = N$

Theorem (Integrity of LP Perfect Bipartite Matching Solution)

Optimal vertex solutions for LP bipartite matching are integers $\{0, 1\}$

Proof:

- Use contradiction suppose some non-zero $x_{u,v}$ is fractional (e.g. $x_{u,v} < 1$ for some u, v)
- Since $\underset{v \in \mathcal{V}}{\sum} a_{u,v} x_{u,v} = 1$, there is at least one another fractional $x_{u,v}$
- There are at least 2k fractional $x_{u,v}$'s in 2k constraints. The fractional $x_{u,v}$'s form a cycle

Optimal Integer Solutions of Perfect Bipartite Matching

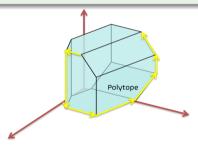
Proof (Cont.):

- Divide the fractional $x_{u,v}$'s in the cycle into odd and even edges
- Let x' be the same as the original x, except that the fractional value of every odd edge is increased by ϵ and the fractional value of every even edge is decreased by ϵ for some $\epsilon > 0$
- Let x'' be the same as the original x, except that the fractional value of every odd edge is decreased by ϵ and the fractional value of every even edge is increased by ϵ for the same $\epsilon > 0$
- Therefore, the fractional solution x can not be a vertex solution since x',x'' are also feasible. This proves that a vertex solution must be integers $\{0,1\}$

How to solve Linear Programming?

Simplex Algorithm (Informal Description)

- Start from an extreme point
- Move to a better neighbor that improves the cost
- Iterate until cannot find a better neighbor



• How do we choose a neighbor when there multiple choices?

▶ No rule can guarantee polynomial running time of simplex algorithm in the worst case

How to solve Linear Programming?

- ullet Transform an optimization problem into a problem of finding a point inside $\mathbb P$
 - But the solution is not exact with small tolerance

Ellipsoid Algorithm (Informal Description)

- $\bullet\,$ Start with a large ellipsoid which contains $\mathbb P$
- $\bullet\,$ Test if the center of ellipsoid c is inside $\mathbb P$
- If not, identify the linear constraint in $Ax \ge b$ for which c is violated.
- Find a minimum ellipsoid which contains the intersection of previous ellipsoid and the violated constraint
- Iterate with the new (smaller) ellipsoid until ellipsoid is sufficiently small
- The running time of Ellipsoid Algorithm is polynomial under some assumptions
 - It needs a separation oracle: Given x, check if $x \in \mathbb{P}$ or return the violated linear constraint
 - Separation oracle must have polynomial running time (e.g. when there are a polynomial number of constraints)

Sid Chau (ANU)

Solve Integer Problems by LP-based Approximation

An Informal Recipe for LP-based Approximation Algorithm 📃

- Relax the integer constraints to allows fractional solutions
- Solve the fractional LP solutions by a polynomial-time LP algorithm
- Transform the fractional LP solutions to integer solutions to satisfy the feasibility of integer constraints
 - For example, rounding the fractional solutions to the nearest integers
- How to transform fractional LP solutions to integer solutions while satisfying the feasibility of integer constraints?
- How to guarantee that the rounding error is small? How to characterize the approximation ratio of rounding?
- 🛕 But rounding may be infeasible or give a large error

Is Rounding always Feasible?

- $\min_x c^T x$ subject to Ax = b and $x \ge 0 \quad \Leftrightarrow \quad \min_x c^T x$ subject to $A'x \ge b$ and $x \ge 0$
- LP with equality constraints is equivalent to LP with inequality constraints:

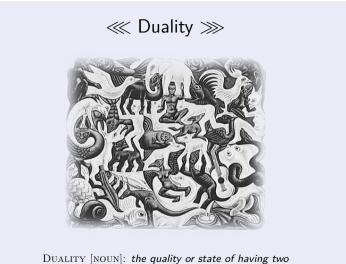
$$\blacktriangleright \sum_{i=1}^{N} a_{i,j} x_i = b_j \quad \Leftrightarrow \quad \sum_{i=1}^{N} a_{i,j} x_i \ge b_j \text{ and } \sum_{i=1}^{N} a_{i,j} x_i \le b_j$$

Example (Infeasibility of Rounding in LP Approximation)

