\bdZ\\TTHIE//

Parallel A
Aatrix

&5 7
2 '-
L

Importance of

“What is the Matrix?”
CJ Neo (from a movie)

* The concept of matrix has existed, as long as the history of linear equations

* Lots of applications
* Graphics, optimization, control systems
* Solutions to many engineering, scientific and economic problems

* Goals
* Parallel matrix multiplication algorithms
* What makes (in)efficient matrix multiplication parallel algorithms?

Why Matrix Co

 Fundamental in many problems / —
« Computer graphics /

Linear algebra and multi-linear algebra

* Machine learning (DNNs, CNNs)

* Optimization and control

* Classes of matrix computations
* Dense/Sparse matrix multiplication
* Linear system solution, inverse matrix
* Spectrum analysis (eigenvalues decomposition)
* Singular values
e Tensor Computations

/ frequency

Spectrum analysis

Computational

* Performance of computations is affected by two major factors:

1.

2.

Complexity of arithmetic, execution in processors (e.g., FLOPs)

* Need computationally efficient algorithms

Communication of data and results within/among processors, and from/to memory
Transmitting data among multiple levels of memory hierarchy

« Communicating among processors over a network

The major bottleneck is with communication AARA ARARA

* Processors can't execute unless data is

loaded to register or cache
Need more than just computationally efficient | Bottleneck | =

algorithms, but also communication-avoiding
algorithms (both serial and parallel) —_—

4

Sent Received

2 2

Data Chunk 1

Data Message
Data Chunk 2

<
v Data Chunk 3

Data Chunk 4

* A simple model of data communication
* A message of data is transmitted through capacity-limited channel
* It is broken into multiple chunks of data, each of which can be transmitted at a time

* Bandwidth = Units of data can be transmitted at a time
e Gap = 1/Bandwidth
* Message latency ~ Latency + #Chuncks x 1/Bandwidth

Low bandwidth High bandwidth

Low delay High delay

e Bandwidth

* The amount of data can be moved simultaneously
* Narrow pipe vs. Fat pipe

* Latency
* The delivery time of transmitting data
* Short pipe vs. Long pipe 6

Computational

* ¥ (Time per FLOP) < S (1/Bandwidth) «< a (Latency)

* Gaps growing exponentially over time

* Running time of an algorithm Wl MardveeSpesdTends
* Running time ~ Execution time + Waiting time \\ o |
+ Delivery time | e

* Running time = #FLOPs x y + #words_moved x =~
+ #messages x

T ity | tateney | _cost/aB

Seconds

Register 1000 bits 20ps Very Costly 100
SRAM 10KB-10MB 1-10ns $1000
DRAM 10GB 80ns $100 | |
Flash 100GB 100ps $1

Hard disk 1TB 10ms S0.1 7

Computational

* ¥ (Time per FLOP) < S (1/Bandwidth) «< a (Latency)
* Topology is assumed irrelevant
* One long message is cheaper than many short ones
* Can do hundreds or thousands of flops for cost of one message

 Computational intensity

* m: the number of memory elements (#words_moved) moved
between fast and slow memory, assuming #messages < #words_moved

* f: the number of arithmetic operations (#FLOPs)
* (Computational intensity)
* Cl=f/m
* A large computational intensity means more efficiency

Common Matri

* Matrix-vector multiplication

cy=y+4-x
Yo Yo Ao o Agn—1 X0
: = : + : ’ : :
Yn-1 Yn-1 An—1,0 An—l,n—l Xn-1

* Matrix-matrix multiplication
eC=C+A-B

CO,O CO,n—l CO,O CO,n—l AO,O AO,n—l BO,O BO,n—l

Cn—l,O Cn—l,n—l Cn—l,O Cn—l,n—l An—l,O An—l,n—l Bn—l,O Bn—l,n—l

Matrix-Vector

* Setting:
* Input:
* y: n-D vector, = + .
* x: n-D vector,
* A: nxn matrix
 Compute: y y A X

*y=y+A-x

for i = 1:n
for j = 1:n

y[i] = y[i] + A[1,3]*x[]]

10

Matrix-Vector

* Assumptions:
e Constant computation rate
* Fast memory can hold three vectors

* The cost of fast memory access is zero
* Nearly zero for registers
* Small latency for cache

for 1

for j = 1:n
* Memory latency is constant y[i] = y[i] + A[1,3]*x[]]

 Computational intensity
* f=2n? (Two nested for-loops)
* m=3n+n? (Read/write y, x, A)
* Cl=2
* Very inefficient, and limited by slow memory speed

11

Matrix-Matrix

* Input:
 C, A B: nxn matrices

* Compute:
*« C=C+A-B

C[i,7] C[i,]] Ali,:]
n - + i B[:Jj]

Matrix-Matrix

 Computational intensity
* f=2n3 m=3n? (guess)
e Can Cl=0(n)?

