Lecture 3: *Linear Programming & Approximation Algorithms*

Advanced Algorithms

Sid Chi-Kin Chau

Australian National University

sid.chau@anu.edu.au

October 7, 2022
Polytope
What is Linear Programming (LP)

- Linear programming is a relaxation of many (integer) combinatorial optimization problems

Definition (Linear Programming)

- Given \((a_{i,j})_{i=1,...,N; j=1,...,M}\) and \((c_i)_{i=1,...,N}\) are real numbers
 - Minimize objective function \(\sum_{i=1}^{N} c_i x_i\)
 - Subject to \(\sum_{i=1}^{N} a_{i,j} x_i \geq b_j\) for all \(j = 1, ..., M\), and \(x_i \geq 0\) for all \(i = 1, ..., N\)

- Matrix form:
 - Minimize \((c_1, \ldots, c_N) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix}\) (or equivalently write \(\min_x c^T x\))
 - Subject to \(\begin{pmatrix} a_{1,1} & \cdots & a_{N,1} \\ \vdots & \ddots & \vdots \\ a_{1,M} & \cdots & a_{N,M} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} \geq \begin{pmatrix} b_1 \\ \vdots \\ b_M \end{pmatrix}\) (or equivalently write \(Ax \geq b\) and \(x \geq 0\))
Example (Fractional Set Cover Problem)

- Given a set \mathcal{U} and covers \mathcal{S} with $\text{Cost}(S) = c_S$ for $S \in \mathcal{S}$
- Minimize $\sum_{S \in \mathcal{S}} c_S x_S$, subject to
 - $\sum_{S \in \mathcal{S}} a_{e,S} x_S \geq 1$ for all $e \in \mathcal{U}$, where $a_{e,S} \triangleq \begin{cases} 1, & \text{if } e \in S \\ 0, & \text{otherwise} \end{cases}$
 - $x_S \geq 0$ for all $S \in \mathcal{S}$

Example (Perfect Bipartite Matching)

- Given two sets of items \mathcal{U} and \mathcal{V} such that $|\mathcal{U}| = |\mathcal{V}| = N$
- Minimize $\sum_{u \in \mathcal{U}, v \in \mathcal{V}} c_{u,v} x_{u,v}$, subject to
 - $\sum_{v \in \mathcal{V}} a_{u,v} x_{u,v} = 1$ for all $u \in \mathcal{U}$ and $\sum_{u \in \mathcal{U}} a_{u,v} x_{u,v} = 1$ for all $v \in \mathcal{V}$
 - where $a_{u,v} \triangleq \begin{cases} 1, & \text{if } u \in \mathcal{U} \text{ and } v \in \mathcal{V} \\ 0, & \text{otherwise} \end{cases}$
 - $x_{u,v} \geq 0$ for all $u \in \mathcal{U}, v \in \mathcal{V}$
Example (Fractional Minimum Spanning Tree)

- Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- For each $S \subseteq \mathcal{V}$, define $\mathcal{E}(S)$ as the set of links such that both end-vertices are in S
- Minimize $\sum_{e \in \mathcal{E}} c_e x_e$

 Subject to

 $\sum_{e \in \mathcal{E}(S)} x_e \leq |S| - 1$ for all $\emptyset \neq S \subset \mathcal{V}$

 $\sum_{e \in \mathcal{E}(\mathcal{V})} x_e = |\mathcal{V}| - 1$

 $x_e \geq 0$ for all $e \in \mathcal{E}$

- Although integer minimum spanning tree problem is easy to solve, other variants of minimum spanning trees are hard to solve (e.g. degree bound minimum spanning trees)
- Fractional minimum spanning tree problems are easy to solve, and can give us insight to approximate the integer version
Example (Fractional Network Design Problem)

- Given a graph $G = (V, E)$
- Define $r(u, v)$ as the required number of disjoint paths between $u, v \in V$
- Define $\delta(S)$ as the set of links with only one end-vertex in $S \subset V$ (i.e. the cut set of S)
- Minimize $\sum_{e \in E} c_e x_e$, subject to
 - $\sum_{e \in \delta(S)} x_e \geq \max_{u \in S, v \not\in S} r(u, v)$ for all $S \subset V$
 - $0 \leq x_e \leq 1$ for all $e \in E$