- Consider a simple linear programing problem:
- Maximize $2x_1 + x_2$, subject to

$$3x_1 + 3x_2 = 2$$

- $x_1, x_2 \ge 0$ for all $u, v \in \mathcal{V}$
- The optimal fractional solution is fractional
- However, there is no integer feasible solutions



DUALITY [NOUN]: the quality or state of having two different or opposite parts or elements – Merriam-Webster

Duality of Linear Programming

Definition (Primal)

- Minimize objective function $\sum_{i=1}^N c_i x_i$
- subject to

$$\sum_{i=1}^{N} a_{i,j} x_i \geq b_j \text{ for all } j=1,...,M \\ x_i \geq 0 \text{ for all } i=1,...,N$$

Definition (Dual)

• Maximize objective function $\sum_{j=1}^{M} b_j y_j$

• subject to $\begin{array}{l} \sum_{j=1}^M a_{i,j}y_i \leq c_i \text{ for all } i=1,...,N \\ \text{ b } y_j \geq 0 \text{ for all } j=1,...,M \end{array}$

	Primal	Dual
Objective	Minimization	Maximization
Variables	$\{x_i : i = 1,, N\}$	$\{y_j : j = 1,, M\}$
Linear Costs	$\{c_i : i = 1,, N\}$	$\{b_j : j = 1,, M\}$
Linear Constraints	$\{b_j : j = 1,, M\}$	$\{c_i : i = 1,, N\}$

Duality of Linear Programming

Example (MaxFlow and MinCut)

- \bullet Given a graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ and a set of paths \mathcal{P} in \mathcal{G}
- Each link $e \in \mathcal{E}$ has a capacity c_e

Definition (MinCut Problem)

- Minimize $\sum_{e \in \mathcal{E}} c_e x_e$
- subject to

$$\sum_{e \in p} x_e \ge 1 \text{ for all } p \in \mathcal{P}$$
$$x_e \ge 0 \text{ for all } e \in \mathcal{E}$$

Definition (MaxFlow Problem)

• Maximize $\sum_{p\in\mathcal{P}}y_p$

• subject to

$$\begin{array}{l} \sum_{p \in \mathcal{P}: e \in p} y_p \leq c_e \text{ for all } e \in \mathcal{E} \\ y_p \geq 0 \text{ for all } p \in \mathcal{P} \end{array}$$

Example (Covering and Packing)

- $\sum_{i=1}^{N} a_{i,j} x_i \ge b_j$ can be regarded as covering constraints
- $\sum_{i=1}^{N} a_{i,j} y_j \le c_i$ can be regarded as packing constraints
- Many covering and packing problems are dual to each other:

Primal (Covering problems)	Dual (Packing problems)
Minimum set cover	Maximum set packing
Minimum vertex cover	Maximum matching
Minimum edge cover	Maximum independent set

Why Duality?

- A change of perspective could give an alternate (maybe easier) approach
 - ► Vertex Cover (Hard) ↔ Maximal Matching (Easy)
- Combining primal and dual programs give a complete picture to solve a problem
 - **Primal-Dual Schema** for approximation algorithms:
 - $\star\,$ Start with initial feasible solutions to the primal and dual programs
 - ★ Iteratively, modify the primal and dual solutions integrally to satisfy *complementary slackness* conditions
 - * Output the solutions when all complementary slackness conditions are satisfied

Duality of Linear Programming

Theorem (Weak Duality)

For any feasible solution of primal problem $\{x_i : i = 1, ..., N\}$ and any feasible solution of dual problem $\{y_j : i = 1, ..., M\}$, we have $\sum_{i=1}^{N} c_i x_i \ge \sum_{i=1}^{M} b_j y_j$

Proof:

•
$$\sum_{i=1}^{N} x_i c_i \ge \sum_{i=1}^{N} x_i \left(\sum_{j=1}^{M} a_{i,j} y_j \right) = \sum_{j=1}^{M} y_j \left(\sum_{i=1}^{N} a_{i,j} x_i \right) \ge \sum_{j=1}^{M} y_j b_j$$

Theorem (Strong Duality)

Let an optimal solution to primal problem be $\{x_i^* : i = 1, ..., N\}$ and an optimal solution to dual problem be $\{y_i^* : i = 1, ..., M\}$, we have

$$\sum_{i=1}^{N} c_i x_i^* = \sum_{j=1}^{M} b_j y_j^*$$

Duality of Linear Programming

Theorem (Complementary Slackness)

