Parallel Algorithms for Matrix Multiplication

Sid Chi-Kin Chau

<Lecture 14>

Importance of Matrix Computations

"What is the Matrix?"

- ☐ Neo (from a movie)
- The concept of matrix has existed, as long as the history of linear equations
- Lots of applications
 - Graphics, optimization, control systems
 - Solutions to many engineering, scientific and economic problems
- Goals
 - Parallel matrix multiplication algorithms
 - What makes (in)efficient matrix multiplication parallel algorithms?

Why Matrix Computation?

- Fundamental in many problems
 - Computer graphics
 - Linear algebra and multi-linear algebra
 - Machine learning (DNNs, CNNs)
 - Optimization and control
- Classes of matrix computations
 - Dense/Sparse matrix multiplication
 - Linear system solution, inverse matrix
 - Spectrum analysis (eigenvalues decomposition)
 - Singular values
 - Tensor Computations

Computational Performance

- Performance of computations is affected by two major factors:
 - 1. Complexity of arithmetic, execution in processors (e.g., FLOPs)
 - Need computationally efficient algorithms
 - 2. Communication of data and results within/among processors, and from/to memory
 - Transmitting data among multiple levels of memory hierarchy
 - Communicating among processors over a network
 - The major bottleneck is with communication
 - Processors can't execute unless data is loaded to register or cache
 - Need more than just computationally efficient algorithms, but also *communication-avoiding* algorithms (both serial and parallel)

Communication Model

- A simple model of data communication
 - A message of data is transmitted through capacity-limited channel
 - It is broken into multiple chunks of data, each of which can be transmitted at a time
 - Bandwidth = Units of data can be transmitted at a time
 - Gap = 1/Bandwidth
 - Message latency \approx Latency + #Chuncks \times 1/Bandwidth

Bandwidth vs Latency

- Bandwidth
 - The amount of data can be moved simultaneously
 - Narrow pipe vs. Fat pipe
- Latency
 - The delivery time of transmitting data
 - Short pipe vs. Long pipe

Computational Performance

- γ (Time per FLOP) $\ll \beta$ (1/Bandwidth) $\ll \alpha$ (Latency)
 - Gaps growing exponentially over time
- Running time of an algorithm
 - Running time ≈ Execution time + Waiting time + Delivery time
 - Running time \approx #FLOPs $\times \gamma$ + #words_moved $\times \beta$ + #messages $\times \alpha$

0				
	Capacity	Latency	Cost/GB	
Register	1000 bits	20ps	Very Costly	
SRAM	10KB-10MB	1-10ns	\$1000	
DRAM	10GB	80ns	\$100	
Flash	100GB	100µs	\$1	
Hard disk	1TB	10ms	\$0.1	

Computational Performance

- γ (Time per FLOP) $\ll \beta$ (1/Bandwidth) $\ll \alpha$ (Latency)
 - Topology is assumed irrelevant
 - One long message is cheaper than many short ones
 - Can do hundreds or thousands of flops for cost of one message
- Computational intensity
 - *m*: the number of memory elements (#words_moved) moved between fast and slow memory, assuming #messages < #words_moved
 - *f*: the number of arithmetic operations (#FLOPs)
 - (Computational intensity)
 - CI = *f/m*
 - A large computational intensity means more efficiency

Common Matrix Computations

• Matrix-vector multiplication

•
$$y = y + A \cdot x$$

 $\begin{pmatrix} y_0 \\ \vdots \\ y_{n-1} \end{pmatrix} = \begin{pmatrix} y_0 \\ \vdots \\ y_{n-1} \end{pmatrix} + \begin{pmatrix} A_{0,0} & \cdots & A_{0,n-1} \\ \vdots & \ddots & \vdots \\ A_{n-1,0} & \cdots & A_{n-1,n-1} \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ \vdots \\ x_{n-1} \end{pmatrix}$