* Reality:

e Fast memory can hold only
vectors, not matrices

C[i,3] Cli,3] Ali,:]

n - + b B[:Jj]

Matrix-Matrix

 Computational intensity for i = 1 to n
* m=n?+n3+2n?
(Read each row A

+Read each column B n times
+ Read/write each cell C)

* Cl =~ 2 (very inefficient)

for j =1 ton

for k = 1 to n
C[i)j] = C[i)j] + A[i)k] * B[ij]

A

C[i,3] Cli,3] Ali,:]

n - + b B[:Jj]

* Assumption:
* Fast memory can hold the
size of O(b?) elements

e Consider blocked matrix
multiplication
. C[1,7]is a bxb sub-matrix /\

A

C[i)j] = C[iJj] + A[iJk] * B[ij]

N=n/b | cliil = i3] + AL,] * B[:,3]

[

PR

Blocked Matrix-MatFi

. . . for i =1 to N
* Computational intensity for § = 1 to N

* m=2N2b? + N3b2 + N3 b2
(Read/write each block C
+ Read each block A N times
+ Read each block B N times) C[i,j] = C[i,3]1 + A[i,k] * B[k,]]
e Cl=2n3/(2N3b%?) =~ b

for k =1 to N

N=n/b | cliil = i3] + AL,] * B[:,3]

i

«
Y
S

AUl

e
.Q‘

e
“

Matrix-Matrix

e Simple matrix multiplication

e Assumption: Fast memory can
hold O(n) elements

°C|%% B for k = 1 to n
* Very inefficient C[i,j] = C[i,3] + A[i,k] * B[k,j]

* Blocked matrix multiplication

* Assumption: Fast memory can
hold O(b?) elements

* Cl=b

* If b~+/n, Cl=+/n C[i,j] + A[i,k] * B[k,]j]
* Much more efficient

How to Implem

* Tuning code can be tedious
* Many optimizations besides blocking
* Behavior of machine and compiler hard to predict

* Approach #1: Analytical performance models

* Use model (of cache, memory costs, etc.) to select best code
* But model needs to be both simple and accurate

e Approach #2: “Autotuning”
* Let computer generate large set of possible code variations
» Search for the fastest ones (may be matrix size dependent)
 Sometimes all done “off-line,” sometimes at run-time

18

* A matrix is a 2-D array of elements, but is mapped to 1-D memory addresses

* Matrix data layouts:
* By column, or "column major": A[i,j]= A[i+jxn]
* By row, or "row major" (C default): A[i,j] at A[ixn+j]
* Reorganized based on blocks
* Beware of cache line: caching based on spatial locality in memory addresses

O -6 ORI O 4 Cache Line
1 4 7 4

> > 2 3 ° 4 9 1 2 3 4 5 6 7 8
2 5 8 6 7 8 6 7 8

| | Cache Memory 19
Column major Row major Block-based

Questions

* Fundamental questions

. o . il
* |Is blocked matrix multiplication optimal in
communication with memory? slaz =i B
. Words
* |s there any other way to achieve better Moved emory
communication?
* How about parallel matrix multiplication

with multiple processors?

* Any lower bound for the communication costs
of sequential and parallel computations?

* Let us apply some formal analysis and mathematics...

20

o
Tk .__
s
Si? o
t)
4
4

w7

Lower Bound of '€

* How much data must be transferred to/from
fast memory to enable computation?

* Size of fast memory is limited : M Words
* Reduce communication to improve running time Moved

* Matrix-matrix multiplication

* Execution takes O(n3), input data takes O(n?)

 How much data is required to transfer?

