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Making Socially Optimal is Hard
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Algorithmic Mechanism Design

@ Our society is a computer that decides who should receive

what resource, welfare, duties, rewards and penalties T got long blond hair
up to my big breasts.

A\ My red mouth is juicy.

> Input: Individual preferences, rules, constraints of
inter-dependence, limitations and capacities
» Qutput: Decisions of allocations, contributions and liability

Individuals can manipulate the input to distort the output
decisions for their benefits

Possible manipulations:

» Lying: falsifying personal preferences
» Collusion: coordinating joint manipulations

@ Consequence of manipulations:

» Inefficiency, conflicts, failure of social mechanisms is shaking of desire.
I want you now!!

Algorithmic Mechanism Design: How to design desirable
social mechanisms from an algorithmic perspective
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Example: Auction

Example (Auction)

(]

Simplest setting of resource allocation

(]

Consider a single item being auctioned for sale among n buyers

(]

Buyer i has a valuation v; (“willingness to pay” for the item)
If 7 wins, but has to pay price p, then i's utility is u; = v; — p
If someone else wins, then i's utility is u; = 0

A natural choice is to select the buyer of the highest declared valuation
Choose winner i = arg max; v;

Considering lying (no collusion):
If p is fixed, then each ¢ whose v; > p has incentive to report more than true value v} > v;
If p is proportional to the highest valuation (max; v;), then each i has incentive to report
less than true value v < v;

Incentive compatibility: Lying is not better, and thus reveal the true v; for each 4
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Vickrey's Second Price Auction

Definition (Second Price Auction)

® Winner (say i) is the buyer with the highest declared valuation Wmn‘i’:'g"”',”gb'd
(bid) of v; o]
@ But i pays the second highest declared bid p* = max;; v;
@ Assume no collusion among bidders 0.0,4.6.0

Lemma (Incentive Compatibility)

Vickrey's second price auction is incentive compatible — each bidder i declares his true
valuation, and achieves the highest utility than other declared valuations

Proof:
o Declare v} > v;: if i wins, i pays the same p*; if i loses, utility is same as 0
@ Declare v} < v;: the same argument applies
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Incentive Compatible Mechanism

Definition (General Social Mechanism) |

@ Let A be a set of feasible allocations (e.g., possible winning bidders), then the valuation
of player i is modeled by a function v;(-) : A +— R (where R is the set of real numbers)

o Let V; C R4l be a set of feasible valuation functions for player i
o Let v = (v1,..., V), Vi = (V1 oo, Vin1, Vit 1y ey V), (V5,0_5) 2 (v1, ..., Vp)

@ A mechanism is a social choice function f: V7 x ... x V,; — A and payment functions
D1, ---, Pn, Where p; : Vi X ... x V, — R is the amount of player i needs to pay

e A mechanism (f,p1,...,pn) is called incentive compatible if for every player i, every
vi(-) € V; and every v}(-) € V;, then

vi(a) — pi(vi,v—;) > vi(a’) — pi(vi,v—;)
where a £ f(vi,v—;) and @’ £ f(%?vfi)
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VCG Mechanism

@ Intuitively, incentive compatibility makes player i prefer reporting his true valuation (v;),

rather than any “lie” (v!)

2

@ How do we achieve incentive compatibility?

Definition (VCG Mechanism)

A mechanism (f,p1,...,pn) is called a Vickrey-Clarke-Groves (VCG) mechanism, if
o f(vi,...,vn) € argmaxaeca y_; vi(a); f maximizes the social welfare,
@ and for all v; € V4, ...,v, € Vi,

where hq, ...,
player i's valuation v;)

pi(’Uly“';vn) Zvj Ul? -5 U ))
JF#i

hy, are some functions, such that h; : V_; — R (i.e., h; does not depend on
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VCG Mechanism

Theorem (Incentive Compatibility)

VCG mechanism satisfies incentive compatibility

Proof:

o Given 4, v_;, v; and vg, we show that for player ¢ with valuation v;, the utility when
declaring v; is not less than the utility when declaring v

e Denote a = f(v;,v_;) and a’ £ f(v},v_;)

o The utility of 4, when declaring v;, is v;(a) + 3_;; vj(a) — hi(v—;), but when declaring v;
is vi(a') + 302 v5(a) — hi(v-s)

