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What is Linear Programming (LP)

@ Linear programming is a relaxation of many (integer) combinatorial optimization problems

Definition (Linear Programming)
o Given (a;;)i=1,. Nij=1,..m and (¢;)i=1,.. n are real numbers
Minimize objective function Zf\il Ci%;
Subject to Zf\;l a;jr; > bjforall j=1,..,M,and z; >0foralli=1,...,N

@ Matrix form:

Ty
Minimize (c1,...,cn) - : (or equivalently write min, c¢’x)
N
Subject to
a1 ... ana 1 b1
> (or equivalently write Az > b and z > 0)
ai,M ... QaN,M TN b
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Linear Programming: Examples

Example (Fractional Set Cover Problem)
e Given a set U and covers S with Cost(S) = cg for S € S

e Minimize ) ¢ scszs, subject to
1, ifeeS

A
ae,sTs > 1 for all e € U, where a. 5 = .
2.ses Ge € 0, otherwise

zg >0forall SeS

Example (Perfect Bipartite Matching)
@ Given two sets of items &/ and V such that U] = |V| =N

@ Minimize Zueumev Cu,pTu,v, Subject to
Y vey GupZup = 1forallu €U and -, )y vZup =1forallveV
Whereauvé{ 1, iquZ{andvEV
’ 0, otherwise
Ty > 0foralluel,vey

Sid Chau (ANU) Lec. 3: LP & Approx. Algorithms October 7, 2022

4/32



Linear Programming: Examples

Example (Fractional Minimum Spanning Tree)
@ Given a graph G = (V,€)
@ For each S CV, define £(S) as the set of links such that both end-vertices are in S
o Minimize ¢ cexe
Subject to
Decss)Te S |S|—1forallg#SCV

cce(w) Le = V-1
Tz >0foralleec &

@ Although integer minimum spanning tree problem is easy to solve, other variants of
minimum spanning trees are hard to solve (e.g. degree bound minimum spanning trees)

@ Fractional minimum spanning tree problems are easy to solve, and can give us insight to
approximate the integer version
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Linear Programming: Examples

Example (Fractional Network Design Problem)
e Given a graph G = (V,€)
o Define r(u,v) as the required number of disjoint paths between u,v € V
@ Define 4(.5) as the set of links with only one end-vertex in S C V (i.e. the cut set of 5)

e Minimize . cewe, subject to

2665(5) Te > MaXyeg,ugs T(u,v) for all S CV
0<z,<1foralleeé

@ Many networking problems are instances of network design problem

» Source-destination connectivity problem
» Minimum spanning tree problem
» Minimum Steiner tree problem
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Feasible Solutions of Linear Programming

Definition (Feasible Solutions)
o If x satisfies (Az > b,z > 0), then x is a feasible solution

@ The set of feasible solutions define a polytope (i.e. a multi-dimensional polygon in
multi-dimensional space), let P = {z : Az > b,z > 0}

o 2 € P is called an optimal solution, if it minimizes ¢’z

@ x € P is called an extreme point of a polytope PP, if there does not exist ¢ such that
z+ye€Pand x —y € P (i.e. extreme points are the end corner points)

@ Extreme points are also called vertex solutions
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Visualization of Polytopes

Extreme
point
\ Hyperplane:

: liner cost

\Pol\/tope

@ 2D/3D polytopes of LP problem can be visualized easily
@ A LP problem defines a class of polytopes

@ The geometry of polytope tells a lot about the solutions of a LP problem
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Feasible Solutions of Linear Programming

Lemma

If P is finite, then there exists an extreme point that is an optimal solution

Basic idea:

@ Points of tangent intersecting a hyperplane of objective function and a polytope must lie
on the boundary of IP

@ An optimal solution must lie on the boundary of P (e.g. hyperplanes or extreme points)
o If P is finite, every edge and hyperplane contains end-points, which are extreme points

@ Hence, we can restrict our attention to extreme points (or vertex solutions) only
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Properties of Vertex Solutions

Definition (Linear Independence & Rank)

o Aset of V = {vy,v,...,v,} is linearly independent, if none of them can be expressed as a
linear combination of finitely many vectors in V'

@ A linear mapping can be represented as a matrix = — Az

If column vectors in A are not linear independent, then A can be replaced by another matrix
A with lower dimension. Linear independence captures inreducibility of linear mapping

