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Importance of Matrix Computations

“What is the Matrix?” 

🗨 Neo (from a movie)

• The concept of matrix has existed, as long as the history of linear equations 

• Lots of applications
• Graphics, optimization, control systems

• Solutions to many engineering, scientific and economic problems

• Goals
• Parallel matrix multiplication algorithms 

• What makes (in)efficient matrix multiplication parallel algorithms?
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Why Matrix Computation?

• Fundamental in many problems
• Computer graphics 

• Linear algebra and multi-linear algebra 

• Machine learning (DNNs, CNNs)

• Optimization and control

• Classes of matrix computations
• Dense/Sparse matrix multiplication

• Linear system solution, inverse matrix

• Spectrum analysis (eigenvalues decomposition)

• Singular values 

• Tensor Computations
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Neural Network

Spectrum analysis



Computational Performance
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• Performance of computations is affected by two major factors:
1. Complexity of arithmetic, execution in processors (e.g., FLOPs)

• Need computationally efficient algorithms

2. Communication of data and results within/among processors, and from/to memory

• Transmitting data among multiple levels of memory hierarchy 

• Communicating among processors over a network

• The major bottleneck is with communication

• Processors can't execute unless data is 
loaded to register or cache

• Need more than just computationally efficient 
algorithms, but also communication-avoiding
algorithms (both serial and parallel)

Processor 0

Memory

Processor 1

Network

Bottleneck

🐇🐇🐇 🐇🐇🐇

🐢 🐢



Communication Model
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• A simple model of data communication
• A message of data is transmitted through capacity-limited channel

• It is broken into multiple chunks of data, each of which can be transmitted at a time

• Bandwidth = Units of data can be transmitted at a time
• Gap = 1/Bandwidth

• Message latency  Latency +  #Chuncks  1/Bandwidth

Latency

LatencyGap

LatencyGap Gap

LatencyGap Gap Gap

Sent Received

Data Chunk 1

Data Chunk 2

Data Chunk 3

Data Chunk 4

Data Message 

✉



Bandwidth vs Latency 
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• Bandwidth
• The amount of data can be moved simultaneously

• Narrow pipe vs. Fat pipe

• Latency
• The delivery time of transmitting data

• Short pipe vs. Long pipe

High bandwidthLow bandwidth

High delayLow delay



Computational Performance
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• 𝛾 (Time per FLOP) ≪ 𝛽 (1/Bandwidth) ≪ 𝛼 (Latency)
• Gaps growing exponentially over time

• Running time of an algorithm
• Running time  Execution time + Waiting time 

+ Delivery time

• Running time  #FLOPs  𝛾 + #words_moved  𝛽
+ #messages  𝛼

Capacity Latency Cost/GB

Register 1000 bits 20ps Very Costly

SRAM 10KB-10MB 1-10ns $1000

DRAM 10GB 80ns $100

Flash 100GB 100s $1

Hard disk 1TB 10ms $0.1



Computational Performance
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• 𝛾 (Time per FLOP) ≪ 𝛽 (1/Bandwidth) ≪ 𝛼 (Latency)
• Topology is assumed irrelevant

• One long message is cheaper than many short ones

• Can do hundreds or thousands of flops for cost of one message

• Computational intensity
• m: the number of memory elements (#words_moved) moved 

between fast and slow memory, assuming #messages < #words_moved

• f: the number of arithmetic operations (#FLOPs)

• (Computational intensity) 

• CI = f/m

• A large computational intensity means more efficiency



Common Matrix Computations
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• Matrix-vector multiplication