* Need more than O(n?), if M < n?
* |n practice, M ~n [Theorem]

n3
* Consider blocked matrix multiplication: #words_moved = () (\/_ﬁ)
* If b2 = O(M), then #words_moved = Q(N3b?)
* Blocked matrix multiplication is communication optimal

21

5
é,)/""

e Matrix-matrix multiplication has 3 nested loops

* First, get some intuitions o

* We consider a simpler setting with only 2 nested C[i,j] = f(A[i],B[]])
loops to compute C[1i, 7] via abstract function ()

* We may reorganize data communication in
different ways to provide inputs A[i] and B[j] s A 2D set

 Assume we read a set {A[i]}and a set {B[j]} of points
into fast memory

* How many points of c[i,j] can be computed?
* Equivalent question

* Given two 1D projections of a 2D set of points, R/J
how many maximal points are in the 2D set? 1D projection

,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,

1D projection

22

* How many maximal points are in the 2D set,
given two 1D projections?

* If there are k points in each 1D projection,
then the maximal number of points in 2D < k?

 Maximum number of points when the 2D set is a square

* If size of fast memory < M, then how many reads are
needed to compute C[i,j] for (1 <i<n)?

* Totally, n? data points are needed for c[i,7]

e Each time, only M points can be read into fast memory
* Allow at most M?/2? points to be computed for C[1, j]

4n?
* Need at least 7 reads

* Each reads M points of input into fast memory
* Hence, #twords_moved = Q(n?/M)

for 1

=1 to n

for j =1 ton

| 1D projection|

C[i)j] = f(A[i],B[j])

|2D set| < k?

,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,

| 1D projection| = k
23

* Now consider matrix-matrix multiplication
* Totally, n3data points for computing C[i,j]+A[i,k]*B[k,j]
* Each time, only M points can be read into fast memory
* How many points of (C[1,j]+A[i,k]*B[k,j]) can be
computed by only M points in fast memory at a time?

C[i,j] + A[i,k] * B[k,j]

24

EEE =
B i uuu nan
1777 e e _CERRR R
Ay sESfALE @ AR ARAAAANNR
NEFSssN SFFFAEA L ERLSLLAERRRE
Feyss SEFSFT AU UESRLLARRER

Projection C

Y Ll d
Fr 77T i ;77

EEw -

F 7 4 r o 7y
Illll_l Y F ‘\!!!ﬂ‘-
N A C L L)

or e * o0

Loomis-Whitney Inequality:
< (|Proj Al|-|ProjB]-|ProjC|) /2

Volume of 3D object

C
0
)
O
2
o
| -
(a
mw,
ndo
o =
mBe
e £
m.S..L
L ©
o <
= c 3
o =
-—a —
.e C
X o r—
& N o
>N ~ O
~N —
O X =
s 2y 3o
g 2 {0
S C O N
= Q .
=
e —
c = o Il =
> s Zen?®
= a
S O S Xx=
L 935 x=T
a <<= u

Data points to
be computed

25

Proof Idea of LoV

i

* Now consider matrix multiplication
* Totally, n® data points are needed for computing C[i,j]+A[i,k]*B[k,]]
* Each time, only M points of input can be read into fast memory
e Allow at most c-(M-M-M)¥/2 data points to be computed for C[i,7]

3
n
* Need at least — reads
c-M2
e Each reads M points (i.e., words) into fast memory

Tl3
* Hence, #words_moved = () (\/_M)

Tl3

#words_moved =Q(\/_M i,j] = C[1,3] + A[i,k] * B[k,]]

Parallel Matrix

* Parallel case: There are P processors
* Each processor's fast memory has a limited capacity = M

* Consider the following communication model of message-passing
* Non-conflicting unicasts are allowed simultaneously
* Broadcast is restricted

* Only unicast is used at a time
 Efficient broadcast has overhead of 2 log(n)

e
A

Broadcast 27

unicasts

Parallel Matrix

* Lower bound
* The fast memory has a limited capacity = M

3
* Sequential case: #words_moved = () (j_ﬁ)

* Parallel case: There are P processors
* Inter-processor communication has a limited capacity = M

3
* #words_moved per processor = () (Pil/ﬁ)

e AssumeM =0 (n;)

* In distributed memory systems, inter-process communication is the bottleneck,

rather than the cache
2

* Then #words_moved per processor = () (%) - Can it be achievable? -

Data Layout

 Different data processes are handled by different processors
* 1D: Each processor handles a column (or a row) of submatrix
e 2D: Each processor handles a block of submatrix
* 3D: Each processor handles a sub-operation of matrix

