
Lecture 2: Greedy Approximation Algorithms
Advanced Algorithms

Sid Chi-Kin Chau

Australian National University
�����sid.chau@anu.edu.au

October 5, 2022

Being Greedy may be Good

The simplest algorithm is to make the most improvement as much as possible in each step

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 2 / 30

≪ Set Cover ≫

Set Cover Problem

Let the objective function of a NP-hard minimization problem be Cost(·)

Definition (SetCover)
Consider a set U with n items and a family of subsets (called covers) K ⊆ 2U

Each cover has a non-negative cost: Cost(S) for S ∈ K
Select the a subset of covers K̃ ⊆ K such that

I Minimizing the total cost:
min
K̃⊆K

∑
S∈K̃

Cost(S)

I Subject to the constraint of covering all items:⋃
S∈K̃

S = U

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 4 / 30

Set Cover Problem

Covers Items
Sensor Networks Sensors Targets of Interest

Logistics Service Depots Clients
Cloud Computing Cloud Servers Users

Testing Tests Properties

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 5 / 30

Example: Antivirus Scanner�����

Example (Antivirus Scanner)
Some special features can be detected in the boot sector of a computer, if a computer
virus is present
Let the items of SetCover be the known boot sector viruses (∼150 at the time)
Let each cover be a three-byte sequence in the boot sector, if viruses are present in a
computer (∼21,000 such sequences)
Each cover contains all the boot sector viruses that have the corresponding three-byte
sequence detected in the boot sector
Goal: Find a minimum number of such sequences (�150) that are useful for an Antivirus
scanner

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 6 / 30

Example: DNA Sequencing�������

Example (DNA Sequencing (Shortest Superstring))
DNA sequencing is also a set cover problem
When sequencing DNA, it is not achieved by one sequential operation
Instead, many short segments of DNA sequences can be identified
Need to reconstruct the original long DNA sequence from these short identified segments
Goal: Find the shortest sequence that is a superstring of all short identified segments

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 7 / 30

Set Cover

What is a good strategy to solve SetCover?
Intuitive approach is to use a greedy algorithm
Find the most improvement in each step. But how?

I Select the cover with the lowest cost?
I Select the cover with the most uncovered items?
I Select the cover with the lowest cost per uncovered item?

Which one of them works?
If not, why doesn’t it work?

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 8 / 30

How bad is a Greedy Algorithm?

Select the cover with the lowest cost?

Select the cover with the most uncovered items?

Select the cover with the lowest cost per uncovered item?

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 9 / 30

Better Greedy Algorithm for SetCover

Let the set of items that are already covered before the k-th step be Ck
Define the price for each cover S ∈ K by Price(S, Ck) , Cost(S)

|S\Ck|

Algorithm Asetcover

K̃ ← ∅; C1 ← ∅; k ← 1

While Ck 6= U
I Find S ∈ K with the least Price(S, Ck)
I K̃ ← K̃ ∪ {S}
I Ck+1 ← Ck ∪ S
I k ← k + 1

Return K̃

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 10 / 30

Better Greedy Algorithm for SetCover

Let Opt be the optimal cost
Let Sk be the selected cover by Asetcover at the k-th step
Let S∗

k be the selected cover by the optimal solution at the k-th step
Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 11 / 30

Better Greedy Algorithm for SetCover

Theorem
The approximation ratio of Asetcover is O(log(n))

Proof:
The number of items being not covered at the k-th step is n− |Ck|
We show that Price(Sk, Ck) ≤ Opt

n−|Ck|
I Asetcover always selects the least-price cover (i.e. the least cost per uncovered item)
I Let Optk be the optimal cost on U\Ck and the corresponding optimal covers be K∗

k
I The price of Sk must be lower than the overall price of Optk

Price(Sk, Ck) =
Cost(Sk)

|Sk\Ck|
≤ Optk

n− |Ck|

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 12 / 30

Better Greedy Algorithm for SetCover

Proof (Cont.):
Why Price(Sk, Ck) ≤ Optk

n−|Ck|?
I Since Optk =

∑
S∈K∗

k
|S\Ck| · Price(S, Ck), there always exists S ∈ K∗

k, such that

Price(S, Ck) ≤
Optk∑

S∈K∗
k
|S\Ck|

I Note that
∑

S∈K∗
k
|S\Ck| ≥ n− |Ck|. Hence, we obtain Price(Sk, Ck) ≤ Optk

n−|Ck|

Because Optk ≤ Opt,

Cost(Sk) = Price(Sk, Ck) · (|Ck+1| − |Ck|) ≤
|Ck+1| − |Ck|
n− |Ck|

Optk ≤
|Ck+1| − |Ck|
n− |Ck|

Opt

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 13 / 30

Better Greedy Algorithm for SetCover
Proof (Cont.):

