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Pirates’ Puzzle�����

Pirates’ Puzzle

Five pirates of different ages have a treasure of 100 gold coins
On their ship, they decide to split the coins using the following rules:

1 The oldest pirate proposes how to share the coins, and ALL pirates (including the oldest)
vote for or against it

2 If 50% or more of the pirates vote for it, then the coins will be shared that way. Otherwise,
the pirate proposing the scheme will be thrown out of the ship, and the process is repeated
with the pirates who remain

3 As pirates tend to be brutal, if a pirate would get the same number of coins if he voted for or
against a proposal, he will vote against, so that the pirate who proposed the plan will be
thrown out of the ship

Assume all 5 pirates are rational, greedy, and do not wish to die. How to split the coins?
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Pirates’ Puzzle�����

Pirates’ Puzzle

Solution: E proposes (98:0:1:0:1) split; E, C, A will vote for it
Backward induction:
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Everyday, we interact with each other non-cooperatively

In a society, everyone competes for resources (e.g., roads, jobs, services, properties)
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Selfish Routing��������

Example (Selfish Routing)
Congestion in road traffic incurs certain costs (e.g., latency or congestion charges)
Each driver selfishly chooses the route to minimize her own travel time (or tolls)
The road network is in equilibrium if no driver can get to the destination in a lower cost
by switching to a different route

Different congestion costing models:
I Flat rate model: Same congestion cost incurred to everyone regardless the congestion level

F E.g., fast highways
I Linear rate model: Congestion cost increases linearly as the congestion level (e.g., number of

cars in the road)
F E.g., capacitated city roads

Road networks feature a mix of congestion costing models
Changes in road networks may lead to unintuitive phenomena
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Braess Paradox

Consider two cars with selfish routing
Before road closure: The lowest-cost route for both cars is A → C → B → D, total cost
= $2(2) + $2(0.5) + $2(2) = $9
After road closure: Both cars travel in separate routes, total cost = $2(3) + $2(1) = $8
Braess paradox - closing a road benefits everyone !?
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Braess Paradox in Real World

Braess paradox is observed in real world
Use real-world traffic simulation, considering
traffic behavior and geographical pattern

I Playing in Traffic (Brian Hayes) American
Scientist, Jul-Aug, 2015������

I Simulator: http:
//bit-player.org/extras/traffic/

Other example: New Work City Times Square
was converted to a pedestrian plaza back in
2009, closing it off to cars. Partially motivated
by Braess paradox

I Beach Chairs in Times Square – How closing
Broadway to cars could solve a century of
traffic woes, Slate, 16 Jun 2009������
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Network Sharing Game

Definition (Network Sharing Game)
There are n players sharing a set of resources (e.g., edges in a road network)
Each player i uses a set of resources Pi (e.g., paths si → ti)
A strategy profile is ~P , (Pi)

n
i=1

Each edge e has cost Ce

Cost Ce is split among all players who use edge e
I Let ne(~P ) = |{i | e ∈ Pi}| be the number of players using edge e
I Equal cost sharing of Ce: each player i pays Ce

ne(~P )

Given strategy profile ~P , ci(~P ) is the cost paid by player i for all edges e ∈ Pi

Let social cost be C(~P ) =
∑

i ci(
~P )

Note that C(~P ) =
∑

e∈E(~P )Ce, where E(~P ) = {edges used in ~P by at least one player}
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Congestion Game

Definition (Congestion Game)
Similar to network sharing game
There are n players sharing a set of resources (e.g., edges in a road network)
But each edge e has a cost function ce(ne) that is paid by each player of using e

I Edge cost depends on ne the number of players using e
I E.g., linear cost function ce(ne) = ae · ne + be

Network sharing game: the more people use a resource, the less the cost to each player
Congestion game: the more people on a road, the greater the congestion, the greater the
delay (cost) to each player
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Non-cooperative Game