• 𝑦 = 𝑦 + 𝐴 ∙ 𝑥
𝑦0
⋮

𝑦𝑛−1
=

𝑦0
⋮

𝑦𝑛−1
+ 

𝐴0,0 ⋯ 𝐴0,𝑛−1
⋮ ⋱ ⋮

𝐴𝑛−1,0 ⋯ 𝐴𝑛−1,𝑛−1

∙

𝑥0
⋮

𝑥𝑛−1

• Matrix-matrix multiplication

• 𝐶 = 𝐶 + 𝐴 ∙ 𝐵
𝐶0,0 ⋯ 𝐶0,𝑛−1
⋮ ⋱ ⋮

𝐶𝑛−1,0 ⋯ 𝐶𝑛−1,𝑛−1

=

𝐶0,0 ⋯ 𝐶0,𝑛−1
⋮ ⋱ ⋮

𝐶𝑛−1,0 ⋯ 𝐶𝑛−1,𝑛−1

+ 

𝐴0,0 ⋯ 𝐴0,𝑛−1
⋮ ⋱ ⋮

𝐴𝑛−1,0 ⋯ 𝐴𝑛−1,𝑛−1

∙

𝐵0,0 ⋯ 𝐵0,𝑛−1
⋮ ⋱ ⋮

𝐵𝑛−1,0 ⋯ 𝐵𝑛−1,𝑛−1



Matrix-Vector Multiplication
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• Setting:

• Input:
• y: n-D vector, 

• x: n-D vector,

• A: nn matrix

• Compute:
• y = y + A x

for i = 1:n
for j = 1:n

y[i] = y[i] + A[i,j]*x[j]

Where is the I/O 
with memory?

y y A x

+=



Matrix-Vector Multiplication
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• Assumptions:
• Constant computation rate

• Fast memory can hold three vectors

• The cost of fast memory access is zero
• Nearly zero for registers

• Small latency for cache

• Memory latency is constant

• Computational intensity
• f = 2n2  (Two nested for-loops)

• m = 3n + n2 (Read/write y, x, A)

• CI  2

• Very inefficient, and limited by slow memory speed

{read x[1:n] into fast memory}
{read y[1:n] into fast memory}
for i = 1:n

{read i-th row of A into fast memory}
for j = 1:n

y[i] = y[i] + A[i,j]*x[j]

{write y[1:n] back to slow memory}



Matrix-Matrix Multiplication
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• Input:
• C, A, B: nn matrices

• Compute:
• C = C + A B

C C A B

+=
C[i,j] C[i,j] A[i,:]

B[:,j]n

for i = 1 to n
for j = 1 to n

for k = 1 to n
C[i,j] = C[i,j] + A[i,k] * B[k,j]

Where is the I/O 
with memory?



Matrix-Matrix Multiplication
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• Computational intensity
• f = 2n3, m = 3n2  (guess)

• Can CI = O(n)?

• Reality:
• Fast memory can hold only 

vectors, not matrices

C C A B

+=
C[i,j] C[i,j] A[i,:]

B[:,j]n

for i = 1 to n
for j = 1 to n

for k = 1 to n
C[i,j] = C[i,j] + A[i,k] * B[k,j]

Where is the I/O 
with memory?



Matrix-Matrix Multiplication
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• Computational intensity
• m = n2  + n3  + 2n2 

(Read each row A

+Read each column B n times 
+ Read/write each cell C)

• CI  2 (very inefficient)

for i = 1 to n
{read i-th row of A into fast memory}
for j = 1 to n

{read C[i,j] into fast memory}
{read j-th column of B into fast memory}
for k = 1 to n

C[i,j] = C[i,j] + A[i,k] * B[k,j]
{write C[i,j] back to slow memory}

C C A B

+=
C[i,j] C[i,j] A[i,:]

B[:,j]n



Blocked Matrix-Matrix Multiplication
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• Assumption: 
• Fast memory can hold the

size of O(b2) elements

• Consider blocked matrix 
multiplication
• C[i,j] is a bb sub-matrix ⚠

C C A B

+=N=n/b C[i,j] C[i,j] A[i,:] B[:,j]

for i = 1 to N
for j = 1 to N
{read block C[i,j] into fast memory}
for k = 1 to N

