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Making Socially Optimal is Hard
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Algorithmic Mechanism Design

Our society is a computer that decides who should receive
what resource, welfare, duties, rewards and penalties

I Input: Individual preferences, rules, constraints of
inter-dependence, limitations and capacities

I Output: Decisions of allocations, contributions and liability
Individuals can manipulate the input to distort the output
decisions for their benefits
Possible manipulations:

I Lying: falsifying personal preferences
I Collusion: coordinating joint manipulations

Consequence of manipulations:
I Inefficiency, conflicts, failure of social mechanisms

Algorithmic Mechanism Design: How to design desirable
social mechanisms from an algorithmic perspective
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Example: Auction

Example (Auction)
Simplest setting of resource allocation
Consider a single item being auctioned for sale among n buyers
Buyer i has a valuation vi (“willingness to pay” for the item)

I If i wins, but has to pay price p, then i’s utility is ui = vi − p
I If someone else wins, then i’s utility is ui = 0

A natural choice is to select the buyer of the highest declared valuation
I Choose winner i = arg maxj vj

Considering lying (no collusion):
I If p is fixed, then each i whose vj > p has incentive to report more than true value v′i > vi
I If p is proportional to the highest valuation (maxj vj), then each i has incentive to report

less than true value v′i < vi

Incentive compatibility: Lying is not better, and thus reveal the true vj for each i
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Vickrey’s Second Price Auction

Definition (Second Price Auction)

Winner (say i) is the buyer with the highest declared valuation
(bid) of vi
But i pays the second highest declared bid p∗ = maxj 6=i vj

Assume no collusion among bidders

Lemma (Incentive Compatibility)
Vickrey’s second price auction is incentive compatible – each bidder i declares his true
valuation, and achieves the highest utility than other declared valuations

Proof:
Declare v′i > vi: if i wins, i pays the same p∗; if i loses, utility is same as 0
Declare v′i < vi: the same argument applies
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Incentive Compatible Mechanism

Definition (General Social Mechanism)
Let A be a set of feasible allocations (e.g., possible winning bidders), then the valuation
of player i is modeled by a function vi(·) : A 7→ < (where < is the set of real numbers)
Let Vi ⊆ <|A| be a set of feasible valuation functions for player i
Let v , (v1, ..., vn), v−i , (v1, ..., vi−1, vi+1, ..., vn), (vi, v−i) , (v1, ..., vn)

A mechanism is a social choice function f : V1 × ...× Vn 7→ A and payment functions
p1, ..., pn, where pi : V1 × ...× Vn 7→ < is the amount of player i needs to pay
A mechanism (f, p1, ..., pn) is called incentive compatible if for every player i, every
vi(·) ∈ Vi and every v′i(·) ∈ Vi, then

vi(a)− pi(vi, v−i) ≥ vi(a
′)− pi(v

′
i, v−i)

where a , f(vi, v−i) and a′ , f(v′i, v−i)
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VCG Mechanism

Intuitively, incentive compatibility makes player i prefer reporting his true valuation (vi),
rather than any “lie” (v′i)
How do we achieve incentive compatibility?

Definition (VCG Mechanism)
A mechanism (f, p1, ..., pn) is called a Vickrey-Clarke-Groves (VCG) mechanism, if

f(v1, ..., vn) ∈ arg maxa∈A
∑

i vi(a); f maximizes the social welfare,
and for all v1 ∈ V1, ..., vn ∈ Vn,

pi(v1, ..., vn) = hi(v−i)−
∑
j 6=i

vj(f(v1, ..., vn))

where h1, ..., hn are some functions, such that hi : V−i 7→ < (i.e., hi does not depend on
player i’s valuation vi)
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VCG Mechanism

Theorem (Incentive Compatibility)
VCG mechanism satisfies incentive compatibility

Proof:
Given i, v−i, vi and v′i, we show that for player i with valuation vi, the utility when
declaring vi is not less than the utility when declaring v′i
Denote a , f(vi, v−i) and a′ , f(v′i, v−i)

The utility of i, when declaring vi, is vi(a) +
∑

j 6=i vj(a)− hi(v−i), but when declaring v′i
is vi(a

′) +
∑

j 6=i vj(a
′)− hi(v−i)

But since a maximizes social welfare over all alternatives, we have

vi(a) +
∑
j 6=i

vj(a)− hi(v−i) ≥ vi(a
′) +

∑
j 6=i

vj(a
′)− hi(v−i)
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VCG Mechanism