For an optimal solution of primal problem $\{x_i^* : i = 1, ..., N\}$ and an optimal solution of dual problem $\{y_i^* : i = 1, ..., M\}$, we have

- Either $x_i^* = 0$ or $\sum_{j=1}^M a_{i,j} y_j^* = c_i$ (primal complementary slackness condition)
- Either $y_j^* = 0$ or $\sum_{i=1}^N a_{i,j} x_i^* = b_j$ (dual complementary slackness condition)

Proof:

•
$$\sum_{i=1}^{N} x_i^* c_i \ge \sum_{i=1}^{N} x_i^* \left(\sum_{j=1}^{M} a_{i,j} y_j^* \right) = \sum_{j=1}^{M} y_j^* \left(\sum_{i=1}^{N} a_{i,j} x_i^* \right) \ge \sum_{j=1}^{M} y_j^* b_j$$

• By strong duality $\left(\sum_{i=1}^{N} c_i x_i^* = \sum_{j=1}^{M} b_j y_j^*\right)$, to make the equality holds, we must require

$$x_i^* > 0 \Rightarrow \sum_{j=1}^M a_{i,j} y_j^* = c_i$$

$$y_j^* > 0 \Rightarrow \sum_{i=1}^N a_{i,j} x_i^* = b_j$$

$$\sum_{j=1}^M a_{i,j} y_j^* < c_i \Rightarrow x_i^* = 0$$

$$\sum_{i=1}^{N} a_{i,j} x_i^* > b_j \Rightarrow y_j^* = 0$$

Primal vs. Dual

Primal Fractional Problem

- Minimize objective function $\sum_{i=1}^{N} c_i x_i$
- subject to
 - $\sum_{i=1}^{N} a_{i,j} x_i \ge b_j \text{ for all } j = 1, ..., M$ $x_i \ge 0 \text{ for all } i = 1, ..., N$

Dual Fractional Problem

• Maximize objective function $\sum_{j=1}^{M} b_j y_j$

• subject to • $\sum_{j=1}^{M} a_{i,j}y_i \leq c_i \text{ for all } i = 1, ..., N$ • $y_j \geq 0 \text{ for all } j = 1, ..., M$

Primal Integer Problem

- Minimize objective function $\sum_{i=1}^{N} c_i x_i$
- subject to
 - $\sum_{i=1}^{N} a_{i,j} x_i \ge b_j$ for all j = 1, ..., M• x_i is a non-negative integer for all

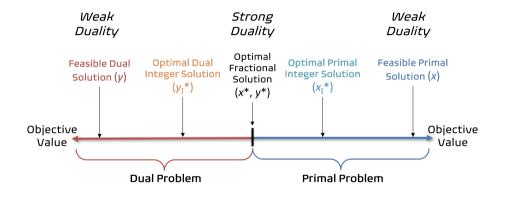
Dual Integer Problem

- Maximize objective function $\sum_{j=1}^{M} b_j y_j$
- subject to

$$\sum_{j=1}^{M} a_{i,j} y_i \leq c_i \text{ for all } i = 1, ..., N$$

$$y_j \text{ is a non-negative integer for all } j = 1, ..., M$$

i = 1, ..., N



Approximation Algorithm by Primal-Dual Schema

- Relaxed primal and dual complementary slackness conditions:
 - Allow a violation gap of $\alpha \ge 1$, such that for each $1 \le i \le N$,

either
$$x_i=0$$
 or $rac{c_i}{lpha}\leq \sum_{j=1}^m a_{i,j}y_j\leq c_i$

► Allow a violation gap of
$$\beta \ge 1$$
, such that for each $1 \le j \le M$,
either $y_j = 0$ or $b_i \le \sum_{i=1}^N a_{i,j} x_i \le \beta b_j$

• Then, we obtain an approximation ratio as $\alpha\beta$:

$$\sum_{j=1}^{M} b_j y_j \le \sum_{i=1}^{N} c_i x_i \le \alpha \beta \cdot \sum_{j=1}^{M} b_j y_j$$

- \bullet No violation in primal complementary slackness condition: set $\alpha=1,$ but let $\beta>1$
- No violation in dual complementary slackness condition: set $\beta=1,$ but let $\alpha>1$

Sid Chau (ANU)