@ But since a maximizes social welfare over all alternatives, we have

+Z'Uj z >Uz +Z'Uj z —i)

J#i J#i
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VCG Mechanism

Definition (Clarke Pivot Rule)

@ A mechanism is (ex-post) individually rational, if players always get nonnegative utility; if

for every vy, ..., v, we have that v;(f(v1,...,0,)) — pi(v1, ..., vn) >0

@ A mechanism has no positive transfers, if no player is ever paid money: if for every
V1, ..., Uy and every i, p;j(v1,...,v,) > 0

o Clarke Pivot Rule:

hi(v—;) & max ) v;(b)
i#i

o A
So the payment is p;(v1, ..., v r&a{gv] gvj(a), where a = f(v1, ..., vp)
JFi Ve

Lemma

VCG mechanism with Clarke pivot payment satisfies no positive transfers & individual rationality
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VCG Mechanism: Example

Example (Cost Sharing)

Y;
@ Sharing cost (C) of a public project (e.g., a bridge), if it is built 0.0.0.080
@ Valuation of player i: v; > 0 C

@ Social choice: f(vy,...,v,) = build the public project, if r A
>, vi > C; otherwise, f(v1,...,v,) = don't build

@ VCG mechanism with h;(v_;) = C-:
Pi(V1, ..y vn) = 0,if 30,05 > Cor y v, <C
pi(v1, ..y 0n) = C =325, v5, if 3.0 <Cand 37,0, > C
o But it is possible that 3, p; < C (i.e. cannot recover C)

Eg., ifv, = % then p; = 0, hence, external subsidy is needed

aaBBN

& @ @ $® o

Total payment
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VCG Mechanism: Example

Example (Reserving a Path in Network)

e Given graph G = (V, ), where each link e € £ is owned by a owner ¢, and has a cost
ce > 0 if his link is reserved

Each owner declares c,

We want to reserve a s-t path in G from source s to destination ¢

We find P*, the shortest path s-t path in G (in terms of 3 . c)

VCG mechanism with Clarke pivot rule means that each e € P* will earn a payment as

Pe = Z Cel — Z Ce!

e'eP(e) e’€P*\{e}

where ]5(6) is the shortest s-¢ path in G that does not contain the edge e

Note that it is possible that ¢, > p. (owner may not be able to recover cost)
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Randomized Incentive Compatible Mechanism

Definition (Randomized Incentive Compatible Mechanism)

@ A randomized mechanism is a distribution over deterministic mechanisms (all with the
same players, types spaces V; and outcome space A)

@ A randomized mechanism is incentive compatible in expectation, if for all 4, all v;, v_;,
and v’;, we have
El[vi(a) — pi] > E[vi(a’) — p'y]
where (a,p;), and (d’,p’;) are random variables denoting the outcome and payment when

i bids, respectively, v; and v';, and E[-] denotes expectation over the randomization of the
mechanism
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Profit Maximizing Mechanism

We consider mechanisms that maximize profit of a mechanism controller

Each player i has a private valuation v;

°
°
e Decide allocation z = (z1, ..., z,,) where z; € {0,1}, and payment p = (p1, ..., Pn)
o Player i receives utility: u; = v;z; — p;

°

Profit of mechanism controller is ). p; — ¢(z), where ¢(-) is a cost function

Example
@ Single item auction: ¢(x) = 0if >, x; < 1, otherwise ¢(z) = oo

@ Unlimited digital goods: Selling software, games, movie streaming: ¢(x) = 0
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Single-Priced Auctions for Digital Goods

Consider zero cost ¢(z) =0

Optimal single-priced profit function: F(v) = max;—i,.n?- v
Optimal profit function: T (v) £ > v,

e 6 6 o o

Lemma
In(n) - F(v) > T (v) for all v (that is, F(v) is (In(n))-competitive to T (v))

Charge all winners the same price: set p; = p* when x; = 1, otherwise set p; =0

Without loss of generality, we assume descending order of private valuations: v; > ... > v,

Proof:
o Consider v; = % which induces In(n) as competitive ratio
@ Suppose F(v) =k - vg, namely k - vp > i - v; for all ¢
o Therefore, T(v) = 3, v; < 3, B4 < F(v) it

%
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Single-Priced Auctions for Digital Goods

@ How do we design an incentive compatible mechanism f : v — (x,p) that maximizes
competitive ratio compared to F(v) over all instances?

