
Lecture 11: PCP Theorem & Zero-knowledge Proofs
Advanced Algorithms

Sid Chi-Kin Chau

Australian National University
✉�sid.chau@anu.edu.au

October 26, 2022

Can you prove that you know a secret, without revealing the secret?

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 2 / 38

Review: NP Problems

Definition (Class NP)
Let |I| = #bits to represent I and |w| = #bits to represent w
Define a class of problems called NP: For all L ∈ NP, there exist a polynomial-time
bound Turing machine M and a polynomial function p(·), such that

I If I ∈ L, then there exists a witness w where |w| ≤ p(|I|), such that M(I, w) returns
TRUE, and

I If I /∈ L, then for any witness w where |w| ≤ p(|I|), M(I, w) returns FALSE

NP stands for Non-deterministic Polynomial-time
NP are the problems that can be verified efficiently when given a proof
Questions:

I Does verification really take polynomial time? Can it be faster?
I Do we really take the witness (i.e., solution) for verification? Can the proof be smaller?

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 3 / 38

Interactive Proof System

Definition (Interactive Proof System)
Prover claims to know a witness w to I ∈ L

I ⚠�Prover may be dishonest
Verifier wants to verify Prover’s claim and decide to accept/reject I ∈ L
Protocol is the conversation between Prover and Verifier

Naïve protocol: Just send the witness w from Prover to Verifier
Efficient protocol: Smaller than |w| and faster running time

Example (Applications of Interactive Proof Systems)
Prover claims to have a valid credential for authentication without revealing the credential
Prover wants to convince the truth of some private data (e.g., income, date of birth) for
privileged applications (e.g., mortgage, restricted access) without revealing the data

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 4 / 38

Interactive Proof System

Definition (Properties of Interactive Proof System)
Completeness: If I ∈ L, then Prover will eventually convince Verifier
Soundness: If I /∈ L, then Prover will never convince Verifier (except with a small
probability to make mistakes)

I Possible to improve soundness by extra computational hardness assumptions: Prover cannot
do factorization or discrete logarithm fast (not without a quantum computer)

Zero-Knowledge: Verifier learns nothing about the witness w, but only the fact I ∈ L
I E.g., Verifier knows that Prover has a valid password, but does not know the password

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 5 / 38

Probabilistic Checkable Proof

Definition (Probabilistic Checkable Proof (PCP))
Prover prepares a special type of proof, called Probabilistic Checkable Proof (PCP),
based on the witness w
Verifier makes probabilistic checking decisions with r(n) random bits
Verifier need to access at most q(n) bits on the PCP to decide to accept/reject

I If I ∈ L, Verifier always accepts (i.e., no mistake)
I If I /∈ L, Verifier accepts (i.e., makes mistake) with probability < 1

2

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 6 / 38

PCP Theorem

Theorem (PCP Theorem)
Any NP problem admits a probabilistic checkable proof (PCP) that can be checked with
r(n) = O(logn) random bits to access q(n) = O(1) bits on the PCP

Conventional (logical) proofs must be accessed sequentially from the first line to the last
line to determine if the proof is correct or not

I Random access to conventional proofs cannot make sense of the correctness
Probabilistic checkable proofs use error correction code in encoding the proofs, such that
random access to the proof can give an idea whether the proof is correct or not

I The size of a PCP can be larger than the size of a witness |w|, but only a constant number
of bits in the probabilistic checkable proof are accessed by Verifier

I A PCP may take significant running time to construct,
but only constant running time to verify

PCP Theorem can characterize the hardness of approximation algorithms of NP problems
Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 7 / 38

Spectrum of Approximability

Why do NP-complete problems have different approximability?
Are these approximation ratios tight? What are the lower bounds of approximation ratios?

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 8 / 38

Gap-introducing Reductions

Definition (Gap-introducing Reduction)
Reduction to Maximization Problem: Reducing from SAT to maximization problem L,
given an instance φ of SAT, it outputs in polynomial time an instance x of L, such that

I φ is satisfiable ⇒ Opt(x) ≥ f(x), and
I φ is not satisfiable ⇒ Opt(x) < gap(|x|) · f(x)

Reduction to Minimization Problem: Similarly, φ is satisfiable ⇒ Opt(x) ≤ f(x), and
φ is not satisfiable ⇒ Opt(x) > gap(|x|) · f(x)
We write SAT �gap L

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 9 / 38

Inapproximability of NP Problems

Corollary
If there is a gap-introducing reduction from SAT to maximization problem L (SAT �gap L),
then the approximation ratio of L is upper bounded by α(n) ≤ gap(n), unless P = NP