1D Column-based 1D Row-based 2D 3D 29

* We consider 1D column-based data layout
* P processors; each processor handles a row of submatrixin C, B, A
« A[:,1i] is the (i+1)-th n x n/P column submatrix that processor Pi handles
« B[i,7j]is the (j+1)-th n/P x n/P submatrix of B[:,1i]
* We use the formula
e C[:,i] = C[:,i] + A-B[:,i] = C[:,1] + ZjA[:,j]-B[j,i]

C[:,1i] = cC[:,i] + Al:,7] - B[],1i]

n/Pp C C A B 20

1D Data Layout

e ————y

Execute in parallel with each processor me

Copy A[:,me] into Tmp
C[:,me] = C[:,me] + Tmp*B[me,me]

for j =1 to P-1
Send Tmp to processor me+l mod P
Receive Tmp from processor me-1 mod P
C[:,me] = C[:,me] + Tmp*B[me-j mod P, me]

C[:,1i] = cC[:,i] + Al:,7] - B[],1i]

n/Pp C C A B

Copy A[:,0] into Tmp
C[:,0] = C[:,0] + Tmp*B[0,0]

for j =1 to P-1
Send Tmp to processor P1
Receive Tmp from processor P2
C[:,0] = C[:,0] + Tmp*B[P-j, @]

C[:,1i] = cC[:,i] + Al:,7] - B[],1i]

n/Pp C C A B

1D Data Layou

* We consider parallel execution time and communication per processor
* Execution time = P x Multiplication_time = O(P (n/P)2n)=0(n3/P)
e #Words_moved = P x Send_Tmp = O(P (n/P)n) = O(n?)
 Good execution time, but inefficient communication (note: lower bound = Q(n2/+/P))

Execute in parallel with each processor me n/P
Copy A[:,me] into Tmp 4
C[:,me] = C[me,:] + Tmp*B[me,me] - B[i,3]
for j =1 to P-1 nl a9

Send Tmp to processor me+l mod P
Receive Tmp from processor me-1 mod P
C[:,me] = C[:,me] + Tmp*B[me-j mod P, me]

33

* SUMMA (Scalable Universal Matrix Multiply Algorithm)

e Assume /P is an integer

* We consider 2D data layout with VP X v/P processors

e Each processor is labeled by [i,5], where0< 1,5 <+/P

* Each processor handles a n/+/P X n/~/P submatrixin C, B, A

I
+

34

* Outer product

)

UgVpn-1

Un-1V9

|

)m)
1

Uy
Uqy—

* Note that ¢

:]

JUA[:,k]-B[k,

SR

*)

] = (]

[] ’ []

B[k, :]

Al :,k]

35

Execute in parallel with each processor (me,,me,)
for k = @ to VP-1
for all i = @ to VP-1

owner of A[i,k] broadcasts it to all processors in the same row
for all j = @ to V/P-1

owner of B[k,j] broadcasts it to all processors in the same column
Receive A[me,,k]
Receive B[k,me,]

C[me,,me,] = C[me,,me,] + A[me,,k] * B[k, me,]

Ali,k] B[k,]

I
+

* We consider parallel execution time and communication per processor
e Execution time = v/P x Multiplication time = O(+/P (n/+/P)3)=0(n3/P)

e Broadcast can be achieved with O(log(+/P)) communication overhead

« #Words_moved =O(log(v/P) x VP x |A[i,jl|) = O(log(~/P)VP (n/+/P)2) = O(log(~/P) n2//P)

* Good execution time, and quite efficient communication (but lower bound Q(n2/+/P))

Execute in parallel with each processor (me,,me,)
for k = @ to VP-1
for all i = @ to VP-1
owner of A[i,k] broadcasts it to all processors in the same row
for all j = @ to VP-1
owner of B[k, j] broadcasts it to all processors in the same column
Receive A[me,,k]
Receive B[k,me]
C[me,,me] = C[me,,me,] + A[me,,k] * B[k,me,]

Cannon's Algori

e |eft-circular-shift by one:
* Move the leftmost item to the rightmost position and shift other items to the left position

A[0,0]A[0,1]A[0,2] A[0,0]A[0,1]A[0,2]
_ ‘ AL, 1]jA[2,2][AL, O]
A[2,0]A[2,1]A[2,2] A[2,0]A[2,1]A[2,2]

e up-circular-shift by one:
* Move the topmost item to the bottom position and shift all other numbers to the lower position