SetCover Approximation by Primal-Dual Schema

Definition (SetCover) • Minimize $\sum_{S \in \mathcal{K}}^{N} c_S x_S$ • subject to • $\sum_{S:e \in S} x_S \ge 1$ for all $e \in \mathcal{U}$ • $x_S \in \{0, 1\}$ for all $S \in \mathcal{K}$

Definition (Primal (Fractional SetCover))

- Minimize $\sum_{S \in \mathcal{K}}^{N} c_S x_S$
- subject to

$$\sum_{\substack{S:e \in S \\ x_S \leq 1 \text{ for all } S \in \mathcal{K} \\ x_S \geq 0 \text{ for all } S \in \mathcal{K}} x_S \geq 0 \text{ for all } S \in \mathcal{K}$$

Definition (Dual)

- Maximize objective function $\sum_{e\in\mathcal{U}}y_e$
- subject to

$$\begin{array}{l} \sum_{e \in \mathcal{U}: e \in S} y_e - z_S \leq c_S \text{ for all } S \in \mathcal{K} \\ y_e \geq 0 \text{ for all } e \in \mathcal{U} \\ z_S \geq 0 \text{ for all } S \in \mathcal{K} \end{array}$$

SetCover Approximation by Primal-Dual Schema

Algorithm $\mathcal{A}_{\mathsf{PDsetcover}}$

•
$$y \leftarrow 0; x \leftarrow 0; \tilde{\mathcal{K}} \leftarrow \emptyset; \mathcal{C}_1 \leftarrow \emptyset; k \leftarrow 1$$

• While $\mathcal{C}_k \neq \mathcal{U}$

For each $e \in \mathcal{U} \setminus \mathcal{C}_k$, increase the corresponding y_e at the same rate, until there is some S, where $e \in S$, such that

$$\sum_{e \in \mathcal{U}: e \in S} y_e = c_S$$

$$\begin{array}{l} x_{S} \leftarrow 1; \ \tilde{\mathcal{K}} \leftarrow \tilde{\mathcal{K}} \cup \{S\} \\ & \mathcal{C}_{k+1} \leftarrow \mathcal{C}_{k} \cup S \\ & k \leftarrow k+1 \end{array}$$

• Return $\tilde{\mathcal{K}}$

Items (U)

 $\label{eq:covers} \begin{array}{c} \mathsf{Covers}\left(\mathcal{K}\right)\\ x_{\mathrm{S}}=1 \quad x_{\mathrm{S}}=0 \quad x_{\mathrm{S}}=0 \quad x_{\mathrm{S}}=1 \quad x_{\mathrm{S}}=0 \quad x_{\mathrm{S}}=0 \end{array}$

 $= c_{\alpha}$

 $< c_{\sigma}$

 $< c_s$

 $= c_{S}$

< c .

y.1

< Co

SetCover Approximation by Primal-Dual Schema

 $\bullet\,$ Let f be the maximum number of covers in ${\mathcal K}$ that cover the same item

$$f \triangleq \max_{e \in \mathcal{U}} \left| \{ S \in \mathcal{K} : e \in S \} \right|$$

Theorem

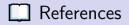
The approximation ratio of $\mathcal{A}_{PDsetcover}$ is f

Proof:

- \bullet Since each item can be covered by at most f times, the violation of dual complementary slackness condition is at most f
- Namely, $1 \leq \sum_{S:e \in S} x_S \leq f$, noting that $x_S \leq 1$ for all S
- $\bullet\,$ The violation gaps are $\beta=f$ and $\alpha=1$

Primal-Dual Schema for Online Algorithms

- The approximation ratio of $\mathcal{A}_{PDsetcover}$ is f = O(n), but the one of greedy algorithm $\mathcal{A}_{setcover}$ is $O(\log(n))$. Why do we bother with primal-dual schema?
 - If f is small, $\mathcal{A}_{\text{PDsetcover}}$ can outperform $\mathcal{A}_{\text{setcover}}$
 - Primal-dual schema also allows online decisions it does not depend on other unknown covers
- Example of primal-dual schema for online algorithms: Ad Auction
 - Match buyers with a stream of unknown keywords to maximize total revenue



Reference Materials

- Design of Approximation Algorithms (Williamson, Shmoys), Cambridge University Press
 Chapters 1, 7, Appendix A
- Approximation Algorithms (V. Vazirani), Springer
 - Chapters 12-13