- Many networking problems are instances of network design problem
 - Source-destination connectivity problem
 - Minimum spanning tree problem
 - Minimum Steiner tree problem
Feasible Solutions of Linear Programming

Definition (Feasible Solutions)

- If x satisfies $(Ax \geq b, x \geq 0)$, then x is a feasible solution
- The set of feasible solutions define a polytope (i.e. a multi-dimensional polygon in multi-dimensional space), let $\mathcal{P} = \{x : Ax \geq b, x \geq 0\}$
- $x \in \mathcal{P}$ is called an optimal solution, if it minimizes $c^T x$
- $x \in \mathcal{P}$ is called an extreme point of a polytope \mathcal{P}, if there does not exist y such that $x + y \in \mathcal{P}$ and $x - y \in \mathcal{P}$ (i.e. extreme points are the end corner points)
- Extreme points are also called vertex solutions
Visualization of Polytopes

- 2D/3D polytopes of LP problem can be visualized easily
- A LP problem defines a class of polytopes
- The geometry of polytope tells a lot about the solutions of a LP problem
Lemma

If P is finite, then there exists an extreme point that is an optimal solution

Basic idea:

- Points of tangent intersecting a hyperplane of objective function and a polytope must lie on the boundary of P.
- An optimal solution must lie on the boundary of P (e.g., hyperplanes or extreme points).
- If P is finite, every edge and hyperplane contains end-points, which are extreme points.
- Hence, we can restrict our attention to extreme points (or vertex solutions) only.
Properties of Vertex Solutions

Definition (Linear Independence & Rank)
- A set of $V = \{v_1, v_2, ..., v_n\}$ is \textit{linearly independent}, if none of them can be expressed as a linear combination of finitely many vectors in V
- A linear mapping can be represented as a matrix $x \mapsto Ax$
 - If column vectors in A are not linear independent, then A can be replaced by another matrix A with lower dimension. Linear independence captures inreducibility of linear mapping

Definition (Column or Row Rank)
- The \textit{column} (or \textit{row}) rank of a matrix A is the maximum number of linearly independent column (or row) vectors of A

Lemma (Column Rank = Row Rank)
- The \textit{column rank of a matrix} A is the same as the \textit{row rank of} A
 - \textit{Proof using Gaussian elimination}
Lemma

Given a polytope $\mathbb{P} = \{x : Ax \geq b, x \geq 0\}$. For a particular $x \in \mathbb{P}$, let A_x^\perp be the submatrix, such that the j-th column vector of A is in A_x^\perp if $A_j x = b_j$ and $x_j > 0$

If the column vectors of A_x^\perp are linear independent, and $\text{Rank}(A) = \text{Rank}(A_x^\perp)$, then x is an extreme point of \mathbb{P}

Basic idea:

- Extreme points are uniquely determined by the tight constraints (e.g. $Ax = b$)
- For $x_j > 0$, x_j must be uniquely determined by a constraint $A_x^\perp x = b$
- Linear independence can guarantee a unique solution of $A_x^\perp x = b$
- Hence, we can characterize the vertex solutions of LP problem by the linear independence of matrix A
Optimal Integer Solutions of Perfect Bipartite Matching

Example (Perfect Bipartite Matching)

- Minimize $\sum_{u \in U, v \in V} c_{u,v}x_{u,v}$, subject to:
 - $\sum_{v \in V} a_{u,v}x_{u,v} = 1$ for all $u \in U$ and $\sum_{u \in U} a_{u,v}x_{u,v} = 1$ for all $v \in V$
 - $x_{u,v} \geq 0$ for all $u \in U, v \in V$
 - Let $|U| = |V| = N$

Theorem (Integrity of LP Perfect Bipartite Matching Solution)

Optimal vertex solutions for LP bipartite matching are integers $\{0, 1\}$

Proof:
- Use contradiction – suppose some non-zero $x_{u,v}$ is fractional (e.g. $x_{u,v} < 1$ for some u, v)
- Since $\sum_{v \in V} a_{u,v}x_{u,v} = 1$, there is at least one another fractional $x_{u,v}$
- There are at least $2k$ fractional $x_{u,v}$'s in $2k$ constraints. The fractional $x_{u,v}$'s form a cycle
Optimal Integer Solutions of Perfect Bipartite Matching