• Matrix-matrix multiplication

•
$$C = C + A \cdot B$$

 $\begin{pmatrix} C_{0,0} & \cdots & C_{0,n-1} \\ \vdots & \ddots & \vdots \\ C_{n-1,0} & \cdots & C_{n-1,n-1} \end{pmatrix} = \begin{pmatrix} C_{0,0} & \cdots & C_{0,n-1} \\ \vdots & \ddots & \vdots \\ C_{n-1,0} & \cdots & C_{n-1,n-1} \end{pmatrix} + \begin{pmatrix} A_{0,0} & \cdots & A_{0,n-1} \\ \vdots & \ddots & \vdots \\ A_{n-1,0} & \cdots & A_{n-1,n-1} \end{pmatrix} \cdot \begin{pmatrix} B_{0,0} & \cdots & B_{0,n-1} \\ \vdots & \ddots & \vdots \\ B_{n-1,0} & \cdots & B_{n-1,n-1} \end{pmatrix}$

Matrix-Vector Multiplication

- Setting:
 - Input:
 - y: n-D vector,
 - x: *n*-D vector,
 - *A*: *n*×*n* matrix
 - Compute:
 - $y = y + A \cdot x$

Where is the I/O
with memory?
for i = 1:n
 for j = 1:n
 y[i] = y[i] + A[i,j]*x[j]

Matrix-Vector Multiplication

• Assumptions:

- Constant computation rate
- Fast memory can hold three vectors
- The cost of fast memory access is zero
 - Nearly zero for registers
 - Small latency for cache
- Memory latency is constant
- Computational intensity
 - $f = 2n^2$ (Two nested for-loops)
 - $m = 3n + n^2$ (Read/write y, x, A)
 - Cl ≈ 2
 - Very inefficient, and limited by slow memory speed

<pre>{read x[1:n] into fast memory}</pre>
{read y[1:n] into fast memory}
for i = 1:n
{read i-th row of A into fast memory}
for $j = 1:n$
y[i] = y[i] + A[i,j]*x[j]

{write y[1:n] back to slow memory}

- Input:
 - C, A, B: n×n matrices
- Compute:
 - $C = C + A \cdot B$

- Computational intensity
 - $f = 2n^3$, $m = 3n^2$ (guess)
 - Can Cl = O(*n*)?
- Reality:
 - Fast memory can hold only vectors, not matrices

- Computational intensity
 - $m = n^2 + n^3 + 2n^2$
 - (Read each row *A* +Read each column *B n* times + Read/write each cell *C*)
 - $CI \approx 2$ (very inefficient)

Blocked Matrix-Matrix Multiplication

- Assumption:
 - Fast memory can hold the size of O(b²) elements
- Consider blocked matrix multiplication
 - C[i,j] is a b×b sub-matrix ▲

for i = 1 to N
 for j = 1 to N
 {read block C[i,j] into fast memory}
 for k = 1 to N
 {read block A[i,k] into fast memory}
 {read block B[k,j] into fast memory}
 C[i,j] = C[i,j] + A[i,k] * B[k,j]
 /*do a matrix multiply on blocks*/
 {write block C[i,j] back to slow memory}

Blocked Matrix-Matrix Multiplication

- Computational intensity
 - m = 2N² b² + N³ b² + N³ b²
 (Read/write each block C + Read each block A N times + Read each block B N times)
 - CI $\approx 2n^3$ / (2N³ b²) $\approx b$

for i = 1 to N
 for j = 1 to N
 {read block C[i,j] into fast memory}
 for k = 1 to N
 {read block A[i,k] into fast memory}
 {read block B[k,j] into fast memory}
 C[i,j] = C[i,j] + A[i,k] * B[k,j]
 /*do a matrix multiply on blocks*/
 {write block C[i,j] back to slow memory}

- Simple matrix multiplication
 - Assumption: Fast memory can hold O(n) elements
 - CI ≈ 2
 - Very inefficient
- Blocked matrix multiplication
 - Assumption: Fast memory can hold O(b²) elements
 - CI $\approx b$
 - If $b \approx \sqrt{n}$, $CI \approx \sqrt{n}$
 - Much more efficient

for i = 1 to n
 {read i-th row of A into fast memory}
 for j = 1 to n
 {read C[i,j] into fast memory}
 {read j-th column of B into fast memory}
 for k = 1 to n
 C[i,j] = C[i,j] + A[i,k] * B[k,j]
 {write C[i,j] back to slow memory}

How to Implement in Practice?