{read block A[i,k] into fast memory}
{read block B[k,j] into fast memory}

C[i,j] = C[i,j] + A[i,k] * B[k,j] 
/*do a matrix multiply on blocks*/

{write block C[i,j] back to slow memory}



Blocked Matrix-Matrix Multiplication
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• Computational intensity
• m = 2N2 b2  + N3 b2  + N3 b2 

(Read/write each block C
+ Read each block A N times 
+ Read each block B N times)

• CI  2n3 / (2N3 b2 )  b

C C A B

+=N=n/b

for i = 1 to N
for j = 1 to N
{read block C[i,j] into fast memory}
for k = 1 to N

{read block A[i,k] into fast memory}
{read block B[k,j] into fast memory}

C[i,j] = C[i,j] + A[i,k] * B[k,j] 
/*do a matrix multiply on blocks*/

{write block C[i,j] back to slow memory}

C[i,j] C[i,j] B[:,j]A[i,:]



Matrix-Matrix Multiplication
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• Simple matrix multiplication
• Assumption: Fast memory can 

hold O(n) elements

• CI  2

• Very inefficient

• Blocked matrix multiplication
• Assumption: Fast memory can 

hold O(b2) elements

• CI  b

• If b  n, CI  n

• Much more efficient

for i = 1 to N
for j = 1 to N
{read block C[i,j] into fast memory}
for k = 1 to N

{read block A[i,k] into fast memory}
{read block B[k,j] into fast memory}

C[i,j] = C[i,j] + A[i,k] * B[k,j]
/*do a matrix multiply on blocks*/

{write block C[i,j] back to slow memory}

for i = 1 to n
{read i-th row of A into fast memory}
for j = 1 to n

{read C[i,j] into fast memory}
{read j-th column of B into fast memory}
for k = 1 to n

C[i,j] = C[i,j] + A[i,k] * B[k,j]
{write C[i,j] back to slow memory}



How to Implement in Practice?
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• Tuning code can be tedious
• Many optimizations besides blocking

• Behavior of machine and compiler hard to predict

• Approach #1: Analytical performance models
• Use model (of cache, memory costs, etc.) to select best code

• But model needs to be both simple and accurate 

• Approach #2: “Autotuning”
• Let computer generate large set of possible code variations

• Search for the fastest ones (may be matrix size dependent)

• Sometimes all done “off-line,” sometimes at run-time



Data Layout and Caching
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• A matrix is a 2-D array of elements, but is mapped to 1-D memory addresses

• Matrix data layouts:
• By column, or "column major": A[i,j]= A[i+jn]

• By row, or "row major" (C default): A[i,j] at A[in+j]

• Reorganized based on blocks

• Beware of cache line: caching based on spatial locality in memory addresses

0

1

2

3

4

5

6

7

8

0

3

6

1

4

7

2

5

8

0

2

6

1

3

7

4

5

8

0 3 61 4 72 5 8

Cache Line

Column major Row major Block-based
Cache Memory



Questions
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• Fundamental questions
• Is blocked matrix multiplication optimal in 

communication with memory?

• Is there any other way to achieve better 
communication?

• How about parallel matrix multiplication 
with multiple processors?

• Any lower bound for the communication costs 
of sequential and parallel computations?

• Let us apply some formal analysis and mathematics…

Processor

MemoryCache

Size = M

Words 
Moved

🐇🐇🐇

🐢



Lower Bound of Communication
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• How much data must be transferred to/from 
fast memory to enable computation?
• Size of fast memory is limited : M

• Reduce communication to improve running time

• Matrix-matrix multiplication 

• Execution takes O(n3), input data takes O(n2)

• How much data is required to transfer?
• Need more than O(n2), if M ≪ n2

• In practice, M  n

• Consider blocked matrix multiplication: 
• If b2 = O(M), then #words_moved = Ω 𝑁3𝑏2

• Blocked matrix multiplication is communication optimal

Processor

MemoryCache

Size = M

Words 
Moved

🐇🐇🐇

🐢

[📜Theorem] 

#words_moved = Ω
𝑛3

𝑀



Proof Idea of Lower Bound
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• Matrix-matrix multiplication has 3 nested loops

• First, get some intuitions
• We consider a simpler setting with only 2 nested 

loops to compute C[i,j] via abstract function f()

• We may reorganize data communication in 
different ways to provide inputs A[i] and B[j]

• Assume we read a set {A[i]} and a set {B[j]} 
into fast memory

• How many points of C[i,j] can be computed? 