Proof (Cont.):

- Divide the fractional $x_{u,v}$'s in the cycle into odd and even edges.
- Let x' be the same as the original x, except that the fractional value of every odd edge is increased by ϵ and the fractional value of every even edge is decreased by ϵ for some $\epsilon > 0$.
- Let x'' be the same as the original x, except that the fractional value of every odd edge is decreased by ϵ and the fractional value of every even edge is increased by ϵ for the same $\epsilon > 0$.
- Therefore, the fractional solution x can not be a vertex solution since x', x'' are also feasible. This proves that a vertex solution must be integers $\{0, 1\}$.

Sid Chau (ANU)

Lec. 3: LP & Approx. Algorithms

October 7, 2022
How to solve Linear Programming?

Simplex Algorithm (Informal Description)

- Start from an extreme point
- Move to a better neighbor that improves the cost
- Iterate until cannot find a better neighbor

How do we choose a neighbor when there multiple choices?

▷ No rule can guarantee polynomial running time of simplex algorithm in the worst case
How to solve Linear Programming?

- Transform an optimization problem into a problem of finding a point inside \mathbb{P}
 - But the solution is not exact with small tolerance

Ellipsoid Algorithm (Informal Description)

- Start with a large ellipsoid which contains \mathbb{P}
- Test if the center of ellipsoid c is inside \mathbb{P}
- If not, identify the linear constraint in $Ax \geq b$ for which c is violated.
- Find a minimum ellipsoid which contains the intersection of previous ellipsoid and the violated constraint
- Iterate with the new (smaller) ellipsoid until ellipsoid is sufficiently small

- The running time of Ellipsoid Algorithm is polynomial under some assumptions
 - It needs a separation oracle: Given x, check if $x \in \mathbb{P}$ or return the violated linear constraint
 - Separation oracle must have polynomial running time (e.g. when there are a polynomial number of constraints)
Solve Integer Problems by LP-based Approximation

An Informal Recipe for LP-based Approximation Algorithm

- Relax the integer constraints to allow fractional solutions
- Solve the fractional LP solutions by a polynomial-time LP algorithm
- Transform the fractional LP solutions to integer solutions to satisfy the feasibility of integer constraints
 - For example, rounding the fractional solutions to the nearest integers

- How to transform fractional LP solutions to integer solutions while satisfying the feasibility of integer constraints?
- How to guarantee that the rounding error is small? How to characterize the approximation ratio of rounding?
- But rounding may be infeasible or give a large error
Is Rounding always Feasible?

- \(\min_x c^T x \) subject to \(Ax = b \) and \(x \geq 0 \) \(\iff \) \(\min_x c^T x \) subject to \(A'x \geq b \) and \(x \geq 0 \)
- LP with equality constraints is equivalent to LP with inequality constraints:
 \[\sum_{i=1}^N a_{i,j}x_i = b_j \iff \sum_{i=1}^N a_{i,j}x_i \geq b_j \text{ and } \sum_{i=1}^N a_{i,j}x_i \leq b_j \]

Example (Infeasibility of Rounding in LP Approximation)

- Consider a simple linear programing problem:
 - Maximize \(2x_1 + x_2 \), subject to
 - \(3x_1 + 3x_2 = 2 \)
 - \(x_1, x_2 \geq 0 \) for all \(u, v \in V \)
- The optimal fractional solution is fractional
- However, there is no integer feasible solutions
Duality [noun]: the quality or state of having two different or opposite parts or elements – Merriam-Webster
Duality of Linear Programming

Definition (Primal)
- Minimize objective function: \(\sum_{i=1}^{N} c_i x_i \)
- subject to
 - \(\sum_{i=1}^{N} a_{i,j} x_i \geq b_j \) for all \(j = 1, \ldots, M \)
 - \(x_i \geq 0 \) for all \(i = 1, \ldots, N \)