- Tuning code can be tedious
 - Many optimizations besides blocking
 - Behavior of machine and compiler hard to predict
- Approach #1: Analytical performance models
 - Use model (of cache, memory costs, etc.) to select best code
 - But model needs to be both simple and accurate
- Approach #2: "Autotuning"
 - Let computer generate large set of possible code variations
 - Search for the fastest ones (may be matrix size dependent)
 - Sometimes all done "off-line," sometimes at run-time

Data Layout and Caching

- A matrix is a 2-D array of elements, but is mapped to 1-D memory addresses
- Matrix data layouts:
 - By column, or "column major": A[i,j]= A[i+j×n]
 - By row, or "row major" (C default): A[i,j] at A[i×n+j]
 - Reorganized based on blocks
- Beware of cache line: caching based on spatial locality in memory addresses

Questions

- Fundamental questions
 - Is blocked matrix multiplication optimal in communication with memory?
 - Is there any other way to achieve better communication?
 - How about parallel matrix multiplication with multiple processors?
 - Any lower bound for the communication costs of sequential and parallel computations?
- Let us apply some formal analysis and mathematics...

Lower Bound of Communication

- How much data must be transferred to/from fast memory to enable computation?
 - Size of fast memory is limited : M
 - Reduce communication to improve running time
 - Matrix-matrix multiplication
 - Execution takes $O(n^3)$, input data takes $O(n^2)$
 - How much data is required to transfer?
 - Need more than $O(n^2)$, if $M \ll n^2$
 - In practice, $M \sim n$
- Consider blocked matrix multiplication:
 - If $b^2 = O(M)$, then #words_moved = $\Omega(N^3b^2)$
 - Blocked matrix multiplication is communication optimal

- Matrix-matrix multiplication has 3 nested loops
- First, get some intuitions
 - We consider a simpler setting with only 2 nested loops to compute C[i,j] via abstract function f()
 - We may reorganize data communication in different ways to provide inputs A[i] and B[j]
 - Assume we read a set {A[i]} and a set {B[j]} into fast memory
 - How many points of c[i,j] can be computed?
 - Equivalent question
 - Given two 1D projections of a 2D set of points, how many maximal points are in the 2D set?

for i = 1 to n
 for j = 1 to n
 C[i,j] = f(A[i],B[j])

- How many maximal points are in the 2D set, given two 1D projections?
 - If there are k points in each 1D projection, then the maximal number of points in $2D \le k^2$
 - Maximum number of points when the 2D set is a square
- If size of fast memory ≤ M, then how many reads are needed to compute C[i,j] for (1 ≤ i ≤ n)?
 - Totally, n² data points are needed for C[i,j]
 - Each time, only *M* points can be read into fast memory
 - Allow at most $M^2/2^2$ points to be computed for C[i,j]
 - Need at least $\frac{4n^2}{M^2}$ reads
 - Each reads *M* points of input into fast memory
 - Hence, #words_moved = $\Omega(n^2/M)$

for i = 1 to n
 for j = 1 to n
 C[i,j] = f(A[i],B[j])

- Now consider matrix-matrix multiplication
 - Totally, n³ data points for computing C[i,j]+A[i,k]*B[k,j]
 - Each time, only M points can be read into fast memory
 - How many points of (C[i,j]+A[i,k]*B[k,j]) can be computed by only M points in fast memory at a time?