Bid Independent Ay;(f)

@ For ech player ¢
Find p < f(v_;)
If v; > p! then
Set z; < 1 and p; < p;
Else set z; < 0 and p; < 0

e f(v_;) sets bid for each i without relying on v;

e Eg., set f(v_;) = Vi) where j(i) = arg max;;j j - vj
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Single-Priced Auctions for Digital Goods

Lemma

There exists no incentive compatible mechanism with a constant competitive ratio to F(v)
Idea:

@ We can show that all incentive compatible mechanisms are equivalent to bid independent
mechanism Ap;(f)

o Consider two players (v1 = 1,v3 = V); we take V — o0

@ Hence, we need to consider an alternative: profit function with at least two winners

Fo(v) & max i- v
1=2,...,n
@ But can we design an incentive compatible mechanism with a constant competitive ratio
to Fo (1})?
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Single-Priced Auctions for Digital Goods

Random Sampling A, and2
@ Randomly put each i into subsets A; or Ay with probability %

Find j; < argmaxjca, j - vj

Find jo < arg max;eA, J * Vj
If i € Ay and v; > v then
Set z; < 1 and p; U3,
o Ifi e Ay and v; > v, then
Set z; < 1 and p; < v3,

(]

Else set z; < 0 and p; + 0
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Single-Priced Auctions for Digital Goods

Lemma
The competitive ratio of Ayandz is 4 for Fo(v)

Proof:
@ Suppose Fp(v) =k - vz, where buyers i = 1, ., k are selected by F(v)
@ We study worst case: min{Profit(A4;), Profit(As)}
@ Buyers i = 1, ...k are randomly selected in A; or A with probability %

o Let K; be the random number of buyers in {1, ,l;:} selected in A; (similarly, Ko for Ay)

E[Profit(Arand2)] . E[min{K1, K»}] 1 (k—1\1
B0 Sk me{”“‘”()ak 2" <L’5J>sz

E[min{f(l,f(z}] o
=

where the minimum is attained when k& = 2 and

=
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Single-Priced Auctions for Digital Goods

Example

@ The competitive ratio of Aang2 to Fa(v) as 4 is tight

o Consider a set of bidders consisting of two very high bids & and h + €, and all other bids
are negligibly small

@ Then we have Fy(v) = 2h
@ Therefore,

E[Profit(Arand2)] = h - P(two high bidders are split in A; and A2)

h-
h
2
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Combinatorial Auction

o Consider a multiple-in-one auction: Multiple items for sale, bidders can express
preferences on bundles of items

@ Examples: Wireless spectrum, bus routes, holiday itinerary

Definition
@ U is a set of m items
e N is a set of n bidders
For each j € NV, v; : 24— R* is bidder valuation

@ Decide allocation (S, ...,.S,) and payment (p1, ..., D)
o Maximizing social welfare W =3 v;(5;)
o

Assume each bidder has quasi-linear utility: u; = v;(S;) — p;(S;)
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Multi-unit Auction

Definition (Multi-unit Auction)
@ There are m identical copies of items are for sale
@ Each bidder j is willing to pay v; for quantity ¢; items
@ This is equivalent to a knapsack problem

Definition (Multi-unit Combinatorial Auction)
@ There are m types of items are for sale
@ Each type has m; identical items for sale

@ Each bidder j is willing to pay v; for quantity g;; items for all m types
@ This is m-dimensional knapsack problem
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Combinatorial Auction

o Bidder j is single-minded if there exists some S5 C U

{m if SrC S

]7
0, otherwise

v;(S5) =
o We assume every bidder j is single-minded, and S}k is known to the auctioneer

Definition (Single-minded Combinatorial Auction)

Input: bids v = (v1, ..., vy)
Output: winning bidders A(v) C N

Subject to winning bids are pairwise disjoint
S; NSy =@ for j, k € A(v)

Decide payment rule p;(.S;)

Maximize social welfare: W =3 1,y v;

Rationality: losers should pay nothing
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Incentive Compatible Mechanism