Definition (Dual)
- Maximize objective function: \(\sum_{j=1}^{M} b_j y_j \)
- subject to
 - \(\sum_{j=1}^{M} a_{i,j} y_i \leq c_i \) for all \(i = 1, \ldots, N \)
 - \(y_j \geq 0 \) for all \(j = 1, \ldots, M \)

Primal vs. Dual

<table>
<thead>
<tr>
<th>Objective</th>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimization</td>
<td>({x_i : i = 1, \ldots, N})</td>
<td>({y_j : j = 1, \ldots, M})</td>
</tr>
<tr>
<td>Maximization</td>
<td>({y_j : j = 1, \ldots, M})</td>
<td>({c_i : i = 1, \ldots, N})</td>
</tr>
<tr>
<td>Variables</td>
<td>({x_i : i = 1, \ldots, N})</td>
<td>({y_j : j = 1, \ldots, M})</td>
</tr>
<tr>
<td>Linear Costs</td>
<td>({c_i : i = 1, \ldots, N})</td>
<td>({b_j : j = 1, \ldots, M})</td>
</tr>
<tr>
<td>Linear Constraints</td>
<td>({b_j : j = 1, \ldots, M})</td>
<td>({c_i : i = 1, \ldots, N})</td>
</tr>
</tbody>
</table>
Example (MaxFlow and MinCut)

- Given a graph \(G = (\mathcal{V}, \mathcal{E}) \) and a set of paths \(\mathcal{P} \) in \(G \)
- Each link \(e \in \mathcal{E} \) has a capacity \(c_e \)

Definition (MinCut Problem)

- Minimize \(\sum_{e \in \mathcal{E}} c_e x_e \)
- subject to
 - \(\sum_{p \in \mathcal{P}} x_e \geq 1 \) for all \(p \in \mathcal{P} \)
 - \(x_e \geq 0 \) for all \(e \in \mathcal{E} \)

Definition (MaxFlow Problem)

- Maximize \(\sum_{p \in \mathcal{P}} y_p \)
- subject to
 - \(\sum_{p \in \mathcal{P}: e \in p} y_p \leq c_e \) for all \(e \in \mathcal{E} \)
 - \(y_p \geq 0 \) for all \(p \in \mathcal{P} \)
Duality of Linear Programming

Example (Covering and Packing)

- \[\sum_{i=1}^{N} a_{i,j} x_i \geq b_j \] can be regarded as covering constraints
- \[\sum_{i=1}^{N} a_{i,j} y_j \leq c_i \] can be regarded as packing constraints
- Many covering and packing problems are dual to each other:

<table>
<thead>
<tr>
<th>Primal (Covering problems)</th>
<th>Dual (Packing problems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum set cover</td>
<td>Maximum set packing</td>
</tr>
<tr>
<td>Minimum vertex cover</td>
<td>Maximum matching</td>
</tr>
<tr>
<td>Minimum edge cover</td>
<td>Maximum independent set</td>
</tr>
</tbody>
</table>
Why Duality?

- A change of perspective could give an alternate (maybe easier) approach
 - Vertex Cover (Hard) ↔ Maximal Matching (Easy)
- Combining primal and dual programs give a complete picture to solve a problem
 - **Primal-Dual Schema** for approximation algorithms:
 - Start with initial feasible solutions to the primal and dual programs
 - Iteratively, modify the primal and dual solutions integrally to satisfy *complementary slackness* conditions
 - Output the solutions when all complementary slackness conditions are satisfied
Duality of Linear Programming

Theorem (Weak Duality)

For any feasible solution of primal problem \(\{ x_i : i = 1, \ldots, N \} \) and any feasible solution of dual problem \(\{ y_j : i = 1, \ldots, M \} \), we have

\[
\sum_{i=1}^{N} c_i x_i \geq \sum_{j=1}^{M} b_j y_j
\]

Proof:

\[
\sum_{i=1}^{N} x_i c_i \geq \sum_{i=1}^{N} x_i \left(\sum_{j=1}^{M} a_{i,j} y_j \right) = \sum_{j=1}^{M} y_j \left(\sum_{i=1}^{N} a_{i,j} x_i \right) \geq \sum_{j=1}^{M} y_j b_j
\]

Theorem (Strong Duality)