Proof:
Suppose approximation algorithm A(x) of instance x with approximation ratio α(|x|):

α(|x|) · Opt(x) ≤ A(x) ≤ Opt(x)

Since SAT �gap L, given an instance φ of SAT, there is an instance x of L, such that
I φ is satisfiable ⇒ 1

α(|x|)A(x) ≥ Opt(x) ≥ f(x), and
I φ is not satisfiable ⇒ A(x) ≤ Opt(x) < gap(|x|) · f(x)

Suppose α(|x|) > gap(|x|). Then, we can use A(x) to solve SAT in polynomial time
I φ is satisfiable ⇒ A(x) ≥ gap(|x|) · f(x), and
I φ is not satisfiable ⇒ A(x) < gap(|x|) · f(x)

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 10 / 38

Gap-preserving Reductions

Definition (Gap-preserving Reductions)
Gap-preserving Reduction: Reducing from maximization problem L1 to maximization
problem L2, given an instance x of L1, it outputs in polynomial time an instance y of L2

I Opt(x) ≥ f1(x) ⇒ Opt(y) ≥ f2(y),
I Opt(x) > gap1(|x|) · f1(x) ⇒ Opt(y) < gap2(|y|) · f2(x)

Similarly, gap-preserving reductions from maximization/minimization problem L1 to
maximization/minimization problem L2

We write SAT �gap L1 �gap L2 ⇒ SAT �gap L2

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 11 / 38

Max3SAT and MaxkFuncSAT

Definition (Max3SAT)
3CNF formula φ, with n variables and m clauses. Each clause has 3 literals:

I φ = (x1 ∨ x̄2 ∨ x4) ∧ ... ∧ (x2 ∨ x̄3 ∨ x̄n)
Find an assignment that satisfies as many clauses as possible

Definition (MaxkFuncSAT)
Given n boolean variables (x1, x2, ..., xn) and m boolean functions (f1, f2, ..., fm)

Each fj : {0, 1}k 7→ {0, 1} from a constant k number of the literals of (x1, x2, ..., xn)
Find an assignment that satisfies as many boolean functions as possible

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 12 / 38

Inapproximability of Max3SAT

Theorem
SAT �gap MaxkFuncSAT �gap Max3SAT. Hence, there is no PTAS for Max3SAT

Proof:
We first show SAT �gap MaxkFuncSAT
Verifier reads PCP of boolean formula φ for SAT with c logn random bits and q query bits

I The size of PCP is at most q2c log n = qnc bits
I For each r ∈ {0, 1}c log n, Verifier reads q bits out of a total of qnc bits in the PCP

Define an instance of MaxkFuncSAT based on the PCP of φ
I Instance x is the qnc-bit string of the PCP of φ
I Boolean functions (f1, f2, ...fnc), each fj : {0, 1}q 7→ {0, 1} is the decision of Verifier on x of

each random bit
We have SAT �gap MaxkFuncSAT, because

I φ is satisfiable ⇒ fj = 1 for all j (i.e. total num of satisfied boolean functions = nc)
I φ is not satisfiable ⇒ P(Verifier accepts) < 1

2 (i.e. total num of satisfied boolean funcs <nc

2)
Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 13 / 38

Inapproximability of Max3SAT
Proof (Cont.):

We next show MaxkFuncSAT �gap Max3SAT
Each fj can be represented as a SAT formula, ψj with at most 2q clauses each having at
most q literals
Define ψ =

∧
1≤j≤nc ψj . We obtain

I φ is satisfiable ⇒ ψ is satisfiable (i.e., max num of satisfied clauses in ψ = nc2q)
I φ is not satisfiable ⇒ at least 1 clause in each fj is not satisfiable (i.e., max num of satisfied

clauses in ψ < nc(2q − 1
2))

Every instance ψ of SAT with nc2q clauses can be converted to an instance ψ′ of 3SAT
with nc2q(q − 2) clauses

I E.g., l1 ∨ ... ∨ ln → (l1 ∨ l2 ∨ x2) ∧ (x̄2 ∨ l3 ∨ x3) ∧ (x̄3 ∨ l4 ∨ x4) ∧ ... ∧ (x̄n−2 ∨ ln−1 ∨ ln)
There exists a gap-introducing reduction from an instance φ of SAT to an instance ψ′ of
Max3SAT such that

I φ is satisfiable ⇒ Max num. of satisfied clauses in ψ′ = nc2q(q − 2)
I φ is not satisfiable ⇒ Max num. of satisfied clauses in ψ′ < nc

(
2q(q − 2)− 1

2

)
Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 14 / 38

Inapproximability by PCP Theorem

Gap-preserving reductions can prove inapproximability of NP-hard problems
Use PCP Theorem to make gap-introducing reductions to various NP-hard problems
Advanced techniques are needed to amplify the gap to get tighter bounds for
approximation ratios

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 15 / 38

A Short Answer to Everything!?