Definition (Clarke Pivot Rule)
A mechanism is (ex-post) individually rational, if players always get nonnegative utility; if
for every v1, ..., vn we have that vi(f(v1, ..., vn))− pi(v1, ..., vn) ≥ 0

A mechanism has no positive transfers, if no player is ever paid money: if for every
v1, ..., vn and every i, pi(v1, ..., vn) ≥ 0

Clarke Pivot Rule:
hi(v−i) , max

b∈A

∑
j 6=i

vj(b)

So the payment is pi(v1, ..., vn) = max
b∈A

∑
j 6=i

vj(b)−
∑
j 6=i

vj(a), where a , f(v1, ..., vn)

Lemma
VCG mechanism with Clarke pivot payment satisfies no positive transfers & individual rationality
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VCG Mechanism: Example

Example (Cost Sharing)

Sharing cost (C) of a public project (e.g., a bridge), if it is built
Valuation of player i: vi ≥ 0

Social choice: f(v1, ..., vn) = build the public project, if∑
i vi ≥ C; otherwise, f(v1, ..., vn) = don’t build

VCG mechanism with hi(v−i) = C:
I pi(v1, ..., vn) = 0, if

∑
j 6=i vj ≥ C or

∑
i vi < C

I pi(v1, ..., vn) = C −
∑

j 6=i vj , if
∑

j 6=i vj < C and
∑

i vi ≥ C

But it is possible that
∑

j pj < C (i.e. cannot recover C)
I E.g., if vi = C

n−1 , then pi = 0, hence, external subsidy is needed
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VCG Mechanism: Example

Example (Reserving a Path in Network)
Given graph G = (V, E), where each link e ∈ E is owned by a owner e, and has a cost
ce ≥ 0 if his link is reserved
Each owner declares ce

We want to reserve a s-t path in G from source s to destination t

We find P ∗, the shortest path s-t path in G (in terms of
∑

e∈p ce)
VCG mechanism with Clarke pivot rule means that each e ∈ P ∗ will earn a payment as

pe =
∑

e′∈P̂ (e)

ce′ −
∑

e′∈P ∗\{e}

ce′

where P̂ (e) is the shortest s-t path in G that does not contain the edge e

Note that it is possible that ce > pe (owner may not be able to recover cost)
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Randomized Incentive Compatible Mechanism

Definition (Randomized Incentive Compatible Mechanism)
A randomized mechanism is a distribution over deterministic mechanisms (all with the
same players, types spaces Vi and outcome space A)
A randomized mechanism is incentive compatible in expectation, if for all i, all vi, v−i,
and v′i, we have

E[vi(a)− pi] ≥ E[vi(a′)− p′i]

where (a, pi), and (a′, p′i) are random variables denoting the outcome and payment when
i bids, respectively, vi and v′i, and E[·] denotes expectation over the randomization of the
mechanism

Sid Chau (ANU) Lec. 13: Algorithmic Game Theory II October 25, 2022 12 / 40



Profit Maximizing Mechanism

We consider mechanisms that maximize profit of a mechanism controller
Each player i has a private valuation vi

Decide allocation x = (x1, ..., xn) where xi ∈ {0, 1}, and payment p = (p1, ..., pn)

Player i receives utility: ui = vixi − pi

Profit of mechanism controller is
∑

i pi − c(x), where c(·) is a cost function

Example
Single item auction: c(x) = 0 if

∑
i xi ≤ 1, otherwise c(x) =∞

Unlimited digital goods: Selling software, games, movie streaming: c(x) = 0
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Single-Priced Auctions for Digital Goods

Consider zero cost c(x) = 0

Charge all winners the same price: set pi = p∗ when xi = 1, otherwise set pi = 0

Without loss of generality, we assume descending order of private valuations: v1 ≥ ... ≥ vn

Optimal single-priced profit function: F(v) , maxi=1,...,n i · vi
Optimal profit function: T (v) ,

∑n
i=1 vi

Lemma
ln(n) · F(v) ≥ T (v) for all v (that is, F(v) is (ln(n))-competitive to T (v))

Proof:
Consider vi = n

i which induces ln(n) as competitive ratio
Suppose F(v) = k · vk, namely k · vk ≥ i · vi for all i
Therefore, T (v) =

∑
i vi ≤

∑
i
k·vi
i ≤ F(v)

∑
i
1
i
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Single-Priced Auctions for Digital Goods

How do we design an incentive compatible mechanism f : v 7→ (x, p) that maximizes
competitive ratio compared to F(v) over all instances?