A box with lengths *x*, *y*, *z* Volume of the box = $x \cdot y \cdot z = (xz \cdot zy \cdot yx)^{1/2}$ = (|Proj A|·|Proj B|·|Proj C|)^{1/2}

Loomis-Whitney Inequality: Volume of 3D object ≤ (|Proj A|·|Proj B|·|Proj C|)^{1/2}

- Now consider matrix multiplication
 - Totally, n³ data points are needed for computing C[i,j]+A[i,k]*B[k,j]
 - Each time, only M points of input can be read into fast memory
 - Allow at most $c \cdot (M \cdot M \cdot M)^{1/2}$ data points to be computed for C[i,j]
 - Need at least $\frac{n^3}{c \cdot M^{\frac{3}{2}}}$ reads
 - Each reads M points (i.e., words) into fast memory
 - Hence, #words_moved = $\Omega\left(\frac{n^3}{\sqrt{M}}\right)$

for i = 1 to n	
for j = 1 to n	
for $k = 1$ to n	
C[i,j] = C[i,j] + A[i,k] *	B[k,j]

Parallel Matrix Multiplication

- Parallel case: There are P processors
 - Each processor's fast memory has a limited capacity = M
 - Consider the following communication model of message-passing
 - Non-conflicting unicasts are allowed simultaneously
 - Broadcast is restricted
 - Only unicast is used at a time
 - Efficient broadcast has overhead of 2 log(n)

Parallel Matrix Multiplication

- Lower bound
 - The fast memory has a limited capacity = M
 - Sequential case: #words_moved = $\Omega\left(\frac{n^3}{\sqrt{M}}\right)$
- Parallel case: There are *P* processors
 - Inter-processor communication has a limited capacity = M
 - #words_moved per processor = $\Omega\left(\frac{n^3}{P\sqrt{M}}\right)$
 - Assume $M = O\left(\frac{n^2}{P}\right)$
 - In distributed memory systems, inter-process communication is the bottleneck, rather than the cache
 - Then #words_moved per processor = $\Omega\left(\frac{n^2}{\sqrt{p}}\right)$ Can it be achievable?

- Different data processes are handled by different processors
 - 1D: Each processor handles a column (or a row) of submatrix
 - 2D: Each processor handles a block of submatrix
 - 3D: Each processor handles a sub-operation of matrix

29

3D

- We consider 1D column-based data layout
 - P processors; each processor handles a row of submatrix in C, B, A
 - A[:,i] is the (i+1)-th $n \times n/P$ column submatrix that processor Pi handles
 - B[i,j] is the (j+1)-th n/P × n/P submatrix of B[:,i]
 - We use the formula

• $C[:,i] = C[:,i] + A \cdot B[:,i] = C[:,i] + \sum_{j} A[:,j] \cdot B[j,i]$

30

Execute in parallel with each processor me Copy A[:,me] into Tmp C[:,me] = C[:,me] + Tmp*B[me,me]

Note Tmp is overwritten

A[:,j] · B[j,i]

C[:,i] = C[:,i]

for j = 1 to P-1
Send Tmp to processor me+1 mod P
Receive Tmp from processor me-1 mod P
C[:,me] = C[:,me] + Tmp*B[me-j mod P, me]

* For example, processor P0 */
Copy A[:,0] into Tmp
C[:,0] = C[:,0] + Tmp*B[0,0]

for j = 1 to P-1
Send Tmp to processor P1
Receive Tmp from processor P2
C[:,0] = C[:,0] + Tmp*B[P-j, 0]