Definition (Incentive Compatible Mechanism)

@ A mechanism is called incentive compatible (or truthful), if for all bidders j,v_;, v;, and
any other v;
/
w;(v,v—5) = u;(vj,v—;)
@ An allocation algorithm A is called monotone, when for all bidders j and v_j, if v; is a
winning bid, then 1);. > vj is a winning bid

Theorem
A mechanism is incentive compatible, if and only if

o Allocation algorithm A(v) is monotone

@ Payment p;(S;) is set as a critical value that does not depend on j
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Monotone Allocation Algorithm

Definition
A mechanism (A, p) is normalized, if losers pay zero. Alternatively, we can set normalized
payment by p’(S) = p;(S) — p;(2)

Theorem

A normalized mechanism (A, p) is incentive compatible, if and only if A is monotone and its
payment p;(S;) is set as a critical value that does not depend on j

@ Monotone allocation algorithms can capture almost all incentive compatible mechanisms

@ Sufficient and necessary to consider monotone allocation algorithms
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Monotone Allocation Algorithm

Theorem

A normalized mechanism (A, p) is incentive compatible, if and only if A is monotone and its
payment p;(S) is set as the critical value that does not depend on j

Idea:

Lemma

If A is monotone, then exists a unique critical value §(v_;) such that
e For all v; < O(v_;), vj is a losing bid

e For all v; > 0(v_;), v is a winning bid

@ The payment scheme p(-) based on the criticial value is
O(v_;), if S*¥C S (ie., j wins
0, otherwise
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Monotone Allocation Algorithm

Monotone is a generalization of concept of VCG mechanisms

VCG mechanisms can be computationally inefficient
» Finding social optimal is hard in NP-Hard problems

Approximation algorithms are not necessary VCG mechanisms

But approximation algorithms can induce incentive compatible mechanisms, if they are
monotone

Note that not every approximation algorithm is monotone

Goal: Monotonize known approximation algorithms
» Hot research topic, a lot of smart ideas
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Greedy Algorithm

Greedy Algorithm Ag.

@ Reorder bids by decreasing r; = é—i‘
J

@ WinningBids < 0, NonAllocltems + U/

@ For each j in new order, if S C NonAllocltems
WinningBids < WinningBids U {5}
NonAllocltems < NonAllocltems\ S

@ Return WinningBids

Lemma

If ranking {r;} is monotone, then Ag is monotone

Proof:
@ Since ranking {r;} is monotone in the bid v;, increasing v; can only move it closer to the
beginning of the ranking
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Bitonic Allocation Algorithm

Definition
@ An allocation algorithm A(v) is bitonic, if for any v_; either
Welfare W = 3", 4(,) vj is non-decreasing in v; < 6(v_;) & non-increasing in v; > 6(v_;),
or
Welfare W = 3. 4(,) vj is non-increasing in v; < 6(v_;) & non-decreasing in v; > 6(v—;)

Intuition:
o If j is winning (i.e. v; > 6(v_;)), then welfare W should be increasing in v;

o If j is losing (i.e. v; < §(v_;)), then welfare W should be independent of v; (i.e.
non-increasing)
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Bitonic Allocation Algorithm

Example
@ Allocation function can be monotone, but not bitonic
@ Consider three bidders i, j, k
jwins , ifv; <y
o Axor(Y,i,75,k) =< k wins, ify<wv; <2y
7 wins ,  otherwise
e Axor(y,1,J, k) is monotone for i, j, k
o Axor(Y,1,J, k) is not bitonic, if v; < vy
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Combination of Basic Algorithm: Max Operator

max(A;, As)
o Wi+ Ai(v)
] W2 < .AQ(U)
o If Wy > Wy, return A;(v)
o Else return Ay(v)

Lemma

If Ay, Ay are monotone bitonic allocation algorithms, then max(A;,.As) is monotone and
bitonic
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Combination of Basic Algorithm: Max Operator

Example
e Aj, Ay are monotone, but max(.A;,.As) is not monotone
o Consider v; < v; < vy,
o Consider Axor(y,1,j, k) and Axor(4y,1,j, k), both are monotone

max (AXOR(y,LJ} k), Axor(4y, 1, j, k)) is not monotone

If 2y < v} < 4y, then i wins; but If 4y < v/ < 8y, then k wins
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Combination of Basic Algorithm: Max Operator