Bid Independent Abi(f)

For ech player i
I Find p∗i ← f(v−i)
I If vi ≥ p∗i then

F Set xi ← 1 and pi ← p∗i
I Else set xi ← 0 and pi ← 0

f(v−i) sets bid for each i without relying on vi

E.g., set f(v−i) = vĵ(i) where ĵ(i) = arg maxi 6=j j · vj
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Single-Priced Auctions for Digital Goods

Lemma
There exists no incentive compatible mechanism with a constant competitive ratio to F(v)

Idea:
We can show that all incentive compatible mechanisms are equivalent to bid independent
mechanism Abi(f)

Consider two players (v1 = 1, v2 = V ); we take V →∞

Hence, we need to consider an alternative: profit function with at least two winners

F2(v) , max
i=2,...,n

i · vi

But can we design an incentive compatible mechanism with a constant competitive ratio
to F2(v)?
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Single-Priced Auctions for Digital Goods

Random Sampling Arand2

Randomly put each i into subsets A1 or A2 with probability 1
2

Find ĵ1 ← arg maxj∈A1 j · vj
Find ĵ2 ← arg maxj∈A2 j · vj
If i ∈ A2 and vi ≥ vĵ1 then

I Set xi ← 1 and pi ← vĵ1

If i ∈ A1 and vi ≥ vĵ2 then
I Set xi ← 1 and pi ← vĵ2

Else set xi ← 0 and pi ← 0
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Single-Priced Auctions for Digital Goods

Lemma
The competitive ratio of Arand2 is 4 for F2(v)

Proof:
Suppose F2(v) = k̃ · vk̃, where buyers i = 1, .., k̃ are selected by F2(v)

We study worst case: min{Profit(A1),Profit(A2)}
Buyers i = 1, .., k̃ are randomly selected in A1 or A2 with probability 1

2

Let K̃1 be the random number of buyers in {1, .., k̃} selected in A1 (similarly, K̃2 for A2)

E[Profit(Arand2)]

F2(v)
≥ E[min{K̃1, K̃2}]

k̃
=

1

k̃

k̃−1∑
i=1

min{i, k̃ − i}
(
k̃

i

)
1

2k̃
=

1

2
−
(
k̃ − 1

b k̃2c

)
1

2k̃

where the minimum is attained when k̃ = 2 and E[min{K̃1,K̃2}]
k̃

= 1
4
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Single-Priced Auctions for Digital Goods

Example
The competitive ratio of Arand2 to F2(v) as 4 is tight
Consider a set of bidders consisting of two very high bids h and h+ ε, and all other bids
are negligibly small
Then we have F2(v) = 2h

Therefore,

E[Profit(Arand2)] = h · P(two high bidders are split in A1 and A2)

=
h

2
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Combinatorial Auction

Consider a multiple-in-one auction: Multiple items for sale, bidders can express
preferences on bundles of items
Examples: Wireless spectrum, bus routes, holiday itinerary

Definition
U is a set of m items
N is a set of n bidders
For each j ∈ N , vj : 2

U 7→ <+ is bidder valuation
Decide allocation (S1, ..., Sn) and payment (p1, ..., pn)
Maximizing social welfare W =

∑
j vj(Sj)

Assume each bidder has quasi-linear utility: uj = vj(Sj)− pj(Sj)
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Multi-unit Auction

Definition (Multi-unit Auction)
There are m identical copies of items are for sale
Each bidder j is willing to pay vj for quantity qj items
This is equivalent to a knapsack problem

Definition (Multi-unit Combinatorial Auction)
There are m types of items are for sale
Each type has mi identical items for sale
Each bidder j is willing to pay vj for quantity qij items for all m types
This is m-dimensional knapsack problem
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Combinatorial Auction
Bidder j is single-minded if there exists some S∗

j ⊆ U

vj(S) =

{
v∗j , if S∗

j ⊆ S

0, otherwise
We assume every bidder j is single-minded, and S∗

j is known to the auctioneer

Definition (Single-minded Combinatorial Auction)
Input: bids v = (v1, ..., vn)

Output: winning bidders A(v) ⊆ N
I Subject to winning bids are pairwise disjoint
I Sj ∩ Sk = ∅ for j, k ∈ A(v)

Decide payment rule pj(Sj)

Maximize social welfare: W =
∑

j∈A(v) vj

Rationality: losers should pay nothing
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Incentive Compatible Mechanism

