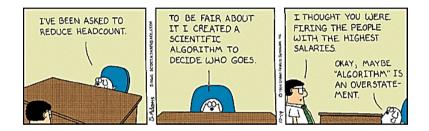
Lecture 2: Greedy Approximation Algorithms Advanced Algorithms

Sid Chi-Kin Chau

Australian National University

🖂 sid.chau@anu.edu.au

October 5, 2022



• The simplest algorithm is to make the most improvement as much as possible in each step

Set Cover Problem

 \bullet Let the objective function of a NP-hard minimization problem be $\mathsf{Cost}(\cdot)$

Definition (SetCover)

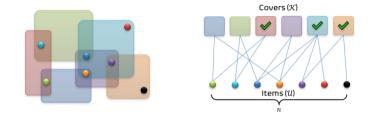
- Consider a set $\mathcal U$ with n items and a family of subsets (called covers) $\mathcal K \subseteq 2^{\mathcal U}$
- \bullet Each cover has a non-negative cost: $\mathsf{Cost}(S)$ for $S \in \mathcal{K}$
- \bullet Select the a subset of covers $\tilde{\mathcal{K}}\subseteq \mathcal{K}$ such that
 - Minimizing the total cost:

$$\min_{\tilde{\mathcal{K}}\subseteq\mathcal{K}}\sum_{S\in\tilde{\mathcal{K}}}\mathsf{Cost}(S)$$

Subject to the constraint of covering all items:

$$\bigcup_{S \in \tilde{\mathcal{K}}} S = \mathcal{U}$$

Set Cover Problem



	Covers	Items
Sensor Networks	Sensors	Targets of Interest
Logistics	Service Depots	Clients
Cloud Computing	Cloud Servers	Users
Testing	Tests	Properties

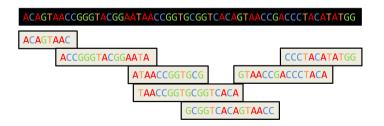
Example (Antivirus Scanner)

- Some special features can be detected in the boot sector of a computer, if a computer virus is present
- Let the items of SetCover be the known boot sector viruses (\sim 150 at the time)
- Let each cover be a three-byte sequence in the boot sector, if viruses are present in a computer (\sim 21,000 such sequences)
- Each cover contains all the boot sector viruses that have the corresponding three-byte sequence detected in the boot sector
- \bullet Goal: Find a minimum number of such sequences (${\ll}150)$ that are useful for an Antivirus scanner

Example: DNA Sequencing 🧳

Example (DNA Sequencing (Shortest Superstring))

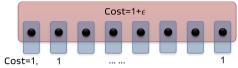
- DNA sequencing is also a set cover problem
- When sequencing DNA, it is not achieved by one sequential operation
- Instead, many short segments of DNA sequences can be identified
- Need to reconstruct the original long DNA sequence from these short identified segments
- Goal: Find the shortest sequence that is a superstring of all short identified segments



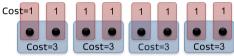
- What is a good strategy to solve SetCover?
- Intuitive approach is to use a greedy algorithm
- Find the most improvement in each step. But how?
 - Select the cover with the lowest cost?
 - Select the cover with the most uncovered items?
 - Select the cover with the lowest cost per uncovered item?
- Which one of them works?
- If not, why doesn't it work?

How bad is a Greedy Algorithm?

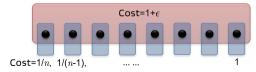
• Select the cover with the lowest cost?



• Select the cover with the most uncovered items?



• Select the cover with the lowest cost per uncovered item?