Because Cost(Sk) ≤ |Ck+1|−|Ck|
n−|Ck| Opt,

Cost(Asetcover) =

|K̃|∑
k=1

Cost(Sk)

≤ Opt ·
|K̃|∑
k=1

|Ck+1| − |Ck|
n− |Ck|

≤ Opt ·
n∑

i=1

1

i
(since n− |Ck| ≥ n− i+ 1, if the i-th item ∈ Ck+1\Ck)

= Opt · O(log(n))

Note that the sum
∑n

i=1
1
i is called the harmonic number

Therefore, the approximation ratio is αn(Asetcover) = O(log(n))
Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 14 / 30

Is Greedy Algorithm Bad?

Theorem
For any polynomial-time algorithm A, the approximation ratio is αn(A) = Ω(log(n)) for
SetCover, unless P = NP

Namely, αn(A) = O(log(n)) is the best to achieve, unless P = NP
Hence, the greedy algorithm is already the best in terms of order magnitude
SetCover does not admit any polynomial-time algorithm with a constant approximation
ratio
The proof uses PCP theorem, one of the most of fundamental theorems in complexity
theory

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 15 / 30

Balanced Cover Ownership�����

Suppose that the covers K belong to different owners
We are required to balance the costs of covers among
the owners

Example (Traffic Measurement Problem)
The items are links in a network
A cover is a path in the networks (comprising of some links)
Several agents send probe packets along the selected paths for measurement in parallel
Goal: Select a subset of paths that traverse all the intended links while keeping the
maximum number of paths of any agent to be the minimum

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 16 / 30

Balanced Cover Ownership

Definition (BalSetCover)
Consider a set U of n and covers K ⊆ 2U with Cost(S) for S ∈ K
There are m owners, who split the covers by {K1, ...,Km}, such that⋃m

i=1Ki = K and Ki ∩ Kj = ∅ for i 6= j

Select the a subset of covers K̃ ⊆ K such that
I Minimizing the maximum total cost among the owners:

min
K̃⊆K

(
max

i∈{1,...,m}

∑
S∈K̃∩Ki

Cost(S)
)

I Subject to the constraint of covering all items:⋃
S∈K̃

S = U

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 17 / 30

Greedy Algorithm for Balanced Set Cover

Algorithm Absetcover

C̃ ← ∅
K̃ ← ∅
While C̃ 6= U

I For each owner i ∈ {1, ...,m}
F Find S ∈ Ki with the least Price(S, C)
F K̃ ← K̃ ∪ {S}
F C̃ ← C̃ ∪ S

Return K̃

Loop through each owner to pick the least-price cover at each step
Terminate when all items are covered, like the normal set cover problem

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 18 / 30

Greedy Algorithm for Balanced Set Cover

Theorem
The competitive ratio of Absetcover is O(m log(n))

Proof:
Consider a sub-problem by focusing on a particular owner i
Let Ui = ∪S∈KiS

Run Asetcover over (Ui,Ki)

At each step the price of selected cover in Asetcover cannot be lower than Absetcover for the
corresponding owner i
Hence, the approximation ratio is at most O(log(n)) for each owner, and O(m log(n)) for
all m owners

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 19 / 30

Application: Survivable Network

Some problems may not appear as set cover problem
But we can transform them into set cover problem

Definition (Survivable Network)
Given a graph G, there are some pairs of sources and destinations
There are a set paths P connecting every pair of source and destination
Find a minimal subset P̃ ⊆ P, such that there exists at least one path in P̃ for each pair
of source and destination that can survive, even though any one link in G fails

Basic idea:
Items are all the links in G
Covers are the paths in P
A path P covers link e, if P does not traverse e

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 20 / 30

Steiner Tree

Definition
Given a network G = (V, E)
A subset of nodes R ⊆ V are called terminals
Goal: Connect the terminals using the minimum network in G

I Possibly using vertices not in R that called Steiner nodes
Two versions:

I Edge-weighted: Minimum number of links (or weighted total cost)
I Node-weighted: Minimum number of vertices (or weighted total cost)

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 21 / 30

Example: Wireless Networks���

Example (Wireless Networks)
In a wireless network, a node can reach all the nodes within its transmission range
Terminals want to communicate with each other, even though they are outside the
transmission range of each other
Our goal is to find a minimum number of relay nodes to relay all data among the set of
terminals by a node-weighted Steiner tree