• Equivalent question

• Given two 1D projections of a 2D set of points,
how many maximal points are in the 2D set? 1D projection

1
D

 p
ro

je
ct

io
n

A 2D set 
of points

i

j

for i = 1 to n
for j = 1 to n
C[i,j] = f(A[i],B[j])



Proof Idea of Lower Bound
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• How many maximal points are in the 2D set, 
given two 1D projections?

• If there are k points in each 1D projection, 
then the maximal number of points in 2D  k2

• Maximum number of points when the 2D set is a square

• If size of fast memory  M, then how many reads are 
needed to compute C[i,j] for (1  i  n)?

• Totally, n2 data points are needed for C[i,j]

• Each time, only M points can be read into fast memory
• Allow at most M2/22 points to be computed for C[i,j]

• Need at least 
4𝑛2

𝑀2 reads

• Each reads M points of input into fast memory

• Hence, #words_moved = Ω(n2/M)  
|1D projection| = k

|2D set|  k2

i

j

|1
D

 p
ro

je
ct

io
n

| 
= 

k

for i = 1 to n
for j = 1 to n
C[i,j] = f(A[i],B[j])



Proof Idea of Lower Bound
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• Now consider matrix-matrix multiplication

• Totally, n3 data points for computing C[i,j]+A[i,k]*B[k,j]

• Each time, only M points can be read into fast memory

• How many points of (C[i,j]+A[i,k]*B[k,j]) can be 
computed by only M points in fast memory at a time?

for i = 1 to n
for j = 1 to n

for k = 1 to n
C[i,j] = C[i,j] + A[i,k] * B[k,j]
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A box with lengths x, y, z
Volume of the box
= x·y·z = (xz · zy · yx)1/2

= (|Proj A|·|Proj B|·|Proj C|)1/2

Loomis-Whitney Inequality:
Volume of 3D object
≤ (|Proj A|·|Proj B|·|Proj C|) 1/2

y

z z

x

x y

Projection AProjection B

Projection C

Projection AProjection B

Projection C

Projection 
represents data 
in fast memory

Data points to 
be computed



Proof Idea of Lower Bound
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• Now consider matrix multiplication

• Totally, n3 data points are needed for computing C[i,j]+A[i,k]*B[k,j]
• Each time, only M points of input can be read into fast memory

• Allow at most c·(M·M·M)1/2 data points to be computed for C[i,j]

• Need at least 
𝑛3

𝑐∙𝑀
3
2

reads

• Each reads M points (i.e., words) into fast memory

• Hence, #words_moved = Ω
𝑛3

𝑀

for i = 1 to n
for j = 1 to n

for k = 1 to n
C[i,j] = C[i,j] + A[i,k] * B[k,j]

[📜Theorem] 

#words_moved = Ω
𝑛3

𝑀



Parallel Matrix Multiplication
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• Parallel case: There are P processors
• Each processor's fast memory has a limited capacity = M

• Consider the following communication model of message-passing
• Non-conflicting unicasts are allowed simultaneously

• Broadcast is restricted
• Only unicast is used at a time

• Efficient broadcast has overhead of 2 log(n)

P0

P2P1

P6P5P4P3

P0 P1 P2 P3

P0 P1 P2 P3

Non-conflicting unicasts 

Broadcast

(1) (2)

(2) (3) (3) (4)



Parallel Matrix Multiplication
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• Lower bound
• The fast memory has a limited capacity = M

• Sequential case: #words_moved = Ω
𝑛3

𝑀

• Parallel case: There are P processors
• Inter-processor communication has a limited capacity = M

• #words_moved per processor = Ω
𝑛3

𝑃 𝑀

• Assume𝑀 = O
𝑛2

𝑃
• In distributed memory systems, inter-process communication is the bottleneck, 

rather than the cache

• Then #words_moved per processor = Ω
𝑛2

𝑃
- Can it be achievable?