Better Greedy Algorithm for SetCover

- Let the set of items that are already covered before the k-th step be \mathcal{C}_k
- Define the price for each cover $S \in \mathcal{K}$ by $\mathsf{Price}(S, \mathcal{C}_k) \triangleq \frac{\mathsf{Cost}(S)}{|S \setminus \mathcal{C}_k|}$

Algorithm $\mathcal{A}_{setcover}$

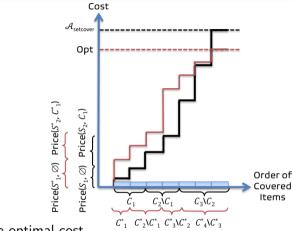
•
$$\tilde{\mathcal{K}} \leftarrow \varnothing; \ \mathcal{C}_1 \leftarrow \varnothing; \ k \leftarrow 1$$

- While $\mathcal{C}_k \neq \mathcal{U}$
 - Find $S \in \mathcal{K}$ with the least $\mathsf{Price}(S, \mathcal{C}_k)$
 - $\models \tilde{\mathcal{K}} \leftarrow \tilde{\mathcal{K}} \cup \{S\}$
 - $\blacktriangleright \ \mathcal{C}_{k+1} \leftarrow \mathcal{C}_k \cup S$

$$k \leftarrow k+1$$

• Return $\tilde{\mathcal{K}}$

Better Greedy Algorithm for SetCover



• Let Opt be the optimal cost

- Let S_k be the selected cover by $\mathcal{A}_{\text{setcover}}$ at the k-th step
- $\bullet\,$ Let S_k^* be the selected cover by the optimal solution at the k-th step

Sid Chau (ANU)

Theorem

The approximation ratio of $A_{setcover}$ is $O(\log(n))$

Proof:

- $\bullet\,$ The number of items being not covered at the k-th step is $n-|\mathcal{C}_k|$
- We show that $\operatorname{Price}(S_k, \mathcal{C}_k) \leq \frac{\operatorname{Opt}}{n |\mathcal{C}_k|}$
 - ▶ *A*_{setcover} always selects the least-price cover (i.e. the least cost per uncovered item)
 - Let Opt_k be the optimal cost on $\mathcal{U} ackslash \mathcal{C}_k$ and the corresponding optimal covers be \mathcal{K}_k^*
 - The price of S_k must be lower than the overall price of Opt_k

$$\mathsf{Price}(S_k, \mathcal{C}_k) = \frac{\mathsf{Cost}(S_k)}{|S_k \backslash \mathcal{C}_k|} \leq \frac{\mathsf{Opt}_k}{n - |\mathcal{C}_k|}$$

Better Greedy Algorithm for SetCover

Proof (Cont.):

- Why $\operatorname{Price}(S_k, \mathcal{C}_k) \leq \frac{\operatorname{Opt}_k}{n |\mathcal{C}_k|}$?
 - Since $\operatorname{Opt}_k = \sum_{S \in \mathcal{K}_k^*} |S \setminus \mathcal{C}_k| \cdot \operatorname{Price}(S, \mathcal{C}_k)$, there always exists $S \in \mathcal{K}_k^*$, such that

$$\mathsf{Price}(S, \mathcal{C}_k) \leq \frac{\mathsf{Opt}_k}{\sum_{S \in \mathcal{K}_k^*} |S \setminus \mathcal{C}_k|}$$

- ▶ Note that $\sum_{S \in \mathcal{K}_k^*} |S \setminus \mathcal{C}_k| \ge n |\mathcal{C}_k|$. Hence, we obtain $\operatorname{Price}(S_k, \mathcal{C}_k) \le \frac{\operatorname{Opt}_k}{n |\mathcal{C}_k|}$
- Because $\mathsf{Opt}_k \leq \mathsf{Opt}$,

$$\mathsf{Cost}(S_k) = \mathsf{Price}(S_k, \mathcal{C}_k) \cdot (|\mathcal{C}_{k+1}| - |\mathcal{C}_k|) \leq \frac{|\mathcal{C}_{k+1}| - |\mathcal{C}_k|}{n - |\mathcal{C}_k|} \mathsf{Opt}_k \leq \frac{|\mathcal{C}_{k+1}| - |\mathcal{C}_k|}{n - |\mathcal{C}_k|} \mathsf{Opt}_k$$

Better Greedy Algorithm for SetCover

Proof (Cont.):

۲

• Note that the sum $\sum_{i=1}^{n} \frac{1}{i}$ is called the harmonic number

• Therefore, the approximation ratio is $\alpha_n(\mathcal{A}_{\mathsf{setcover}}) = \mathsf{O}(\log(n))$