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 22 / 30

Inapproximability

Theorem
Node-weighted Steiner tree problem is inapproximable with an approximation ratio Ω(log |R|)

Proof:
Reduce any set cover problem to a node-weighted Steiner tree problem
The solution of set cover problem has one-to-one correspondence to the solution
node-weighted Steiner tree problem
Given SetCover with U and K, we create a graph G such that

I The set of terminals R is U
I Each cover S ∈ K is a non-terminal vertex in G
I Add a link between the cover S ∈ K to all covered items by S
I Connect all non-terminal vertices in G by a complete graph

The cost of an optimal solution in SetCover is the same as an optimal node-weighted
Steiner tree in G

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 23 / 30

Steiner Tree: Spider Decomposition�������

Definition (Spider in a Graph)

Spider:
I A tree with at most one vertex of degree larger than two

Foot of Spider:
I Center of spider (when three or more leave nodes) or one of the leave nodes

Non-trivial Spider:
I A spider with at least two leave nodes

Spider Decomposition:
I Disjoint union of non-trivial spiders whose feet contains all the terminals in R

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 24 / 30

Steiner Tree: Spider Decomposition

Lemma
Given a connected graph G and a subset of vertices R (where |R| ≥ 2), G always contains a
spider decomposition of R.

Implications:
Node-weighted Steiner tree problem can be transformed into set cover problem, through
spider decomposition

I A spider is like a cover
I The feet of a spider are like the items of a cover

Goal of constructing a Node-weighted Steiner tree becomes to select the least-price
spiders to connect all the terminals

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 25 / 30

Greedy Algorithm for Steiner Tree

A spider is like merging a set of trees {T1, ...Tm}
Define Price(v, {T1, ..., Tm}) , cost of v + total distance cost to {T1,...,Tm}

m

Algorithm Anwsteiner

C̃ ← ∅; K̃ ← ∅
Trees←

{
{v} | v ∈ R

}
While C̃ 6= R

I Find v ∈ V\K̃ and T̃ ⊆ Trees with the least Price(v, T̃) //Find the least-price spider
I K̃ ← K̃ ∪ {v} //To form a new spider with center at v

I C̃ ←
{
t | t ∈ R ∩ T̃

}
//Count the covered terminals by the new spider

I Trees← Trees\T̃ ∪ {Merging T̃ as single tree by a spider at v} //Collapse trees into a terminal

Return K̃

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 26 / 30

Merging Trees in Greedy Algorithm for Steiner Tree

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 27 / 30

Greedy Algorithm for Steiner Tree

Theorem
The competitive ratio of Anwsteiner is O(log(|R|))

Proof:
Let the number of trees at the k-th step be φk , |Treesk|
Let the number of trees merged at the k-th step be mk = φk−1 − φk + 1

Let Ck be the total cost of adding the spider at the k-th step by Anwsteiner
Since Ck

mk
= Price(vk, T̃k) ≤ Opt

φk−1
, we obtain

Ck · φk−1

Opt ≤ mk = φk−1 − φk + 1 ≤ 2(φk−1 − φk) (since φk−1 > φk) (1)

φk ≤ φk−1

(
1− Ck

2 · Opt
) telescoping=⇒ φk ≤ φ0

k∏
j=1

(
1− Cj

2 · Opt
)

(2)

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 28 / 30

Greedy Algorithm for Steiner Tree
Proof (Cont.):

Noting that 1 + x ≤ ex,

φk

φ0
≤

k∏
j=1

(
1− Cj

2 · Opt
)
≤

k∏
j=1

e
−

Cj
2·Opt = e

−
∑k

j=1 Cj

2·Opt (3)

⇒
k∑

j=1

Cj ≤ 2 ln
(φ0

φk

)
· Opt ⇒ Cost(Anwsteiner) ≤ 2 ln(|R|) · Opt (4)

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 29 / 30

������ References

Reference Materials
Approximation Algorithms (V. Vazirani), Springer

I Chapter 2
Design of Approximation Algorithms (Williamson, Shmoys), Cambridge University Press

I Chapter 1

Recommended Materials
A Nearly Best-Possible Approximation Algorithm for Node-Weighted Steiner Tree
(P. Klein and R. Ravi), Journal of Algorithms, 19, pp104-115, 1995
An O(log n)-approximation for the Set Cover Problem with Set Ownership (M. Gonen
and Y. Shavitt), Information Processing Letters, Vol. 109 (3), Jan 2009

Sid Chau (ANU) Lec. 2: Greedy Approx Algorithms October 5, 2022 30 / 30