Definition (Non-cooperative Game)
Generalization of zero-sum game with n players
Let Si be the set of all possible strategies for player i
Let si ∈ Si be the selected strategy of player i
Let s−i = (sj)j 6=i be strategies of all the players except i
Let ci(si, s−i) be player i’s cost as a function of the strategies of all players
Each player aims to minimize her cost in response to other players’ strategies s−i
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Nash Equilibrium

Definition (Nash Equilibrium)
Let s = (si)

n
i=1 be a strategy profile, a set consisting of one strategy for each player

Strategy profile s∗ is a Nash equilibrium if

ci(s
∗
i , s

∗
−i) ≤ ci(si, s

∗
−i), for all si ∈ S, si 6= s∗i

Namely, a strategy profile is a Nash equilibrium if no player can do better by unilaterally
changing her strategy
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Nash Equilibrium

Rationality is common knowledge in Nash equilibrium
I All players are rational
I All players know that all players are rational
I All players know that all players know that all players are rational
I continue ad infinitum ...

Also, there may be multiple Nash equilibria, and no clear way of “choosing” one Nash
equilibrium over another Nash equilibrium
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Price of Anarchy & Price of Stability

Social Optimal: The strategy profile that minimizes the social cost: mins
∑n

i=1 ci(s)

Questions of comparing social optimal vs Nash equilibrium
I How does the Nash equilibrium compare to the social optimal, in the worst case and in the

best case?
I How bad it is for the players to play a Nash equilibrium compared to playing the best

outcome (if they could coordinate)?
Price of Anarchy (PoA): Ratio of the worst Nash equilibrium over the social optimal
Price of Stability (PoS): Ratio of the best Nash equilibrium over the social optimal

I Comparison to optimal is in similar vein to approximation ratio and competitive ratio
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Network Sharing Game

Lemma
Define potential function:

φ(~P ) ,
∑
e

ne(~P )∑
k=1

Ce

k

Strategy profile ~P ∗ that is a minimum of potential function φ(~P ∗) is also a Nash equilibrium

Proof:
Suppose player i switches from P ′

i to Pi, while all other players’ strategies P−i unchanged
The change in player i’s cost will be

ci(P
′
i , P−i)− ci(Pi, P−i) =

∑
e∈P ′

i

Ce

ne(P ′
i , P−i)

−
∑
e∈Pi

Ce

ne(Pi, P−i)
= φ(P ′

i , P−i)− φ(Pi, P−i)
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Network Sharing Game

Proof (Cont.):
Hence, when each player minimizes her cost, the value of potential function also decreases

∆ci = ∆φ

Each player keeps switching strategy in response to other players’ strategies, until no one
can improve one’s cost any more (i.e., reaching a Nash equilibrium)
Therefore, the strategy profile ~P ∗ that is a minimum of potential function φ(~P ∗) is a also
Nash equilibrium
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Network Sharing Game: Price of Stability

Theorem
The price of stability of Network Sharing Game is O

(
log(n)

)
Proof:

Note that

C(~P ) =
∑

e∈E(~P )

Ce ≤
∑

e∈E(~P )

ne(~P )∑
k=1

Ce

k
= φ(~P ) ≤

∑
e∈E(~P )

Ce ·
n∑

k=1

1

k

Hence,
C(~P ) ≤ φ(~P ) ≤ O

(
log(n)

)
· C(~P )

Let Opt be the social optimal strategy profile and ~P ∗ be a Nash equilibrium
C(~P ∗) ≤ φ(~P ∗) ≤ φ(Opt) ≤ O

(
log(n)

)
· C(Opt)
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Network Sharing Game: Price of Anarchy

Theorem
The price of anarchy of Network Sharing Game is at most n

Proof:
For example, consider a two-edge network with costs (n, 1 + ε)

I All taking the n-edge: social cost = n
I All taking the (1 + ε)-edge: social cost = 1 + ε (social optimal)