Definition (Column or Row Rank)
@ The column (or row) rank of a matrix A is the maximum number of linearly independent
column (or row) vectors of A
Lemma (Column Rank = Row Rank)

@ The column rank of a matrix A is the same as the row rank of A
Proof using Gaussian elimination
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Optimal Solutions of Linear Programming

Lemma
o Given a polytope P = {x : Az > b,z > 0}. For a particular x € P, let AL be the
submatrix, such that the j-th column vector of A is in A} if Ajx =b; and z; >0

o If the column vectors of A are linear independent, and Rank(A) = Rank(AZ ), then x is
an extreme point of P

Basic idea:
e Extreme points are uniquely determined by the tight constraints (e.g. Az =b)
@ For x; > 0, x; must be uniquely determined by a constraint Az = b
@ Linear independence can guarantee a unique solution of Az =
o

Hence, we can characterize the vertex solutions of LP problem by the linear independence
of matrix A
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Optimal Integer Solutions of Perfect Bipartite Matching

Example (Perfect Bipartite Matching)

e Minimize " 1/ ey CuwTu,w, Subject to

Y vy OupTup = 1forallu €U and ) 1y 0y vZup =1forallveV
Ty > 0foralluel,veV
Let U|=|V|=N

Theorem (Integrity of LP Perfect Bipartite Matching Solution)

Optimal vertex solutions for LP bipartite matching are integers {0, 1}

Proof:

@ Use contradiction — suppose some non-zero x,,, is fractional (e.g. . < 1 for some u,v)

@ Since > ay Ty = 1, there is at least one another fractional z,,,
veY

@ There are at least 2k fractional x,,'s in 2k constraints. The fractional x,,'s form a cycle
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Optimal Integer Solutions of Perfect Bipartite Matching

Proof (Cont.):

@ Divide the fractional x,,'s in the cycle into odd and even edges

@ Let 2/ be the same as the original x, except that the fractional value of every 020

odd edge is increased by € and the fractional value of every even edge is 03
decreased by € for some ¢ > 0 7\0‘3“ !

=8 ./ —&
@ Let 2” be the same as the original , except that the fractional value of every i

odd edge is decreased by € and the fractional value of every even edge is 030
increased by e for the same € > 0 EJ%?U"\ 72
)

@ Therefore, the fractional solution z can not be a vertex solution since z’, z” 03-¢

are also feasible. This proves that a vertex solution must be integers {0, 1}
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How to solve Linear Programming?

Simplex Algorithm (Informal Description)
@ Start from an extreme point
@ Move to a better neighbor that improves the cost

@ lterate until cannot find a better neighbor

@ How do we choose a neighbor when there multiple choices?
» No rule can guarantee polynomial running time of simplex algorithm in the worst case
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How to solve Linear Programming?

@ Transform an optimization problem into a problem of finding a point inside IP
» But the solution is not exact with small tolerance

Ellipsoid Algorithm (Informal Description)

@ Start with a large ellipsoid which contains P

@ Test if the center of ellipsoid c is inside P

@ If not, identify the linear constraint in Az > b for which c is violated.

@ Find a minimum ellipsoid which contains the intersection of previous ellipsoid and the
violated constraint

@ lterate with the new (smaller) ellipsoid until ellipsoid is sufficiently small

@ The running time of Ellipsoid Algorithm is polynomial under some assumptions
» It needs a separation oracle: Given x, check if x € IP or return the violated linear constraint
» Separation oracle must have polynomial running time (e.g. when there are a polynomial
number of constraints)
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Solve Integer Problems by LP-based Approximation

An Informal Recipe for LP-based Approximation Algorithm Q,
@ Relax the integer constraints to allows fractional solutions
@ Solve the fractional LP solutions by a polynomial-time LP algorithm

@ Transform the fractional LP solutions to integer solutions to satisfy the feasibility of
integer constraints
For example, rounding the fractional solutions to the nearest integers

@ How to transform fractional LP solutions to integer solutions while satisfying the
feasibility of integer constraints?