Let an optimal solution to primal problem be \(\{ x_i^* : i = 1, \ldots, N \} \) and an optimal solution to dual problem be \(\{ y_j^* : i = 1, \ldots, M \} \), we have

\[
\sum_{i=1}^{N} c_i x_i^* = \sum_{j=1}^{M} b_j y_j^*
\]
Theorem (Complementary Slackness)

For an optimal solution of primal problem \(\{ x_i^* : i = 1, ..., N \} \) and an optimal solution of dual problem \(\{ y_j^* : i = 1, ..., M \} \), we have

- Either \(x_i^* = 0 \) or \(\sum_{j=1}^{M} a_{i,j} y_j^* = c_i \) \hspace{1cm} (primal complementary slackness condition)
- Either \(y_j^* = 0 \) or \(\sum_{i=1}^{N} a_{i,j} x_i^* = b_j \) \hspace{1cm} (dual complementary slackness condition)

Proof:

\[
\sum_{i=1}^{N} x_i^* c_i \geq \sum_{i=1}^{N} x_i^* \left(\sum_{j=1}^{M} a_{i,j} y_j^* \right) = \sum_{j=1}^{M} y_j^* \left(\sum_{i=1}^{N} a_{i,j} x_i^* \right) \geq \sum_{j=1}^{M} y_j^* b_j
\]

By strong duality \((\sum_{i=1}^{N} c_i x_i^* = \sum_{j=1}^{M} b_j y_j^*) \), to make the equality holds, we must require

\[
\begin{align*}
\text{\(x_i^* > 0 \)} & \Rightarrow \sum_{j=1}^{M} a_{i,j} y_j^* = c_i \\
\text{\(y_j^* > 0 \)} & \Rightarrow \sum_{i=1}^{N} a_{i,j} x_i^* = b_j \\
\text{\(\sum_{j=1}^{M} a_{i,j} y_j^* < c_i \)} & \Rightarrow x_i^* = 0 \\
\text{\(\sum_{i=1}^{N} a_{i,j} x_i^* > b_j \)} & \Rightarrow y_j^* = 0
\end{align*}
\]
Primal vs. Dual

Primal Fractional Problem
- Minimize objective function $\sum_{i=1}^{N} c_i x_i$
- subject to
 - $\sum_{i=1}^{N} a_{i,j} x_i \geq b_j$ for all $j = 1, \ldots, M$
 - $x_i \geq 0$ for all $i = 1, \ldots, N$

Dual Fractional Problem
- Maximize objective function $\sum_{j=1}^{M} b_j y_j$
- subject to
 - $\sum_{j=1}^{M} a_{i,j} y_i \leq c_i$ for all $i = 1, \ldots, N$
 - $y_j \geq 0$ for all $j = 1, \ldots, M$

Primal Integer Problem
- Minimize objective function $\sum_{i=1}^{N} c_i x_i$
- subject to
 - $\sum_{i=1}^{N} a_{i,j} x_i \geq b_j$ for all $j = 1, \ldots, M$
 - x_i is a non-negative integer for all $i = 1, \ldots, N$

Dual Integer Problem
- Maximize objective function $\sum_{j=1}^{M} b_j y_j$
- subject to
 - $\sum_{j=1}^{M} a_{i,j} y_i \leq c_i$ for all $i = 1, \ldots, N$
 - y_j is a non-negative integer for all $j = 1, \ldots, M$
Primal vs. Dual

Weak Duality

- Feasible Dual Solution (y)
- Optimal Dual Integer Solution (y^*_1)

Objective Value

Dual Problem

Strong Duality

- Optimal Fractional Solution (x^*, y^*)
- Optimal Primal Integer Solution (x^*_{1})

Weak Duality

- Feasible Primal Solution (x)

Objective Value

Primal Problem
Approximation Algorithm by Primal-Dual Schema

- Relaxed primal and dual complementary slackness conditions:

 ▶ Allow a violation gap of $\alpha \geq 1$, such that for each $1 \leq i \leq N$,
 \[
 \text{either } x_i = 0 \text{ or } \frac{c_i}{\alpha} \leq \sum_{j=1}^{M} a_{i,j} y_j \leq c_i
 \]