The Ultimate Answer to Life, The Universe and Everything is...42!
– The Hitchhiker’s Guide to the Galaxy

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 16 / 38

Zero-Knowledge Proof: Prove You Know the Solution Without Showing it

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 17 / 38

Zero-Knowledge Proofs

PCP Theorem is a revolutionary idea beyond for proving inapproximability
PCP Theorem opens up the possibility of zero-knowledge proofs in many applications:

I Outsourcing computations in cloud computing
I Secure authentication and decentralized identities
I Privacy-preserving databases
I Cryptocurrencies, blockchain and decentralized finance

Definition (zk-SNARK (Zero-Knowledge Succinct Non-Interactive Argument of Knowledge))
Zero-Knowledge: Prove the knowledge of a secret, without revealing the secret
Succinctness: Compact in the proof size for communication and efficient in verification
Non-Interactiveness: It can be self-proving, without the presence of a verifier to issue a
challenge

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 18 / 38

Black Box Society

We are living in a black box society
I Controlled by a lot of opaque authorities & entities

(e.g., tech companies, governments & regulators)
I Entrust private data & key decisions to third-parties without

awareness of how the data is used & decisions are made
I Rely too much on algorithms for decision-making and

operation management
I Over-abundance of AI & data mining in every aspect of lives
I We need more transparency & accountability in our society

Every system or algorithm should prove themselves for
correctness, fairness, inclusiveness, etc.
How can systems & algorithms be properly checked
and verified in a transparent, accountable & efficient
manner?

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 19 / 38

Blockchain Platform

Permissionless blockchain is a decentralized programmable
ledger platform with public ownership

I Smart contracts are programs executed on blockchain
platform, which require cryptocurrencies to pay for (gas) costs

I Smart contracts are executed independently by miners, who
are rewarded by cryptocurrencies, using a consensus protocol

I Smart contract executions are recorded on a pubic immutable
ledger (based on hash pointers & Merkle trees)

Blockchain can be a public transparent platform of
verification to mitigate a black box society

I Submit publicly verifiable zero-knowledge proofs on blockchain
I Blockchain automatically verifies the zero-knowledge proofs

and records the verification results
I Public transparent verification can be oblivious of the verified

subjects and reveals no private data

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 20 / 38

Example: Blockchain-enabled Insurance

Blockchain-enabled insurance
I Automate underwriting: Increase speed and cost efficiency with smart contracts
I Automate claims settlement: Cut costs with automated claim and data verification
I Reduce fraud and abuse: Prevent misuse with improved traceability and accountability

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 21 / 38

Review: Merkle Tree
Hash pointers:

I Unforgeability of Collision-resistant Hash Function:
F If we know H(x) = H(y), it’s safe to assume x = y

I Use H(data) as a fingerprint for a given data block
I Hash pointer is message digest of data
I Useful to build more sophisticated data structures

Definition (Merkle Tree)
A binary tree with hash pointers:

I The leaves are the data blocks
I Each data block is pointed by a hash pointer
I A parent hash pointer can point to two child hash pointers
I The root pointer indirectly points to all children

Merkle tree can detect the differences of data blocks
efficiently by comparing the hash pointers at each level,
which takes only log(n) in time/space

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 22 / 38

Zero-knowledge Proofs by PCP

Can Prover just hand over the requested q query bits to Verifier at his request?
This take only constant communication

I ⚠�Prover may be dishonest, who forges incorrect PCP based on Verifier’s random choices

PCP-based Zero-Knowledge Proof [Input: x ∈ L]
1 Both Prover and Verifier agree on a collision-resistant hash function H(·)
2 Prover uses witness w of input x to construct a PCP π. Prover builds a Merkle tree with

the leaf values as {π[k]} (each has q(n)-bit) using H(·) and send the root value to Verifier
3 Verifier generates r(n) random bits and sends to Prover
4 Prover relies with the q(n)-bit leaf value in the Merkle tree, specified by the r(n) random

bits, together with an authentication path to prove that the answer is consistent with the
root of the Merkle tree

5 Verifier accepts if the q(n)-bit PCP π[k] is consistent with the root of the Merkle tree,
and is a correct PCP of input x