Data Layout
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• Different data processes are handled by different processors
• 1D: Each processor handles a column (or a row) of submatrix

• 2D: Each processor handles a block of submatrix

• 3D: Each processor handles a sub-operation of matrix

P0 P1 P2 P3

P0

P3

P6

P1

P4

P7

P2

P5

P8

P0

P1

P2

P3

P4 P5

P6 P7

P0 P1

P2 P3

1D Column-based 1D Row-based 2D 3D

This submatrix is 
handled by 

processor P0



1D Data Layout

30C C A B

+=

n/P

A[:,j] B[j,i]

P0 
C[:,i]

P1 P2 
C[:,i]

• We consider 1D column-based data layout
• P processors; each processor handles a row of submatrix in C, B, A

• A[:,i] is the (i+1)-th n  n/P column submatrix that processor Pi handles

• B[i,j] is the (j+1)-th n/P  n/P submatrix of B[:,i] 

• We use the formula
• C[:,i] = C[:,i] + A ∙ B[:,i] = C[:,i] + σj A[:,j] ∙ B[j,i]



1D Data Layout

31

Execute in parallel with each processor me
Copy A[:,me] into Tmp
C[:,me] = C[:,me] + Tmp*B[me,me]

for j = 1 to P-1
Send Tmp to processor me+1 mod P
Receive Tmp from processor me-1 mod P
C[:,me] = C[:,me] + Tmp*B[me-j mod P, me]

P0

P1P2

Tmp

Tmp

Tmp

Note Tmp is 
overwritten

C[:,i] = C[:,i]

+ ෍
𝑗
A[:,j] ∙ B[j,i]

C C A B

+=

n/P

A[:,j] B[j,i]

P0 
C[:,i]

P1 P2 
C[:,i]



1D Data Layout
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/* For example, processor P0 */
Copy A[:,0] into Tmp
C[:,0] = C[:,0] + Tmp*B[0,0]

for j = 1 to P-1
Send Tmp to processor P1
Receive Tmp from processor P2
C[:,0] = C[:,0] + Tmp*B[P-j, 0]

P0

P1P2

Tmp

Tmp

Tmp

C C A B

+=

n/P

A[:,j] B[j,i]

P0 
C[:,i]

P1 P2 
C[:,i]



1D Data Layout
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• We consider parallel execution time and communication per processor 
• Execution time = P  Multiplication_time = O(P (n/P)2 n ) = O( n3 /P )

• #Words_moved = P  Send_Tmp = O(P (n/P) n ) = O( n2 )

• Good execution time, but inefficient communication (note: lower bound = Ω(n2/ P))

Execute in parallel with each processor me
Copy A[:,me] into Tmp
C[:,me] = C[me,:] + Tmp*B[me,me]

for j = 1 to P-1
Send Tmp to processor me+1 mod P
Receive Tmp from processor me-1 mod P
C[:,me] = C[:,me] + Tmp*B[me-j mod P, me]



A[:,j]