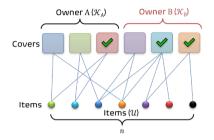
Sid Chau (ANU)

Theorem

For any polynomial-time algorithm \mathcal{A} , the approximation ratio is $\alpha_n(\mathcal{A}) = \Omega(\log(n))$ for SetCover, unless $\mathsf{P} = \mathsf{NP}$

- Namely, $\alpha_n(\mathcal{A}) = \mathsf{O}(\log(n))$ is the best to achieve, unless $\mathsf{P} = \mathsf{N}\mathsf{P}$
- Hence, the greedy algorithm is already the best in terms of order magnitude
- SetCover does not admit any polynomial-time algorithm with a constant approximation ratio
- The proof uses PCP theorem, one of the most of fundamental theorems in complexity theory

- $\bullet\,$ Suppose that the covers ${\cal K}$ belong to different owners
- We are required to balance the costs of covers among the owners



Example (Traffic Measurement Problem)

- The items are links in a network
- A cover is a path in the networks (comprising of some links)
- Several agents send probe packets along the selected paths for measurement in parallel
- Goal: Select a subset of paths that traverse all the intended links while keeping the maximum number of paths of any agent to be the minimum

Balanced Cover Ownership

Definition (BalSetCover)

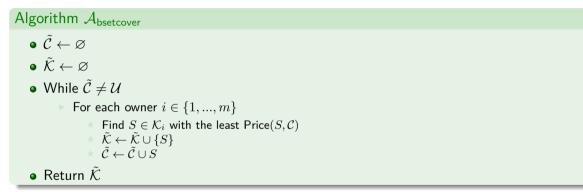
- Consider a set \mathcal{U} of n and covers $\mathcal{K} \subseteq 2^{\mathcal{U}}$ with $\mathsf{Cost}(S)$ for $S \in \mathcal{K}$
- There are m owners, who split the covers by $\{\mathcal{K}_1, ..., \mathcal{K}_m\}$, such that $\bigcup_{i=1}^m \mathcal{K}_i = \mathcal{K}$ and $\mathcal{K}_i \cap \mathcal{K}_j = \emptyset$ for $i \neq j$
- \bullet Select the a subset of covers $\tilde{\mathcal{K}}\subseteq \mathcal{K}$ such that
 - Minimizing the maximum total cost among the owners:

$$\min_{\tilde{\mathcal{K}} \subseteq \mathcal{K}} \Big(\max_{i \in \{1, \dots, m\}} \sum_{S \in \tilde{\mathcal{K}} \cap \mathcal{K}_i} \mathsf{Cost}(S) \Big)$$

Subject to the constraint of covering all items:

$$\bigcup_{S \in \tilde{\mathcal{K}}} S = \mathcal{U}$$

Greedy Algorithm for Balanced Set Cover



- Loop through each owner to pick the least-price cover at each step
- Terminate when all items are covered, like the normal set cover problem

Theorem

The competitive ratio of $\mathcal{A}_{bsetcover}$ is $\mathcal{O}(m \log(n))$

Proof:

- $\bullet\,$ Consider a sub-problem by focusing on a particular owner i
- Let $\mathcal{U}_i = \cup_{S \in \mathcal{K}_i} S$
- Run $\mathcal{A}_{setcover}$ over $(\mathcal{U}_i, \mathcal{K}_i)$
- At each step the price of selected cover in $\mathcal{A}_{\text{setcover}}$ cannot be lower than $\mathcal{A}_{\text{bsetcover}}$ for the corresponding owner i
- \bullet Hence, the approximation ratio is at most $\mathsf{O}(\log(n))$ for each owner, and $\mathsf{O}(m\log(n))$ for all m owners

Application: Survivable Network

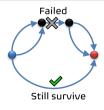
- Some problems may not appear as set cover problem
- But we can transform them into set cover problem

Definition (Survivable Network)