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 23 / 38

Zero-knowledge Proofs by PCP

The PCP protocol is succinct, because the communication size is small O(logn), which is
size of the authentication path of PCP π[k]

Merkle tree root ensures the unforgeability property of PCP π
I Prover cannot alter PCP π after receiving the r(n) random bits from Verifier

Assumption: Presence of collision-resistant hash function
I ⚠�No hash function has been theoretically proved yet

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 24 / 38

Non-interactive Zero-Knowledge Proofs

PCP-based protocol is interactive, requiring a challenge from a honest Verifier
Can Prover generate a succinct proof without the presence of a honest Verifier?
Yes, using Fiat-Shamir heuristic:

I Prover sets random k = H(Input,Commitment)
I Since H(·) is collision-resistant hash function, it is difficult for Prover to manipulate the root

to influence the choice of k to be a specific value
I Any public Verifier can verify the proof by setting random k = H(Input,Commitment)

PCP-based zero-knowledge proofs are succinct and non-interactive, but require too much
computational overhead to generate PCP, and are not practical for real-world applications

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 25 / 38

Cryptographic Zero-Knowledge Proofs

Practical zero-knowledge proofs use cryptography
I E.g., factoring, discrete logarithm of large integers
I Assume Prover is computationally limited, who cannot solve certain cryptographic problems

Definition (Cryptographic Commitment)
Cryptographic commitment emulates a sealed envelope of a secret committed value
Commit(m, r), where m is the committed value, r is randomness to improve hiding

Verify[C,m′, r′] =
{

accept, if C = Commit(m′, r′)
reject, otherwise

Binding: Cannot find the two valid openings efficiently for a cryptographic commitment
I Cannot find m′

1 6= m′
2 such that Verify[C,m′

1, r′1] = Verify[C,m′
2, r′2] = accept

Hiding: Cannot reveal anything about the committed value
I If C = Commit(m, r) and r is uniformly sampled, then C and m are statistically independent

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 26 / 38

Cryptographic Commitments: Examples

Example (Hash Based Cryptographic Commitment)
Collision-resistant hash function H(·)
Commit(m, r) , H(m|r)
Binding follows from collision-resistance

Example (Perdersen Commitment)
Finite cyclic group G = {1, g, g2, ..., gq−1}

I gi · gj = gi+j mod q, and q is a prime number
Uniformly pick g, h ∈ G at random, and let m, r be integers ∈ {0, ..., q − 1}
Commit(m, r) , gm · hr ∈ G

Binding follows from the computational hardness of discrete logarithm m ?
= log(gm)

Perdersen commitment is computationally binding & statistically hiding

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 27 / 38

Homomorphic Property of Perdersen Commitment

Let C1 = Commit(m1, r1) , gm1 · hr1 and C2 = Commit(m2, r2) , gm2 · hr2

Homomorphic property:

C1 · C2 = g(m1+m2) · h(r1+r2) = Commit(m1 + m2, r1 + r2)

Hence, anyone can obtain the commitment of a sum of committed values by
multiplication on Perdersen commitments
Homomorphic property is very useful to build zero-knowledge proofs for Perdersen
commitments

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 28 / 38

Σ-Protocol

Definition (Σ-Protocol)
1 Prover knows a witness w to a statement x

I E.g., w is a password, x is the statement that “do you have a valid password?”
2 Prover sends some commitment C (e.g., Perdersen commitments) to Verifier that prevent

Prover from altering the witness w he wants to prove
3 Verifier sends a random challenge β to test Prover
4 Prover responds with a proof π(w, β)
5 Verifier accepts if π is sufficient to prove that Prover knows a witness w to x, or rejects

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 29 / 38

Σ-Protocol Properties

Definition (Σ-Protocol Properties)
Completeness: If Prover indeed knows a witness w to x and he strictly follows the
Σ-protocol, then Verifier should accept
Soundness: If Prover does not know a witness w to x and no matter what he does, then
Verifier should reject with high probability

I Equivalently, if Prover strictly follows the Σ-protocol and Verifier accepts, then Prover should
know a witness w. So, it is possible to extract w from π (by some extraordinary techniques)

Zero-Knowledge: π should not reveal the witness w, if Verifier honestly follows the
Σ-protocol

I Equivalently, if Verifier cannot distinguish between Prover who knows the witness w, and an
extraordinary Simulator who can simulate Prover’s response but does not know the witness w

Soundness and zero-knowledge seems contradictory to each other at first glance, with an
emphasis on some extraordinary scenarios

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 30 / 38

Σ-Protocol

Example (Σ-Protocol for Knowledge of Perdersen Commitment)
Verifier publicly knows commitment C; Prover wants to prove that he privately knows (m, r)
such that gm · hr = C

1 Prover randomly generates (m′, r′) and sends C ′ = gm′ · hr′ to Verifier
2 Verifier sends a random challenge β to Prover
3 Prover responds with zm = m′ + β · m and zr = r′ + β · r
4 Verifier accepts if gzm · hzr ?