B[i,j]

n/P

n



SUMMA

34C C A B

+=

• SUMMA (Scalable Universal Matrix Multiply Algorithm)
• Assume P is an integer

• We consider 2D data layout with P × P processors

• Each processor is labeled by [i,j], where 0  i,j  P

• Each processor handles a n/ P × n/ P submatrix in C, B, A

n/ P



SUMMA

35C C A B

+=

• Outer product

•

𝑢0
⋮

𝑢𝑛−1
∙ 𝑣0 ⋯ 𝑣𝑛−1 =

𝑢0𝑣0 ⋯ 𝑢0𝑣𝑛−1
⋮ ⋱ ⋮

𝑢𝑛−1𝑣0 ⋯ 𝑢𝑛−1𝑣𝑛−1

• Note that C[:,:] = C[:,:] +σk=0
P−1A[:,k] ∙ B[k,:]

A[:,k] B[k,:]

⚠Column Matrix

⚠Row Matrix



SUMMA
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Execute in parallel with each processor (mex,mey)

for k = 0 to P -1

for all i = 0 to P-1
owner of A[i,k] broadcasts it to all processors in the same row

for all j = 0 to P-1
owner of B[k,j] broadcasts it to all processors in the same column

Receive A[mex,k] 
Receive B[k,mey]
C[mex,mey] = C[mex,mey] + A[mex,k] * B[k,mey] 

C C A B

+=
A[i,k] B[k,j]

Broadcast to 
all processors 
in the same row 

Broadcast to 
all processors 
in the same col 



SUMMA

37

• We consider parallel execution time and communication per processor 
• Execution time = P  Multiplication_time = O( P (n/ P)3 ) = O( n3 /P )

• Broadcast can be achieved with O(log( P)) communication overhead

• #Words_moved =O(log( P)  P  |A[i,j]|) = O(log( P) P (n/ P)2) = O(log( P) n2/ P)

• Good execution time, and quite efficient communication (but lower bound Ω(n2/ P))

Execute in parallel with each processor (mex,mey)

for k = 0 to P -1

for all i = 0 to P-1
owner of A[i,k] broadcasts it to all processors in the same row

for all j = 0 to P-1
owner of B[k,j] broadcasts it to all processors in the same column

Receive A[mex,k] 
Receive B[k,mey]
C[mex,mey] = C[mex,mey] + A[mex,k] * B[k,mey] 



Cannon's Algorithm
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• left-circular-shift by one:
• Move the leftmost item to the rightmost position and shift other items to the left position

• up-circular-shift by one:
• Move the topmost item to the bottom position and shift all other numbers to the lower position

A[0,0]A[0,1]A[0,2]

A[1,0]A[1,1]A[1,2]

A[2,0]A[2,1]A[2,2]

A[0,0]A[0,1]A[0,2]

A[2,0]A[2,1]A[2,2]

A[0,0]A[0,1]A[0,2]

A[1,0]A[1,1]A[1,2]

A[2,0]A[2,1]A[2,2]

A[0,0] A[0,2]

A[1,0] A[1,2]

A[2,0] A[2,2]

A[1,0]A[1,1]A[1,2]

A[0,1]

A[1,1]

A[2,1]



Cannon's Algorithm
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for i = 0 to P -1 /* "skew" A */
left-circular-shift i-th row of A by i /* Communication within each row */

Overwrite A[i,j] by A[i,(j+i) mod P]

for i = 0 to P -1 /* "skew" B */
up-circular-shift i-th column of B by i /* Communication within each col */

Overwrite B[i,j] by B[(i+j) mod P), j]

for k = 0 to P -1
Execute in parallel with each processor (i,j)

C[i,j] = C[i,j] + A[i,j]*B[i,j]

left-circular-shift each row of A by 1

Overwrite A[i,j] by A[i,(j+1) mod P]

up-circular-shift each column of B by 1

Overwrite B[i,j] by B[(i+1) mod P), j]



Cannon's Algorithm
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A[0,0]A[0,1]A[0,2]

A[1,0]A[1,1]A[1,2]

A[2,0]A[2,1]A[2,2]

A[0,0]A[0,1]A[0,2]

A[1,0]A[1,1]A[1,2]

A[2,0]A[2,1]A[2,2]

B[0,0]B[0,1]B[0,2]