A[0,0] A[@51]A[0,2] A[0,0]IA[1,1]A[e,2]

A[1,0] A[@0]A[1,2] ‘ A[1,0]|A[2,1]jA[1,2]

A[2,0] A[250]A[2,2] A[2,0]A[@,1]IA[2,2]

38

%
° 4l

Cannon's Algori

for i = @ to VP-1 /* "skew" A */
left-circular-shift i-th row of A by i /* Communication within each row */
Overwrite A[i,j] by A[i,(j+i) mod VP]

for i = @ to VP-1 /* "skew" B */
up-circular-shift i-th column of B by i /* Communication within each col */
Overwrite B[i,j] by B[(i+j) mod vP), j]

for k = @ to VP-1
Execute in parallel with each processor (i,j)

C[i:j] = C[i)j] + A[iJj]*B[i)j]

left-circular-shift each row of A by 1
Overwrite A[i,j] by A[i,(j+1) mod VP]

up-circular-shift each column of B by 1
Overwrite B[i,j] by B[(i+1) mod vP), 7]

* Step O:

A[0,0]A[0,1]A[0,2]
A[1,0]A[1,1]A[1,2]
A[2,0]A[2,1]A[2,2]

Initial input

B[©,0]B[0,1]B[0,2]
B[1,0]B[1,1]B[1,2]
B[2,0]B[2,1]B[2,2]

Initial input

Qs
left-circular-shift
i-th row of A by i

——

up-circular-shift
i-th column of B by i

—

A[@,0]A[0,1]A[0,2]

- A[1,1]A[1,2]A[1,0]
_ A[2,2]A[2,0]A[2,1]

Skewed input

t|

B[©,0]B[1,1]B[2,2]

B[1,0]B[2,1]B[0,2]
B[2,0] B[O,1] B[1,2]

Skewed input

40

Cannon's Algori

* Step 1.1: Compute C[i,j]=C[i,j]+A[i,j]1*B[i,j] at each processor (i,j)

left-circular-shift

Al@,0]A[@,1]A[0,2] - Ale,1]A[@,2]A[0,0]
* Step 1.2:

A[1,1]A[1,2]A[1,0] each row of Aby 1 - A[1,2]A[1,0]A[1,1]
Overwr'lt:!.ng A[2,2] A[2,0] A[2,1] — - A[2,0]A[2,1]A[2,2]
for clarity
input Skewed input
R P L5 B[2,2] up-circular-shift each R P25 B0, 2]

columnof Bby 1

B[1,0]B[2,1]B[0,2] ' B[2,0]B[0,1]B[1,2]

B[2,0]B[0,1]B[1,2] B[0,0]B[1,1] B[2,2]

41
input Skewed input

Cannon's Algori

* Step 2.1: Compute C[i,j]=C[i,j]+A[i,j]1*B[i,]j] at each processor (i,7)

¢ Step 2.2: A[@,1]A[0,2]A[0,0] - Al@,2]A[0,0] A[0,1]
left-circular-shift
A[1,2]A[1,0]A[1,1] eachrow of Aby 1 - A[1,0]A[1,1]A[1,2]
A[2,0]A[2,1]A[2,2] — - A[2,1]A[2,2]A[2,0]
input Skewed input
BL1,618[2,1]8[6,2] up-circular-shift each B[2,0]B[0,1]B[1,2]

columnof Bby 1

B[2,0]1B[0,1]B[1,2] ' B[©,0]B[1,1]B[2,2]

B[@,0]B[1,1]B[2,2] B[1,0]B[2,1]B[9,2]

input Skewed input
* Step 3.1: Compute c[i,j]=C[i,j]+A[i,j]1*B[i,]] at each processor (i,j)

42

Cannon's Algorithrm:

* We consider parallel execution time and communication per processor
* Execution time = v/P x Multiplication time = O(+/P (n/v/P)3)=0(n3/P)
* #Words_moved = O(v'P x |Al[i,jl|) = O(VP (n/v/P)2) = O(n2//P)
 Good execution time, and efficient communication (lower bound = Q(n2/+/P))

* Pros (B

e Efficient communication
* Close to theoretical lower bound

* Cons €/

 Difficult to handle with non-square matrices
* |s it fast in practice?