= C ′ · Cβ

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 31 / 38

Σ-Protocol

Theorem
Σ-Protocol for knowledge of Perdersen commitment satisfies completeness, soundness and
zero-knowledge

Proof:
Note that Σ-protocol for knowledge of commitment is used in Elliptic Curve Digital
Signature Algorithm (ECDSA) in most cryptocurrencies to authenticate transactions
Completeness: gm · hr = C ⇒ gm′+β·m · hr′+β·r = gm′ · hr′ · (gm · hr)β = C ′ · Cβ

Soundness: We show that for every possible Prover, an Extractor exists, who can extract
the witness (m, r) by rewinding the Σ-Protocol and replaying it with a different challenge
Zero-Knowledge: We create a Simulator, who can simulate the response zm and zr
without knowing the witness (m, r) by rewinding the Σ-Protocol

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 32 / 38

Proof Ideas

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 33 / 38

Extractor

Definition (Extractor)
Extractor is a special Verifier, and if the Prover succeeds in completing the proof, then
the Extractor should be able to extract the Prover’s original witness
Extractor is not required to exist during a normal run of the protocol. We simply show
that it exists if we can rewind to Prover’s execution and allow us to extract the witness

After Prover responding (zm, zr) to
challenge β, Extractor rewinds to send
Prover a different challenge β′

Prover is not aware of being rewound and
responds (z′m, z

′
r) to challenge β′

We can extract the witness by:

m =
zm − z′m
β − β′

, r = zr − z′r
β − β′

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 34 / 38

Simulator

Definition (Simulator)
Simulator is like a special kind of Prover, but, unlike a real Prover (which knows the
witness), it does not know the witness
Simulator can “fool” honest Verifier by rewinding, and produce an accepting response
that is statistically indistinguishable from the response of a real Prover

After Verifier revealing challenge β,
Simulator rewinds to instead send
C ′ = gzm · hzr · C−β to Verifier, where
(zm, zr) are just random numbers
Verifier is not aware of being rewound and
accepts because gzm · hzr = C ′ · Cβ

Response (zm, zr) are statistically
indistinguishable from real Prover’s one

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 35 / 38

Σ-Protocol

Example (Σ-Protocol for Knowledge of Membership)
Verifier publicly knows a set X = {m1, ...,mn} and a commitment C; Prover wants to prove
that he privately knows (mi, r) such that mi ∈ X and gmi · hr = C

1 Prover first randomly generates (m′
j , r′j) and computes gm′

jhr′j for all j ∈ {1, ..., n}. Then,
Prover randomly generates βj for each j ∈ {1, ..., n}\{i}, and computes

zmj =

{
m′

j + (mi − mj)βj , if j ∈ {1, ..., n}\{i}
m′

i, if j = i

Prover sends (gm′
jhr′j , zmj)

n
j=1 to Verifier

2 Verifier sends a random challenge β to Prover

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 36 / 38

Σ-Protocol

Example (Σ-Protocol for Knowledge of Membership)
(Cont.)

4 Prover sets βi = β −
∑

j 6=i βj , then computes zrj = r′j + r · βj for all j ∈ {1, ..., n}, and
sends (βj , zrj)

n
j=1 to Verifier

5 Verifier checks whether β ?
=

∑n
i=1 βj and

gzmj · hzrj ?
= gm′

jhr′j ·
(C

gmj

)βj

for all j ∈ {1, ..., n}

Completeness: gmi · hr = C ⇒ gm′
j+(mi−mj)βj · hr′j+r·βj = gm′

jhr′j ·
(

C
gmj

)βj

Soundness: Can be proven by creating a suitable extractor
Zero-Knowledge: Can be proven by creating a suitable simulator

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 37 / 38

📖 References

Reference Materials
Approximation Algorithms (V. Vazirani), Springer

I Chapter 29: Hardness of Approximation

Recommended Materials

Proofs, Arguments, and Zero-Knowledge (Justin Thaler), 2022

Sid Chau (ANU) Lec. 11: PCP Theorem & ZKP October 26, 2022 38 / 38