B[1,0]B[1,1]B[1,2]

B[2,0]B[2,1]B[2,2]

B[0,0]

B[0,1]

B[0,2]B[1,0]

B[1,1]

B[1,2]B[2,0]

B[2,1]

B[2,2]

left-circular-shift 
i-th row of A by i

up-circular-shift 
i-th column of B by i

Initial input Skewed input

Initial input Skewed input

• Step 0:
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A[0,1]A[0,2]

A[1,0]A[1,1]A[1,2]

A[2,0]A[2,1]A[2,2]

B[0,0]

B[0,2]B[1,0]

B[1,1]

B[2,0]

B[2,1]

B[2,2]

left-circular-shift 
each row of A by 1

input Skewed input

input Skewed input

• Step 1.1: Compute C[i,j]=C[i,j]+A[i,j]*B[i,j] at each processor (i,j)

• Step 1.2:
A[0,0]A[0,1]A[0,2]

A[1,0]A[1,1]A[1,2]

A[2,0]A[2,1]A[2,2]

B[0,0]

B[0,1]

B[0,2]B[1,0]

B[1,1]

B[1,2]B[2,0]

B[2,1]

B[2,2]

Ignore 
overwriting 
for clarity

A[0,0]

B[0,1] B[1,2]

up-circular-shift each 
column of B by 1
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A[0,1]A[0,2]

A[1,0]A[1,1]A[1,2]

A[2,0]A[2,1]A[2,2]

B[0,0]

B[0,2]B[1,0]

B[1,1]

B[2,0]

B[2,1]

B[2,2]

left-circular-shift 
each row of A by 1

up-circular-shift each 
column of B by 1

input Skewed input

input Skewed input

• Step 2.1: Compute C[i,j]=C[i,j]+A[i,j]*B[i,j] at each processor (i,j)

• Step 2.2:

• Step 3.1: Compute C[i,j]=C[i,j]+A[i,j]*B[i,j] at each processor (i,j)

A[0,0]

B[0,1] B[1,2]

A[0,1]A[0,2]

A[1,0]A[1,1]A[1,2]

A[2,0]A[2,1]A[2,2]

A[0,0]

B[0,0]

B[0,2]B[1,0]

B[1,1]

B[2,0]

B[2,1]

B[2,2]

B[0,1] B[1,2]
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• We consider parallel execution time and communication per processor 
• Execution time = P  Multiplication_time = O( P (n/ P )3 ) = O( n3 /P )

• #Words_moved = O( P  |A[i,j]|) = O( P (n/ P) 2 ) = O(n2/ P)

• Good execution time, and efficient communication (lower bound = Ω(n2/ P))

• Pros👍
• Efficient communication

• Close to theoretical lower bound

• Cons 👎
• Difficult to handle with non-square matrices

• Is it fast in practice?
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• #words_moved = (n3/(P M))
• If M = O(n2/P), then words_moved = O( (n2/P1/2) )

• Can we use more memory (larger M) to communicate less?

• 3D Matrix Multiply Algorithm on P1/3 x P1/3 x P1/3 processor grid

• Broadcast A in j direction (P1/3 redundant copies)

• Broadcast B in i direction (P1/3 redundant copies)

• Local multiplies
• Processor (i,j,k) performs C[i,j]=C[i,j]+A[i,k]*B[k,j]

• Each submatrix is n/P1/3 x n/P1/3, and M = n2/P2/3

• Reduce (sum) in k direction: C[i,j]+σkA[i,k]B[k,j]

• Communication volume =  O( (n/P1/3)2 ) - optimal

• Number of messages =  O(log(P)) - optimal

P0 P1

P3 P4

P2

P5

P6 P7 P8

P9 P10

P12 P13

P11

P14

P15 P16 P17

P18 P19

P21 P22

P20

P23

P24 P25 P26

P1/3

P1/3

P1/3
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A[0,0]

i

j

k

A[0,1]