Lemma

If Ay, Ay are monotone bitonic allocation algorithms, then max(A;,.As) is monotone and
bitonic

Proof:
o Let critical values for A;, Az be 01(v_;) and 62(v_;)
e Suppose 01 (v_;) < O2(v_j)
@ There always exists 61 (v_;) < Omax(v—j) < 2(v—;)
» If j is winning in max(A;, A2) (i.e. v; > Omax(v_;)), then welfare W of max(A;, Asz)
should be increasing in v;

> If j is losing max(A;, As) (i.e. vj < Omax(v—;)), then welfare W of max(.A;, Az) should be
should be non-increasing in v;
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Multi-unit Auction

Definition (Multi-unit Auction)
@ There are m identical copies of items are for sale

@ Each bidder j is willing to pay v; for quantity ¢; items

Approx-MUA
o Let Agev be Greedy based on value ranking r; = v;

@ Let Agp be Greedy based on density ranking r; = .
J

@ Return max(Agrev, Agred)
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Algorithm for Combinatorial Auction: Approx-MUA

Lemma
Approx-MUA is monotone

Proof:
o Agev and Agep are monotone and bitonic

o max(Agrev, Agren) is monotone

Lemma
Approx-MUA s a 2-approximation for multi-unit auction problem

Proof:
@ Agrep produces round-off solution to knapsack problem

@ The utility for boundary round-off item is upper bounded by Agev
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Partial Exhaustive Search

Partial Exhaustive Search Aq,p (k)
@ WinningBids <— 0, max < 0
e For each J C {1,...,n} subject to |J| < k
If the S;'s are pairwise disjoint and (}_; v; > max)

max <— - vj
WinningBids < J

@ Return WinningBids

Lemma

For every k, Aexh(k) is monotone and bitonic

Proof:

e If j is winning, increasing v; still wins and increases social welfare
o If j is losing, decreasing v; still loses and cannot change social welfare
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LP Based Algorithm

Definition (Multi-unit Combinatorial Auction)
@ There are m types of items are for sale
@ Each type has m; identical items for sale

@ Each bidder j is willing to pay v; for quantity g;; items for all m types

Definition
@ Define LP(v) problem:
Find (z,)

max E ’Uj,’Ej
J

subject to Zj zjq;; <m;foralli=1,...,m,and 0 <z; <1
e Compute an optimal solution x for LP(v)

e Satisfy all bids j for which x; = 1
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LP Based Algorithm

Theorem
LP-Based algorithm is monotone

Lemma

For any v_j;, x; is a non-decreasing function of v; ‘

Proof:
o >tz <L, xu because 2’ is not an optimal solution by misreporting
o Also, Yy muy < D)Ly @)
o Hence, z;(v; —v;) + 311 mup < 2(v) — ;) + D001, zjur
° 0 <370 (z —apu < (2 — ) (v — vy)
o Therefore, z; > x; if v} > v;
o Finally, if z; is 1 for some vj, then it is also for v'; > v,
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Combination of Basic Algorithm: If-Then-Else

Lemma

If Ay, A2 are monotone allocation algorithms and Cond(-) is aligned with A, then
If-Then-Else(Cond, Ay, .A2) is monotone

Proof:
o Suppose v; < v;

o If Cond(v—j,v;) is true and j € A;, then Cond(v—;,v}) and
If-Then-Else(Cond(v_;, v}), A1, Az) will output Ay (v—j, v})

o If Cond(v_j,v;) is false and Cond(v_j, ") is false, then Cond(v_j,v}) and
If-Then-Else(Cond(v—;, v}), A1, Az) will output Az(v—j, v})

o If Cond(v—j,v;) is false and Cond(v_;,v}) is true, this is a contradiction
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Approx Algorithm for Multi-unit Combinatorial Auction

Approx-MUCA
e Compute an optimal vertex solution x to LP(v)
o Let v, = max; v;
o If 3 zju; < (m+1)vp
Return Largest(v)
@ Else return LP(v) based rounding solution

Lemma
The IF condition is aligned with Largest, thus Approx-MUCA is monotone

Lemma
Approx-MUCA is (m + 1) approximation algorithm
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