@ How to guarantee that the rounding error is small? How to characterize the
approximation ratio of rounding?

e /\ But rounding may be infeasible or give a large error
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Is Rounding always Feasible?

e min, ¢’z subject to Az =band z >0 < min,c! z subject to A’z >band >0
@ LP with equality constraints is equivalent to LP with inequality constraints:
N N N
> s Gt =by & Dy aigm > byand 30 i <b;

Example (Infeasibility of Rounding in LP Approximation)
o Consider a simple linear programing problem:

o Maximize 2x; + x2, subject to
3931 T 31’2 =2
x1,22 > 0 for all u,v € VY

@ The optimal fractional solution is fractional

@ However, there is no integer feasible solutions
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< Duality >

DUALITY [NOUN]: the quality or state of having two
different or opposite parts or elements — Merriam-Webster




Duality of Linear Programming

Definition (Primal)

@ Minimize objective function Zi\il CiTi
@ subject to
Zfil Q55 > bj for all j =" ...,M
z; >0foralli=1,...,. N

Definition (Dual)

.. .. . M
@ Maximize objective function ijl by,
@ subject to

Zﬁl a;jy; <c¢ foralli=1,..,N
y; >0forallj=1,...,M

Primal Dual

Objective
Variables

Linear Costs
Linear Constraints

Minimization
{z;:i=1,..,N} {y;:j=1,....,M}
{Cili: 1,...,N}
{bj:5=1,..,.M} {¢:i=1,..,N}

Maximization

{bj:j=1,...,M}

Sid Chau (ANU)

Lec. 3: LP & Approx. Algorithms

October 7, 2022

19/32



Duality of Linear Programming

Example (MaxFlow and MinCut)

o Given a graph G = (V,€) and a set of paths P in G

@ Each link e € £ has a capacity ¢,

Definition (MinCut Problem)
o Minimize } ¢ coe
@ subject to

Eeepxe >1forallpeP
T, >0foralleec &

Definition (MaxFlow Problem)
o Maximize >  pYyp
@ subject to

ZpE'P:eEp yp < ceforalleec &
yp > 0 forall pcP
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Duality of Linear Programming

Example (Covering and Packing)
° vazl a;;r; > bj can be regarded as covering constraints
° Zf\il a; ;y; < ¢; can be regarded as packing constraints

@ Many covering and packing problems are dual to each other:

Primal (Covering problems)  Dual (Packing problems)

Minimum set cover Maximum set packing
Minimum vertex cover Maximum matching
Minimum edge cover Maximum independent set
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Why Duality?

@ A change of perspective could give an alternate (maybe easier) approach
» Vertex Cover (Hard) +» Maximal Matching (Easy)

@ Combining primal and dual programs give a complete picture to solve a problem
» Primal-Dual Schema for approximation algorithms:
* Start with initial feasible solutions to the primal and dual programs
* |teratively, modify the primal and dual solutions integrally to satisfy complementary
slackness conditions
* Qutput the solutions when all complementary slackness conditions are satisfied
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Duality of Linear Programming

Theorem (Weak Duality)

For any feasible solution of primal problem {z; : i = 1,..., N} and any feasible solution of dual
problem {y; : i =1,..., M}, we have y

Z Cixi > Z by,

Proof:
M N M
° Zz 1 TiCi 2 ZZ 1 xz(Ej 1 awy]) Ej:l ?Jj(zz‘:l ai,jxi) > Zj:l y;bj

Theorem (Strong Duality)

Let an optimal solution to primal problem be {x} : i =1,..., N} and an optimal solution to
dual problem be {y; :i=1,..., M}, we have

N M

*
g Ty = g bjy;
f=il j=1
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Duality of Linear Programming

Theorem (Complementary Slackness)
For an optimal solution of primal problem {z} :i =1, ..., N} and an optimal solution of dual
problem {y;‘ ci=1,...,M}, we have

o Either 7 =0 or Z]Mﬂ @iy = Ci

o Either y; =0 or SN aijxi =b; (dual complementary slackness condition)
Proof:

° 25\21 zic > Zi\il 33:(2]]\11 az}jy;f) = Z]Nil y}‘(vazl ai,jx:) > Z] 1 ?J]
@ By strong duality (Zfil cGxf = Z;w1 bjy;), to make the equality holds, we must require
» 27 > 0= Z?; aijy; = ¢
> y;*>0;s2§vlaijx*:b-
> Z —1 Qi gy <ci=x; =0
> Zi:l aijr; >bj=y; =0