 ▶ Allow a violation gap of $\beta \geq 1$, such that for each $1 \leq j \leq M$,
 \[
 \text{either } y_j = 0 \text{ or } b_i \leq \sum_{i=1}^{N} a_{i,j} x_i \leq \beta b_j
 \]

- Then, we obtain an approximation ratio as $\alpha \beta$:
 \[
 \sum_{j=1}^{M} b_j y_j \leq \sum_{i=1}^{N} c_i x_i \leq \alpha \beta \cdot \sum_{j=1}^{M} b_j y_j
 \]

- No violation in primal complementary slackness condition: set $\alpha = 1$, but let $\beta > 1$
- No violation in dual complementary slackness condition: set $\beta = 1$, but let $\alpha > 1$
SetCover Approximation by Primal-Dual Schema

Definition (SetCover)
- Minimize \(\sum_{S \in \mathcal{K}} c_S x_S \)
- subject to
 1. \(\sum_{S \ni e \in S} x_S \geq 1 \) for all \(e \in \mathcal{U} \)
 2. \(x_S \in \{0, 1\} \) for all \(S \in \mathcal{K} \)

Definition (Primal (Fractional SetCover))
- Minimize \(\sum_{S \in \mathcal{K}} c_S x_S \)
- subject to
 1. \(\sum_{S \ni e \in S} x_S \geq 1 \) for all \(e \in \mathcal{U} \)
 2. \(x_S \leq 1 \) for all \(S \in \mathcal{K} \)
 3. \(x_S \geq 0 \) for all \(S \in \mathcal{K} \)

Definition (Dual)
- Maximize objective function \(\sum_{e \in \mathcal{U}} y_e \)
- subject to
 1. \(\sum_{e \ni S \in S} y_e - z_S \leq c_S \) for all \(S \in \mathcal{K} \)
 2. \(y_e \geq 0 \) for all \(e \in \mathcal{U} \)
 3. \(z_S \geq 0 \) for all \(S \in \mathcal{K} \)
Algorithm $A_{PDsetcover}$

- $y \leftarrow 0; \; x \leftarrow 0; \; \tilde{K} \leftarrow \emptyset; \; C_1 \leftarrow \emptyset; \; k \leftarrow 1$

- While $C_k \neq \mathcal{U}$
 - For each $e \in \mathcal{U} \setminus C_k$, increase the corresponding y_e at the same rate, until there is some S, where $e \in S$, such that
 \[
 \sum_{e \in \mathcal{U}: e \in S} y_e = c_S
 \]
 - $x_S \leftarrow 1; \; \tilde{K} \leftarrow \tilde{K} \cup \{S\}$
 - $C_{k+1} \leftarrow C_k \cup S$
 - $k \leftarrow k + 1$

- Return \tilde{K}
SetCover Approximation by Primal-Dual Schema

- Let \(f \) be the maximum number of covers in \(\mathcal{K} \) that cover the same item

\[
f \triangleq \max_{e \in \mathcal{U}} \left| \{ S \in \mathcal{K} : e \in S \} \right|
\]

Theorem

The approximation ratio of \(\mathcal{A}_{PDsetcover} \) is \(f \)

Proof:

- Since each item can be covered by at most \(f \) times, the violation of dual complementary slackness condition is at most \(f \)
- Namely, \(1 \leq \sum_{S : e \in S} x_S \leq f \), noting that \(x_S \leq 1 \) for all \(S \)
- The violation gaps are \(\beta = f \) and \(\alpha = 1 \)
The approximation ratio of $A_{P\text{Dsetcover}}$ is $f = O(n)$, but the one of greedy algorithm A_{setcover} is $O(\log(n))$. Why do we bother with primal-dual schema?

- If f is small, $A_{P\text{Dsetcover}}$ can outperform A_{setcover}
- Primal-dual schema also allows online decisions - it does not depend on other unknown covers

Example of primal-dual schema for online algorithms: Ad Auction

- Match buyers with a stream of unknown keywords to maximize total revenue
Reference Materials

- Design of Approximation Algorithms (Williamson, Shmoys), Cambridge University Press
 - Chapters 1, 7, Appendix A
- Approximation Algorithms (V. Vazirani), Springer
 - Chapters 12-13