- $\bullet\,$ Given a graph \mathcal{G}_{r} there are some pairs of sources and destinations
- $\bullet\,$ There are a set paths ${\cal P}$ connecting every pair of source and destination
- Find a minimal subset $\tilde{\mathcal{P}} \subseteq \mathcal{P}$, such that there exists at least one path in $\tilde{\mathcal{P}}$ for each pair of source and destination that can survive, even though any one link in \mathcal{G} fails

Basic idea:

- $\bullet\,$ Items are all the links in ${\cal G}$
- $\bullet\,$ Covers are the paths in ${\cal P}\,$
- A path P covers link e, if P does not traverse e



Steiner Tree

Definition

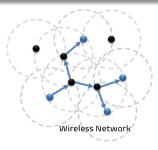
- Given a network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- \bullet A subset of nodes $\mathcal{R} \subseteq \mathcal{V}$ are called *terminals*
- \bullet Goal: Connect the terminals using the minimum network in ${\cal G}$
 - Possibly using vertices not in $\ensuremath{\mathcal{R}}$ that called Steiner nodes
- Two versions:
 - *Edge-weighted*: Minimum number of links (or weighted total cost)
 - Node-weighted: Minimum number of vertices (or weighted total cost)

Minimum Edge-Weighted Steiner Tree

Example: Wireless Networks 📶

Example (Wireless Networks)

- In a wireless network, a node can reach all the nodes within its transmission range
- Terminals want to communicate with each other, even though they are outside the transmission range of each other
- Our goal is to find a minimum number of relay nodes to relay all data among the set of terminals by a node-weighted Steiner tree



Theorem

Node-weighted Steiner tree problem is inapproximable with an approximation ratio $\Omega(\log |\mathcal{R}|)$

Proof:

- Reduce any set cover problem to a node-weighted Steiner tree problem
- The solution of set cover problem has one-to-one correspondence to the solution node-weighted Steiner tree problem
- \bullet Given SetCover with ${\mathcal U}$ and ${\mathcal K},$ we create a graph ${\mathcal G}$ such that
 - The set of terminals $\mathcal R$ is $\mathcal U$
 - Each cover $S \in \mathcal{K}$ is a non-terminal vertex in \mathcal{G}
 - \blacktriangleright Add a link between the cover $S \in \mathcal{K}$ to all covered items by S
 - \blacktriangleright Connect all non-terminal vertices in ${\mathcal G}$ by a complete graph
- $\bullet\,$ The cost of an optimal solution in SetCover is the same as an optimal node-weighted Steiner tree in ${\cal G}$

Steiner Tree: Spider Decomposition 🞇



- Spider:
 - A tree with at most one vertex of degree larger than two
- Foot of Spider.
 - Center of spider (when three or more leave nodes) or one of the leave nodes
- Non-trivial Spider.
 - A spider with at least two leave nodes
- Spider Decomposition:
 - Disjoint union of non-trivial spiders whose feet contains all the terminals in ${\mathcal R}$

Lemma

Given a connected graph \mathcal{G} and a subset of vertices \mathcal{R} (where $|\mathcal{R}| \ge 2$), \mathcal{G} always contains a spider decomposition of \mathcal{R} .

Implications:

- Node-weighted Steiner tree problem can be transformed into set cover problem, through spider decomposition
 - A spider is like a cover
 - The feet of a spider are like the items of a cover
- Goal of constructing a Node-weighted Steiner tree becomes to select the least-price spiders to connect all the terminals

Greedy Algorithm for Steiner Tree

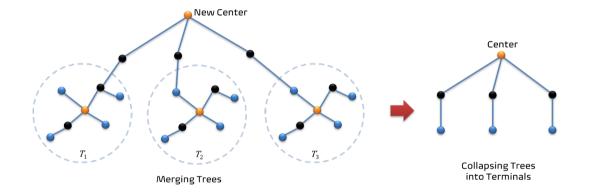
- A spider is like merging a set of trees $\{T_1, ... T_m\}$
- Define $\operatorname{Price}(v, \{T_1, ..., T_m\}) \triangleq \frac{\operatorname{cost of } v + \operatorname{total distance cost to } \{T_1, ..., T_m\}}{m}$