Definition (Incentive Compatible Mechanism)
A mechanism is called incentive compatible (or truthful), if for all bidders j, v−j , vj , and
any other v′j

uj(vj , v−j) ≥ uj(v
′
j , v−j)

An allocation algorithm A is called monotone, when for all bidders j and v−j , if vj is a
winning bid, then v′j ≥ vj is a winning bid

Theorem
A mechanism is incentive compatible, if and only if

Allocation algorithm A(v) is monotone
Payment pj(Sj) is set as a critical value that does not depend on j
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Monotone Allocation Algorithm

Definition
A mechanism (A, p) is normalized, if losers pay zero. Alternatively, we can set normalized
payment by p′j(S) = pj(S)− pj(∅)

Theorem
A normalized mechanism (A, p) is incentive compatible, if and only if A is monotone and its
payment pj(Sj) is set as a critical value that does not depend on j

Monotone allocation algorithms can capture almost all incentive compatible mechanisms
Sufficient and necessary to consider monotone allocation algorithms
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Monotone Allocation Algorithm

Theorem
A normalized mechanism (A, p) is incentive compatible, if and only if A is monotone and its
payment pj(S) is set as the critical value that does not depend on j

Idea:
Lemma
If A is monotone, then exists a unique critical value θ(v−j) such that

For all vj < θ(v−j), vj is a losing bid
For all vj > θ(v−j), vj is a winning bid

The payment scheme p(·) based on the criticial value is

pj(S) =

{
θ(v−j), if S∗

j ⊆ S (i.e., j wins)
0, otherwise
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Monotone Allocation Algorithm

Monotone is a generalization of concept of VCG mechanisms
VCG mechanisms can be computationally inefficient

I Finding social optimal is hard in NP-Hard problems
Approximation algorithms are not necessary VCG mechanisms
But approximation algorithms can induce incentive compatible mechanisms, if they are
monotone
Note that not every approximation algorithm is monotone
Goal: Monotonize known approximation algorithms

I Hot research topic, a lot of smart ideas
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Greedy Algorithm

Greedy Algorithm Agre

Reorder bids by decreasing rj ,
vj
|S∗

j |

WinningBids← 0,NonAllocItems← U
For each j in new order, if S ⊆ NonAllocItems

I WinningBids←WinningBids ∪ {j}
I NonAllocItems← NonAllocItems\S∗

j

Return WinningBids

Lemma
If ranking {rj} is monotone, then Agre is monotone

Proof:
Since ranking {rj} is monotone in the bid vj , increasing vj can only move it closer to the
beginning of the ranking
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Bitonic Allocation Algorithm

Definition
An allocation algorithm A(v) is bitonic, if for any v−j either

I Welfare W =
∑

j∈A(v) vj is non-decreasing in vj < θ(v−j) & non-increasing in vj ≥ θ(v−j),
or

I Welfare W =
∑

j∈A(v) vj is non-increasing in vj ≤ θ(v−j) & non-decreasing in vj > θ(v−j)

Intuition:
If j is winning (i.e. vj > θ(v−j)), then welfare W should be increasing in vj

If j is losing (i.e. vj < θ(v−j)), then welfare W should be independent of vj (i.e.
non-increasing)
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Bitonic Allocation Algorithm

Example
Allocation function can be monotone, but not bitonic
Consider three bidders i, j, k

AXOR(y, i, j, k) =


j wins , if vi < y

k wins , if y ≤ vi < 2y

i wins , otherwise
AXOR(y, i, j, k) is monotone for i, j, k
AXOR(y, i, j, k) is not bitonic, if vj < vk
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Combination of Basic Algorithm: Max Operator

max(A1,A2)

W1 ← A1(v)

W2 ← A2(v)

If W1 ≥W2, return A1(v)

Else return A2(v)

Lemma
If A1,A2 are monotone bitonic allocation algorithms, then max(A1,A2) is monotone and
bitonic
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Combination of Basic Algorithm: Max Operator

Example
A1,A2 are monotone, but max(A1,A2) is not monotone
Consider vj < vi < vk

Consider AXOR(y, i, j, k) and AXOR(4y, i, j, k), both are monotone

max
(
AXOR(y, i, j, k),AXOR(4y, i, j, k)

)
is not monotone

If 2y < v′i < 4y, then i wins; but If 4y < v′i < 8y, then k wins
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Combination of Basic Algorithm: Max Operator

Lemma
If A1,A2 are monotone bitonic allocation algorithms, then max(A1,A2) is monotone and
bitonic