Suppose the social optimum is (P1, P2, ..., Pn), in which the cost
to player i is ci

Suppose a Nash equilibrium has cost ĉi to player i
Let c′i be player i’s cost if he switches to Pi from Nash equilibrium
Note that c′i ≥ ĉi (since ĉi is Nash equilibrium) and c′i ≤ nci
(cannot be worse than the social optimum without sharing with
anyone else)
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Congestion Game: Price of Stability

Theorem
Consider linear cost function: ce(ne) = ae · ne + be. The price of stability of Congestion Game
is at most 2

Proof:
Define potential function:

φ(~P ) ,
∑
e

ne(~P )∑
k=1

ce(k)

Because of linear cost function: ce(ne) = ae · ne + be
ne∑
k=1

ce(k) = ae ·
( ne∑

k=1

k
)
+ be · ne = ne

(ae · (ne + 1)

2
+ be

)
≥ ne(ae · ne + be)

2
=

ne · ce(ne)

2
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Congestion Game: Price of Stability
Proof (Cont.):

Hence,

φ(~P ) ≥
∑
e

ne · ce(ne)

2
=

C(~P )

2

Note that

φ(~P ) =
∑
e

ne(~P )∑
k=1

ce(k) ≤
∑
e

ne · ce(ne) = C(~P )

Similar to Network Sharing Game, when player reduces cost, the potential function
decreases: ∆ci = ∆φ

Let Opt be the social optimal strategy profile

C(~P ∗)

2
≤ φ(~P ∗) ≤ φ(Opt) ≤ C(Opt)
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Continuous Congestion Game

Definition (Continuous Congestion Game)

Continuous congestion games are the limiting case,
when the number of players n → ∞

I Each player is infinitesimally small; one player’s change of
path has negligible impact on others

There are n types of players, where each type i is associated
with a number ri, representing the rate of traffic from one
source to one destination
Consider a network G; each type picks a set of paths {P}
from the source to the destination
ri is distributed fractionally over {P}
An equilibrium is attained, when all paths for each type have
the equal cost
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Continuous Congestion Game
Define a flow, f , in network as how ri is distributed fractionally over {P}
Let C(f) be the social cost of flow f

Let f∗ be a Nash equilibrium flow in network G, and Opt be the social optima flow that
minimizes C(Opt)

Theorem
Consider linear cost function: ce(xe) = ae · xe + be. The price of anarchy of Continuous
Congestion Game is at most 4

3 , namely, C(f∗) ≤ 4
3 · C(Opt)
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Congestion Game

Theorem (Bounding Braess Paradox)
Consider a network G and an expanded network H with additional roads added to G

Let CG(·) and CH(·) be the social costs with respect to G and H

Let f∗
G and f∗

H be Nash equilibrium flows in G and H

If the price of anarchy in H is at most α, then CH(f∗
H) ≤ α · CG(f

∗
G) for any f∗

H

Proof:
Since network H has more roads than network G, we obtain

CH(f∗
H) ≤ α · CH(OptH)

≤ α · CH(OptG) = α · CG(OptG) ≤ α · CG(f
∗
G)

This can bound the effect of Braess paradox, namely, Braess paradox cannot be worse
than the price of anarchy
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Coalition Formation

Coalition formation by self-interested players to share cost
I E.g., in ride-sharing, users form coalition to share a ride

How coalition can be formed? How the cost can be divided among players?
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Coalition Game

Definition (Coalition Game)
Players can make collective change in strategies, rather than unilateral change
A set of n self-interested players N , who want to form a coalition G ⊆ N
Each coalition G has cost C(G); all users in G will share C(G)

Monotonicity: C(G) ≥ C(H), if H ⊆ G (i.e. larger coalition incurs larger cost)
Users split the cost according a cost-sharing scheme

I Each player i pays pi(G) subject to
∑

i∈G pi(G) = C(G)