(primal complementary slackness condition)
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Primal vs. Dual

Primal Fractional Problem

o Minimize objective function S~ | ¢,z
@ subject to

sz'vzl A, T; Z bj for all j = 1, ...,M
z; >0foralli=1,...,. N

Dual Fractional Problem
@ Maximize objective function Z]]Vil bjy;
@ subject to

ijvil a;jy; <c¢ foralli=1,..,N
y; >0forallj=1,...,M

v
Primal Integer Problem Dual Integer Problem
@ Minimize objective function Zf\;l CiT; @ Maximize objective function Z]Ail bjy;
@ subject to @ subject to
S aigw; > by forall j=1,..,M Z;Vil aijyi <ciforalli=1,..,N
x; is a non-negative integer for all Yy; is a non-negative integer for all
i=1,.,N j=1,..M
v
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Primal vs. Dual

Weak Strong Weak
Duality Duality Duality
Feasible Dual F?apcﬁirgr?lal Optimal Primal Feasible Primal
Solution (y) Solution 'mteser Solution Solution (x)
(x*,y*) )
Objective | Objective
Value © I Value
A

~\

Dual Problem
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Approximation Algorithm by Primal-Dual Schema

@ Relaxed primal and dual complementary slackness conditions:
» Allow a violation gap of o > 1, such that for each 1 <i < N,
M

either z; = 0 or % < Z Qi ;Y; <g¢
j=1

» Allow a violation gap of 8 > 1, such that for each 1 < j < M,
N

either y; = 0 or b; < Zai,jl‘i < Bb;
i=1

@ Then, we obtain an approximation ratio as af:

M N M
D by <Y i <aB > by
j=1 i=1 j=1

@ No violation in primal complementary slackness condition: set « =1, but let 5 > 1
@ No violation in dual complementary slackness condition: set 8 =1, but let a > 1
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SetCover Approximation by Primal-Dual Schema

Definition (SetCover)

@ Minimize de,c CSTg

@ subject to

ZS:@ES xg > 1foralle el
xg €{0,1} forall S e K

Definition (Primal (Fractional SetCover))

@ Minimize deKCS.IS
@ subject to
Y siecg®s > 1forallecl

zg <1forall Sek
xg > 0forall S €K

v
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ZeEU:eeS Ye — 25 < cg for all S € C
ye > 0 for all e e U
zg >0 forall S e

October 7, 2022 28/32



SetCover Approximation by Primal-Dual Schema

A|g0|’ith m -AP Dsetcover

0 y+0; <+ 0 Ko, Ci+a; k1
o While Cp, AU

For each e € U\Cy, increase the corresponding y. at the
same rate, until there is some S, where e € S, such that

Z Ye = Cs

ecU:ecS

g 1; K+« KU{S}
Cry1 < CrUS
k+—k+1

@ Return K
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SetCover Approximation by Primal-Dual Schema
o Let f be the maximum number of covers in K that cover the same item

fEmax|{S €K :e€ S}
ecU

Theorem

The approximation ratio of Appsetcover IS f

Proof:

@ Since each item can be covered by at most f times, the violation of dual complementary
slackness condition is at most f

@ Namely, 1 <} ¢ .gzs < f, noting that x5 < 1 for all S
@ The violation gaps are 5= fand a =1

Sid Chau (ANU) Lec. 3: LP & Approx. Algorithms October 7, 2022 30/32



Primal-Dual Schema for Online Algorithms

@ The approximation ratio of Appsetcover is f = O(n), but the one of greedy algorithm
Asetcover is O(log(n)). Why do we bother with primal-dual schema?
> If fis small, Appsetcover Can outperform Aseicover
» Primal-dual schema also allows online decisions - it does not depend on other unknown covers
@ Example of primal-dual schema for online algorithms: Ad Auction
» Match buyers with a stream of unknown keywords to maximize total revenue

Google “Eat"; 50.1) (“Dinner"; 50.2

"Pasta": $0.2| | "Burger": 50.1

Go 9“3 . “"Pizza"; $0.1 “Pizza"; 50.2

. B Budget $100/ |_Budget $200
Pizza 1

| — £ 8

Advertisers

Ad Auction
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