A[0,2]

A[1,0]

A[1,1]

A[1,2]

A[2,0]

A[2,1]

A[2,2]

C[0,0]

B
[
2
,
0
]

B
[
1
,
0
]

B
[
0
,
0
]

B
[
2
,
1
]

B
[
1
,
1
]

B
[
0
,
1
]

B
[
2
,
2
]

B
[
1
,
2
]

B
[
0
,
2
]

C[1,0]C[2,0]

C[0,1]C[1,1]C[2,1]

C[0,2]C[1,2]C[2,2]

i

j

k

A[0,0]

A[0,1]

A[0,2]

A[1,0]

A[1,1]

A[1,2]

A[2,0]

A[2,1]

A[2,2]

i

j

k

B
[
2
,
0
]

B
[
1
,
0
]

B
[
0
,
0
]

B
[
2
,
1
]

B
[
1
,
1
]

B
[
0
,
1
]

B
[
2
,
2
]

B
[
1
,
2
]

B
[
0
,
2
]

Broadcast

P1/3

P1/3

P1/3
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• The traditional algorithm has O(n3) flops
• Strassen discovered an algorithm with O(n2.81) flops

• Consider a 2x2 matrix multiplication, normally takes 8 multiplies, 4 adds
• Strassen does it with 7 multiplies and 18 adds

• Let 𝐶 =
𝑐11 𝑐12
𝑐21 𝑐22

=
𝑎11 𝑎12
𝑎21 𝑎22

𝑏11 𝑏12
𝑏21 𝑏22

• Let 𝑝1 = 𝑎12 − 𝑎22 𝑏21 + 𝑏22 , 𝑝2 = 𝑎11 + 𝑎22 𝑏11 + 𝑏22 , 𝑝3 = 𝑎11 − 𝑎21 𝑏11 + 𝑏12

𝑝4 = 𝑎11 + 𝑎12 𝑏22 , 𝑝5 = 𝑎11 𝑏12 − 𝑏22 , 𝑝6 = 𝑎22 𝑏21 − 𝑏11 , 𝑝7 = 𝑎21 + 𝑎22 𝑏11

• Then 𝑐11 = 𝑝1 + 𝑝2 − 𝑝4 + 𝑝6, 𝑐12 = 𝑝4 + 𝑝5

𝑐21 = 𝑝6 + 𝑝7, 𝑐22 = 𝑝2 − 𝑝3 + 𝑝5 − 𝑝7

• For 𝑛 × 𝑛 matrix multiplication, consider 
𝑛

2
×

𝑛

2
sub-matrices
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• Let running time be T(n)

• By divide-and-conquer, and apply Strassen multiplication recursively

• T(n) = 7 T(n/2) + 18 (n/2)2

= O(nlog 7) = O(n2.81) based on Master Theorem

• Possible to extend communication lower bound to Strassen

• #words moved between fast and slow memory

= Ω(nlog 7 / M(log 7)/2 – 1 )  Ω(n2.81 / M0.4 )                     
• Attainable and parallelizable
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• Matrix multiplication is a fundamental operation
• Matrix-vector multiplication, matrix-matrix multiplication

• Serial matrix multiplication 
• Communication-avoiding, blocked matrix multiplication

• Parallel matrix multiplication 
• SUMMA, Cannon's algorithm, 3D matrix multiplication 

• Lower bound on necessary communication
• Achievable by serial/parallel matrix multiplication 

• Strassen's algorithm
• Faster recursive matrix multiplication 

B

A C

𝐶 = 𝐴 ∙ 𝐵



📒References

• “Introduction to Parallel Computing ”, Grama, Karypis, Kumar, Gupta,
• Chapter 8 (Dense Matrix Algorithms)

• “Communication lower bounds for distributed-memory matrix multiplication”, 
Dror Irony, Sivan Toledo, Alexandre Tiskin,  
Journal of Parallel & Distributed Computing, 2004

49