Let Ci = C({i}) be the standalone cost, when i does not form a coalition with anyone
Let the value of player i when joining coalition G: ui(G) , Ci − pi(G)
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Coalition Game: Example

Example (Ride Sharing)
Players form a coalition to share a ride
Ci is the cost of a ride from i’s source and i’s destination
C(G) is the (minimum) cost of a shared ride among a coalition G
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Possible Cost-sharing Schemes

1 Equal-split Cost-Sharing: The cost is split equally among all players:

peq
i (G) ,

C(G)

|G|

Namely, ueq
i (G) = Ci − C(G)

|G|
2 Proportional-split Cost-Sharing: The cost is split proportionally according to the

players’ standalone costs:
ppp
i (G) ,

Ci · C(G)∑
j∈GCj

Namely, upp
i (G) = Ci ·

(
∑

j∈G Cj)−C(G)∑
j∈G Cj
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Possible Cost-sharing Schemes

1 Bargaining-based Cost-Sharing:
1 Egalitarian-split Cost-Sharing is given by:

pega
i (G) , Ci −

(
∑

j∈G Cj)− C(G)

|G|

Namely, all players i ∈ G will receive the same utility as uega
i (G) =

(
∑

j∈G Cj)−C(G)

|G| .
2 Nash Bargaining Solution is given by:(

pns
i (G)

)
i∈G

∈ arg max
(p̂i)i∈G

∏
i∈G

ui(p̂)

subject to ∑
i∈G

p̂i = C(G)

Egalitarian-split cost-sharing and Nash bargaining solution are equivalent in cost-sharing
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Possible Cost-sharing Schemes
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Stable Coalition

Definition (Stable Coalition)
Coalition structure S = (G1, ..., Gm) is a collection of coalitions, such that Gi ∩Gj = ∅
Let us fix a cost-sharing scheme pi(·)
Given a coalition structure P, a coalition of players G is called a blocking coalition with
respect to P, if G /∈ P, and all players in G can strictly decrease their costs when they
form a coalition G instead of any coalition G′ in P:

pi(G) < pi(G
′) for all i ∈ G,G′ ∈ P where i ∈ G′

A coalition structure P is called a stable coalition structure, if there exists no blocking
coalition with respect to P
A stable coalition structure is also called a strong Nash equilibrium

I Strong Nash equilibrium is stable despite of a collective strategy change of a group of players
I Weak Nash equilibrium is stable despite of a unilateral strategy change of a player
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Coalition Formation

Theorem
There exists a stable coalition structure in equal-split, proportional-split or egalitarian-split
cost-sharing schemes

Proof:
Define a cyclic preference as:

pi1(G1) < pi1(G2), pi2(G2) < pi2(G3), ..., pis(Gs) < pis(G1)

where ik ∈ Gk ∩Gk+1 for all k ≤ s− 1, and is ∈ Gs ∩G1

If there exists no cyclic preference in a given cost-sharing scheme pi(·), then there always
exists a stable coalition structure
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Coalition Formation
Proof (Cont.):

We consider equal-split cost-sharing peq
i (·)

If there exists a cyclic preference, then

peq
i1
(G1) =

C(G1)

|G1|
<

C(G2)

|G2|
= peq

i1
(G2),

peq
i2
(G2) =

C(G2)

|G2|
<

C(G3)

|G3|
= peq

i2
(G3),

...

peq
is
(Gs) =

C(Gs)

|Gs|
<

C(G1)

|G1|
= peq

is
(G1)

Summing the above equations, one obtains a contradiction 0 < 0

Similarly, it can be proved for proportional-split or egalitarian-split cost-sharing schemes
Sid Chau (ANU) Lec. 12: Algorithmic Game Theory I October 24, 2022 31 / 38



Coalition Formation

Define the strong price of anarchy as the ratio of the worst strong Nash equilibrium over
the social optimal
The social optimal is the coalition structure that minimizes the total cost of all players