Algorithm $\mathcal{A}_{nwsteiner}$

- $\tilde{\mathcal{C}} \leftarrow \varnothing; \ \tilde{\mathcal{K}} \leftarrow \varnothing$
- Trees $\leftarrow \{\{v\} \mid v \in \mathcal{R}\}$
- While $\tilde{\mathcal{C}} \neq \mathcal{R}$
 - Find v ∈ V\K̃ and T̃ ⊆ Trees with the least Price(v, T̃)
 $\tilde{\mathcal{K}} \leftarrow \tilde{\mathcal{K}} \cup \{v\}$ //Find the least-price spider
 //To form a new spider with center at v
 - $\tilde{\mathcal{C}} \leftarrow \{t \mid t \in \mathcal{R} \cap \tilde{\mathcal{T}}\}$ //Count the covered terminals by the new spider
 - ► Trees \leftarrow Trees $\setminus \tilde{\mathcal{T}} \cup \{ \text{Merging } \tilde{\mathcal{T}} \text{ as single tree by a spider at } v \}$ //Collapse trees into a terminal

• Return $\tilde{\mathcal{K}}$

Merging Trees in Greedy Algorithm for Steiner Tree



Greedy Algorithm for Steiner Tree

Theorem

The competitive ratio of $A_{nwsteiner}$ is $O(\log(|\mathcal{R}|))$

Proof:

- Let the number of trees at the k-th step be $\phi_k \triangleq |\mathsf{Trees}_k|$
- ullet Let the number of trees merged at the k-th step be $m_k=\phi_{k-1}-\phi_k+1$
- Let C_k be the total cost of adding the spider at the k-th step by $\mathcal{A}_{\mathsf{nwsteiner}}$

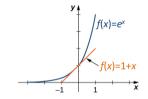
• Since
$$\frac{C_k}{m_k} = \mathsf{Price}(v_k, \tilde{\mathcal{T}}_k) \leq \frac{\mathsf{Opt}}{\phi_{k-1}}$$
, we obtain

$$\frac{C_k \cdot \phi_{k-1}}{\mathsf{Opt}} \le m_k = \phi_{k-1} - \phi_k + 1 \le 2(\phi_{k-1} - \phi_k) \quad (\text{since } \phi_{k-1} > \phi_k) \tag{1}$$

$$\phi_k \leq \phi_{k-1} \left(1 - \frac{C_k}{2 \cdot \mathsf{Opt}}\right) \stackrel{\mathsf{telescoping}}{\Longrightarrow} \phi_k \leq \phi_0 \prod_{j=1}^k \left(1 - \frac{C_j}{2 \cdot \mathsf{Opt}}\right)$$
(2)

Greedy Algorithm for Steiner Tree

Proof (Cont.):



• Noting that $1 + x \le e^x$,

$$\frac{\phi_k}{\phi_0} \leq \prod_{j=1}^k \left(1 - \frac{C_j}{2 \cdot \mathsf{Opt}}\right) \leq \prod_{j=1}^k e^{-\frac{C_j}{2 \cdot \mathsf{Opt}}} = e^{\frac{-\sum_{j=1}^k C_j}{2 \cdot \mathsf{Opt}}}$$
(3)
$$\Rightarrow \sum_{j=1}^k C_j \leq 2\ln\left(\frac{\phi_0}{\phi_k}\right) \cdot \mathsf{Opt} \Rightarrow \mathsf{Cost}(\mathcal{A}_{\mathsf{nwsteiner}}) \leq 2\ln(|\mathcal{R}|) \cdot \mathsf{Opt}$$
(4)

References

Reference Materials

- Approximation Algorithms (V. Vazirani), Springer
 - Chapter 2
- Design of Approximation Algorithms (Williamson, Shmoys), Cambridge University Press
 Chapter 1

Recommended Materials

- A Nearly Best-Possible Approximation Algorithm for Node-Weighted Steiner Tree (P. Klein and R. Ravi), Journal of Algorithms, 19, pp104-115, 1995
- An O(log n)-approximation for the Set Cover Problem with Set Ownership (M. Gonen and Y. Shavitt), Information Processing Letters, Vol. 109 (3), Jan 2009