- We consider parallel execution time and communication per processor
 - Execution time = $P \times \text{Multiplication}_{\text{time}} = O(P(n/P)^2 n) = O(n^3/P)$
 - #Words_moved = $P \times \text{Send}_{\text{Tmp}} = O(P(n/P)n) = O(n^2)$
 - Good execution time, but inefficient communication (note: lower bound = $\Omega(n^2/\sqrt{P})$)

```
Execute in parallel with each processor me
Copy A[:,me] into Tmp
C[:,me] = C[me,:] + Tmp*B[me,me]
for j = 1 to P-1
Send Tmp to processor me+1 mod P
Receive Tmp from processor me-1 mod P
C[:,me] = C[:,me] + Tmp*B[me-j mod P, me]
```


- SUMMA (Scalable Universal Matrix Multiply Algorithm)
 - Assume \sqrt{P} is an integer
 - We consider 2D data layout with $\sqrt{P} \times \sqrt{P}$ processors
 - Each processor is labeled by [i,j], where $0 \le i,j \le \sqrt{P}$
 - Each processor handles a $n/\sqrt{P} \times n/\sqrt{P}$ submatrix in *C*, *B*, *A*

34

• *Outer* product

$$\bullet \begin{pmatrix} u_0 \\ \vdots \\ u_{n-1} \end{pmatrix} \cdot \begin{pmatrix} v_0 & \cdots & v_{n-1} \end{pmatrix} = \begin{pmatrix} u_0 v_0 & \cdots & u_0 v_{n-1} \\ \vdots & \ddots & \vdots \\ u_{n-1} v_0 & \cdots & u_{n-1} v_{n-1} \end{pmatrix}$$

• Note that
$$c[:,:] = c[:,:] + \sum_{k=0}^{\sqrt{P-1}} A[:,k] \cdot B[k,:]$$

Α

R

- We consider parallel execution time and communication per processor
 - Execution time = $\sqrt{P} \times \text{Multiplication}_{\text{time}} = O(\sqrt{P} (n/\sqrt{P})^3) = O(n^3/P)$
 - Broadcast can be achieved with $O(\log(\sqrt{P}))$ communication overhead
 - #Words_moved =O(log(\sqrt{P}) × \sqrt{P} × |A[i,j]|) = O(log(\sqrt{P}) \sqrt{P} (n/\sqrt{P})²) = O(log(\sqrt{P}) n^2/\sqrt{P})
 - Good execution time, and quite efficient communication (but lower bound $\Omega(n^2/\sqrt{P})$)

```
Execute in parallel with each processor (me_x, me_y)
for k = 0 to \sqrt{P} - 1
for all i = 0 to \sqrt{P} - 1
owner of A[i,k] broadcasts it to all processors in the same row
for all j = 0 to \sqrt{P} - 1
owner of B[k,j] broadcasts it to all processors in the same column
Receive A[me_x,k]
Receive B[k,me_y]
C[me_x, me_y] = C[me_x, me_y] + A[me_x,k] * B[k, me_y]
```

- left-circular-shift by one:
 - Move the leftmost item to the rightmost position and shift other items to the left position

- up-circular-shift by one:
 - Move the topmost item to the bottom position and shift all other numbers to the lower position


```
left-circular-shift each row of A by 1
Overwrite A[i,j] by A[i,(j+1) mod \sqrt{P}]
```

```
up-circular-shift each column of B by 1
Overwrite B[i,j] by B[(i+1) mod \sqrt{P}), j]
```

• Step 0:

• Step 1.1: Compute C[i,j]=C[i,j]+A[i,j]*B[i,j] at each processor (i,j)

• Step 2.1: Compute C[i,j]=C[i,j]+A[i,j]*B[i,j] at each processor (i,j)

Step 3.1: Compute C[i,j]=C[i,j]+A[i,j]*B[i,j] at each processor (i,j)

42

- We consider parallel execution time and communication per processor
 - Execution time = $\sqrt{P} \times \text{Multiplication_time} = O(\sqrt{P} (n/\sqrt{P})^3) = O(n^3/P)$
 - #Words_moved = $O(\sqrt{P} \times |A[i,j]|) = O(\sqrt{P} (n/\sqrt{P})^2) = O(n^2/\sqrt{P})$
 - Good execution time, and efficient communication (lower bound = $\Omega(n^2/\sqrt{P})$)
- Pros 🔏
 - Efficient communication
 - Close to theoretical lower bound
- Cons 💎
 - Difficult to handle with non-square matrices
 - Is it fast in practice?