Theorem
If the size of each coalition is at most 2 (i.e., at most a pair of players can form a coalition),
then the strong price of anarchy for equal-split, proportional-split or egalitarian-split
cost-sharing schemes is ≤ 3

2

Proof:
We consider equal-split cost-sharing peq

i (·)
Let Ŝeq be a stable coalition structure and Opt be the social optimal coalition structure
Suppose {i, j} ∈ Ŝeq\Opt. Then there must exist (k, l), such that {i, k}, {j, l} ∈ Opt\Ŝeq

Assume i 6= k and j 6= l (otherwise, i = k or j = l can be proven easily)
Sid Chau (ANU) Lec. 12: Algorithmic Game Theory I October 24, 2022 32 / 38



Coalition Formation
Proof (Cont.):

Since {i, k}, {j, l} ∈ Opt, we obtain
peq
i (Opt) + peq

j (Opt) + peq
k (Opt) + peq

l (Opt) = C({i, k}) + C({j, l})

Since Ŝeq is a stable coalition structure, we obtain
peq
i (Ŝeq) + peq

j (Ŝeq) = C({i, j}), peq
k (Ŝeq) ≤ Ck, peq

l (Ŝeq) ≤ Cl

Because Ŝeq is a stable coalition structure and i 6= k and j 6= l, we obtain
C({i,j})

2 = peq
i (Ŝeq) ≤ peq

i (Opt) = C({i,k})
2 , C({i,j})

2 = peq
j (Ŝeq) ≤ peq

j (Opt) = C({j,l})
2

Note that C({i, k}) ≥ max{Ci, Ck} and C({j, l}) ≥ max{Cj , Cl} by monotonicity
3
(
peq
i (Opt) + peq

j (Opt) + peq
k (Opt) + peq

l (Opt)
)
= 3

(
C({i, k}) + C({j, l})

)
≥ C({i, k}) + C({j, l}) + Ck + Cl + Ck + Cl ≥ 2

(
C({i, j}) + Ck + Cl

)
≥ 2

(
peq
i (Ŝeq) + peq

j (Ŝeq) + peq
k (Ŝeq) + peq

l (Ŝeq)
)
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Coalition Formation

Theorem
If the size of each coalition is at most K (i.e., at most K players can form a coalition), then
the strong price of anarchy for equal-split, proportional-split or egalitarian-split cost-sharing
schemes is O(logK)

Implications: Coalition formation can be performed in a decentralized manner, without a
centralized manager
Each player proposes coalitions to each other, and accept the coalitions that minimize the
costs by individual players
Players will always reach a stable coalition structure
The strong price of anarchy for stable coalition formation is only O(logK), which is small
compared to the social optimal (that may not be stable with respect to collective changes
in strategy)
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Case Study: Ride-sharing
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Empirical Studies
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Empirical Studies

(a) Equal (b) Proportional (c) Egalitarian (d) Segment-based (e) Social optimal

Figure: Stable matching structures based on different cost-sharing schemes
Sid Chau (ANU) Lec. 12: Algorithmic Game Theory I October 24, 2022 37 / 38



������ References

Reference Materials
Algorithmic Game Theory (Edited by Nisan, Roughgarden, Tardos, Vazirani)

I Chapters 17-18

Recommended Materials
“Decentralized Ride-Sharing and Vehicle-Pooling Based on Fair Cost-Sharing
Mechanisms”, (Chau, Shen, Zhou), IEEE Trans. on Intelligent Transportation Systems,
2020. http://arxiv.org/abs/2007.08064
“Quantifying Inefficiency of Fair Cost-Sharing Mechanisms for Sharing Economy”,
(Chau, Elbassioni), IEEE Trans. on Control of Network Systems, 2018.
https://arxiv.org/abs/1511.05270

Sid Chau (ANU) Lec. 12: Algorithmic Game Theory I October 24, 2022 38 / 38

http://arxiv.org/abs/2007.08064
https://arxiv.org/abs/1511.05270