43

3D Data Layou

e #words_moved = Q(n3/(P v M) p3
e If M =0(n?%/P), then words_moved = O((n2/P%2))
* Can we use more memory (larger M) to communicate less? p1/3

3D Matrix Multiply Algorithm on PY/3 x P1/3 x p1/3 processor grid
* Broadcast A in j direction (PY3 redundant copies)
 Broadcast B in i direction (PY3 redundant copies)

* Local multiplies
* Processor (i,7,k)performsC[1i,§]=C[1,j]+A[i,k]*B[k,]] pi/3
 Each submatrix is n/PY3x n/PY3, and M = n2/p?/3
* Reduce (sum) in k direction: C[1,j]+X A[i,k]B[k,]]

* Communication volume = O((n/P¥3)?) - optimal

* Number of messages = O(log(P)) - optimal o

P1/3

[z€zlalz‘t]la [z o]
[tzlal[1°tlg [T90]

vile‘zlale tla [o‘e]

¢ -———— ===

. 1 I I
| 1 I I
| I 1 1
1 I 1 1
S O “
| 1 %) I I
| 1 (q0) I I
O “
| 1 O | |
o o “
| 1 m I I
v 1 | |
. o “ “
1 | |
v v v
‘M
&9
murv »
1/ \0@ '/ //
// o // //
\ (&7 AN AN
kk /// % /// ///
h “— = —
o~ i o
- a g
) (o] (o]
V/ i, — —
N S <y <
A // //
N A 1 N —
N wH N ®
N ey //1, \ *
AN
V/ _11/ —_ _M__
// A // AV// A
// | | // | | // | |
N N O
NS R N -
o N N
— — —_
< < <
o™
~
i
Q
‘M

[zclalzT]lg [z 0]

~ [tzlalr°tla [t°0]
(av) —
= v [e‘clale‘tla [ee]
T — — —
NS 8 %09
“ - 2 o S ©
o = YV < <
n, = < I 2 <
(&) 2 _m_ < _Aln_ <
I R <
2 o & = o,
Q. < < <

45

Strassen’s \Matri

-
o)

%

* The traditional algorithm has O(n3) flops
* Strassen discovered an algorithm with O(n?-%) flops

* Consider a 2x2 matrix multiplication, normally takes 8 multiplies, 4 adds
e Strassen does it with 7 multiplies and 18 adds

ee=(2= @)l b)
* Letpy = (@12 — az2)(b21 + ba2), P2 = (aq1 + azz)(byy + by2), p3s = (ay1 — azq)(b1g + b12)
Pa = (a11 + a12)(b22), ps = (a11)(b12 — b22), D6 = (az2)(b21 — b11), P7 = (A1 + azz)(b11)
* Thencyy =py + P2 —Pa+DPe C12 =Ps+Ds
C21 =Pe T P7, C22 =P2 —P3+Ps— D7

. . qs . . n n .
* For n X n matrix multiplication, consider - X7 sub-matrices

46

Strassen’s Matrix VK

4.
Ve

—

* Let running time be T(n)
* By divide-and-conquer, and apply Strassen multiplication recursively
* T(n)=7T(n/2) + 18 (n/2)?2
= O(n'8’) = O(n%81) based on Master Theorem

e Possible to extend communication lower bound to Strassen
e #words moved between fast and slow memory
— Q(nlog7 / M(Iog 7)/2—1) ~ Q(n2-81 / MO.4)
e Attainable and parallelizable

47

summary

* Matrix multiplication is a fundamental operation
* Matrix-vector multiplication, matrix-matrix multiplication

* Serial matrix multiplication
 Communication-avoiding, blocked matrix multiplication

 Parallel matrix multiplication

« SUMMA, Cannon's algorithm, 3D matrix multiplication E
* Lower bound on necessary communication
* Achievable by serial/parallel matrix multiplication o an

* Strassen's algorithm
* Faster recursive matrix multiplication

48

“Introduction to Parallel Computing ”, Grama, Karypis, Kumar, Gupta,
* Chapter 8 (Dense Matrix Algorithms)

“Communication lower bounds for distributed-memory matrix multiplication”,
Dror Irony, Sivan Toledo, Alexandre Tiskin,

Journal of Parallel & Distributed Computing, 2004

Parallel
Computing

Secoand Edition

49