- #words_moved = $\Omega(n^3/(P\sqrt{M}))$
 - If $M = O(n^2/P)$, then words_moved = O($(n^2/P^{1/2})$)
 - Can we use more memory (larger *M*) to communicate less?
- 3D Matrix Multiply Algorithm on $P^{1/3} \ge P^{1/3} \ge P^{1/3}$ processor grid
 - Broadcast A in j direction ($P^{1/3}$ redundant copies)
 - Broadcast B in i direction ($P^{1/3}$ redundant copies)
 - Local multiplies
 - Processor (i,j,k) performs C[i,j]=C[i,j]+A[i,k]*B[k,j]
 - Each submatrix is $n/P^{1/3} \ge n/P^{1/3}$, and $M = n^2/P^{2/3}$
 - Reduce (sum) in k direction: $C[i,j]+\sum_k A[i,k]B[k,j]$
- Communication volume = $O((n/P^{1/3})^2)$ optimal
- Number of messages = O(log(P)) optimal

Strassen's Matrix Multiplication

- The traditional algorithm has $O(n^3)$ flops
 - Strassen discovered an algorithm with $O(n^{2.81})$ flops
- Consider a 2x2 matrix multiplication, normally takes 8 multiplies, 4 adds
 - Strassen does it with 7 multiplies and 18 adds

• Let
$$C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

• Let $p_1 = (a_{12} - a_{22})(b_{21} + b_{22}), p_2 = (a_{11} + a_{22})(b_{11} + b_{22}), p_3 = (a_{11} - a_{21})(b_{11} + b_{12})$
 $p_4 = (a_{11} + a_{12})(b_{22}), p_5 = (a_{11})(b_{12} - b_{22}), p_6 = (a_{22})(b_{21} - b_{11}), p_7 = (a_{21} + a_{22})(b_{11})$
• Then $c_{11} = p_1 + p_2 - p_4 + p_6, c_{12} = p_4 + p_5$

$$c_{21} = p_6 + p_7$$
, $c_{22} = p_2 - p_3 + p_5 - p_7$

• For $n \times n$ matrix multiplication, consider $\frac{n}{2} \times \frac{n}{2}$ sub-matrices

Strassen's Matrix Multiplication

- Let running time be T(*n*)
- By divide-and-conquer, and apply Strassen multiplication recursively
 - $T(n) = 7 T(n/2) + 18 (n/2)^2$

= $O(n^{\log 7}) = O(n^{2.81})$ based on Master Theorem

- Possible to extend communication lower bound to Strassen
 - #words moved between fast and slow memory

 $= \Omega(n^{\log 7} / M^{(\log 7)/2 - 1}) \sim \Omega(n^{2.81} / M^{0.4})$

• Attainable and parallelizable

Summary

- Matrix multiplication is a fundamental operation
 - Matrix-vector multiplication, matrix-matrix multiplication
- Serial matrix multiplication
 - Communication-avoiding, blocked matrix multiplication
- Parallel matrix multiplication
 - SUMMA, Cannon's algorithm, 3D matrix multiplication
- Lower bound on necessary communication
 - Achievable by serial/parallel matrix multiplication
- Strassen's algorithm
 - Faster recursive matrix multiplication

 $C = A \cdot B$

References

- "Introduction to Parallel Computing", Grama, Karypis, Kumar, Gupta,
 - Chapter 8 (Dense Matrix Algorithms)
- "Communication lower bounds for distributed-memory matrix multiplication", Dror Irony, Sivan Toledo, Alexandre Tiskin, Journal of Parallel & Distributed Computing, 2004