Proof:
Let critical values for A1,A2 be θ1(v−j) and θ2(v−j)

Suppose θ1(v−j) < θ2(v−j)

There always exists θ1(v−j) < θmax(v−j) < θ2(v−j)
I If j is winning in max(A1,A2) (i.e. vj > θmax(v−j)), then welfare W of max(A1,A2)

should be increasing in vj
I If j is losing max(A1,A2) (i.e. vj < θmax(v−j)), then welfare W of max(A1,A2) should be

should be non-increasing in vj
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Multi-unit Auction

Definition (Multi-unit Auction)
There are m identical copies of items are for sale
Each bidder j is willing to pay vj for quantity qj items

Approx-MUA
Let AgreV be Greedy based on value ranking ri = vi

Let AgreD be Greedy based on density ranking ri =
vi
qj

Return max(AgreV,AgreD)
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Algorithm for Combinatorial Auction: Approx-MUA

Lemma
Approx-MUA is monotone

Proof:
AgreV and AgreD are monotone and bitonic
max(AgreV,AgreD) is monotone

Lemma
Approx-MUA is a 2-approximation for multi-unit auction problem

Proof:
AgreD produces round-off solution to knapsack problem
The utility for boundary round-off item is upper bounded by AgreV

Sid Chau (ANU) Lec. 13: Algorithmic Game Theory II October 25, 2022 34 / 40



Partial Exhaustive Search

Partial Exhaustive Search Aexh(k)

WinningBids← 0,max← 0

For each J ⊆ {1, ..., n} subject to |J | ≤ k
I If the Sj ’s are pairwise disjoint and (

∑
j vj > max)

F max←
∑

j vj
F WinningBids← J

Return WinningBids

Lemma
For every k, Aexh(k) is monotone and bitonic

Proof:
If j is winning, increasing vj still wins and increases social welfare
If j is losing, decreasing vj still loses and cannot change social welfare
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LP Based Algorithm

Definition (Multi-unit Combinatorial Auction)
There are m types of items are for sale
Each type has mi identical items for sale
Each bidder j is willing to pay vj for quantity qij items for all m types

Definition
Define LP(v) problem:

I Find (xj)

max
∑
j

vjxj

subject to
∑

j xjqi,j ≤ mi for all i = 1, ...,m, and 0 ≤ xj ≤ 1

Compute an optimal solution x for LP(v)
Satisfy all bids j for which xj = 1
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LP Based Algorithm

Theorem
LP-Based algorithm is monotone

Lemma
For any v−j , xj is a non-decreasing function of vj

Proof:∑n
l=1 x

′
lvl ≤

∑n
l=1 xlvl because x′ is not an optimal solution by misreporting

Also,
∑n

l=1 xlv
′
l ≤

∑n
l=1 xlv

′
l

Hence, xj(v′j − vj) +
∑n

l=1 xlvl ≤ x′j(v
′
j − vj) +

∑n
l=1 x

′
lvl

0 ≤
∑n

l=1(xl − x′l)vl ≤ (x′j − xj)(v
′
j − vj)

Therefore, x′j ≥ xj if v′j ≥ vj

Finally, if xj is 1 for some vj , then it is also for v′j > vj
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Combination of Basic Algorithm: If-Then-Else

Lemma
If A1,A2 are monotone allocation algorithms and Cond(·) is aligned with A∞, then
If-Then-Else(Cond,A1,A2) is monotone

Proof:
Suppose vj ≤ v′j
If Cond(v−j , vj) is true and j ∈ A1, then Cond(v−j , v

′
j) and

If-Then-Else(Cond(v−j , v
′
j),A1,A2) will output A1(v−j , v

′
j)

If Cond(v−j , vj) is false and Cond(v−j , v
′
j) is false, then Cond(v−j , v

′
j) and

If-Then-Else(Cond(v−j , v
′
j),A1,A2) will output A2(v−j , v

′
j)

If Cond(v−j , vj) is false and Cond(v−j , v
′
j) is true, this is a contradiction
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Approx Algorithm for Multi-unit Combinatorial Auction

Approx-MUCA
Compute an optimal vertex solution x to LP(v)
Let vh = maxj vj

If
∑

j xjvj < (m+ 1)vh
I Return Largest(v)

Else return LP(v) based rounding solution

Lemma
The IF condition is aligned with Largest, thus Approx-MUCA is monotone

Lemma
Approx-MUCA is (m+ 1) approximation algorithm
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