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Experts’ Predictions are always Inconsistent!

“At least we are consistently inconsistent.”
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<K How to aggregate experts’ inconsistent opinions?_>>>




Experts for Stock Market Predictions

@ You listen to n experts for investment predictions in stock markets. Every day, each of
them predicts whether the stock will go up or down

Day | Expert 1 g Expert 2 g Expert 3 Actual
1
2 N
3
4

@ Experts’ predictions may be wrong sometimes

@ Goal: Pick the strategy to do as well as the best expert

@ What is our strategy?

» Benchmark the accuracy of experts’ past predictions
» Aggregate the predictions based on the their past accuracy

Sid Chau (ANU)

Lec. 10: Online Learning

October 5, 2022

4/23



Experts Problem

Definition (Experts Problem)

o

For t =1,..,T (days on the stock market), each expert i = 1, ...,n predicts “yes" or “no”
Aggregator decide either yes or no based on individual experts’ predictions

Adversary, with knowledge of Aggregator's decision and experts’ predictions, makes the
actual yes-or-no outcome

Aggregator observes the actual outcome, and suffers a cost if his decision is incorrect

Aggregator’s role is to make as few mistakes as possible
» But since the experts may be unhelpful and the outcomes can be wrong, Aggregator can only
hope for a comparable performance to the best expert, in hindsight

@ The number of mistakes in excess of the best expert’s mistakes is called regret

@ Adversary’s role is not to make Aggregator be wrong all the time (Adversary is omniscient

who can easily make the opposite outcome of what Aggregator decided)
> Nonetheless, Adversary wants to inflict as much regret as possible on Aggregator
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Weighted Majority Algorithm

Weighted Majority Algorithm (WMA)
(1)

@ Assign a weight w; ’ = 1 to each expert i

@ On each t-th day, Aggregator decides yes or no based on a majority vote of all experts,
weighted by (wl(t), ...,w,(f)): if > says yes wgt) > i says no wl@, then yes, otherwise, no
@ After observing the outcome, for every incorrect expert ¢, set wgtﬂ) — wgt)/2

Theorem

Let M\%)MA and Mi(t) be the number of mistakes that WMA and expert © make, respectively,
until time t. For any sequence of outcomes, any duration T and any expert i:

M\SVT,\)AA < 2.41(Mi(T) +logn), Regret= M\SVT,\)AA — min Mi(T) < 1.41(M2-(t) + logn)

n

geoe
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Weighted Majority Algorithm

Proof:
o Define potential function ¢(*) £ 77 w!?

i=1W;
o We will bound ¢(TY from below with any expert i's mistakes, and from above with
WMA's mistakes

@ For lower bound:

n (T)
¢(T+1) _ Zw§T+l) > wZ(T-i—l) _ (%)]V[i
j=1

e For upper bound, note that ¢!) = n and any weight wZ(l) =1

» Whenever WMA makes a mistake, we halve the weights for experts representing at least half

of the total weights (since we follow the weighted majority)
1

» This means that we lose at least (% 5 :)i of the total weight from the previous ¢-th day

3

(t+1) < 34
o) < 2o
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Weighted Majority Algorithm

Proof (Cont.):

» This implies that we can bound the final value of the potential function by

3\ Minia 3\ M
(T+1) e LoD = (2 .
¢ = (4) ¢ (4) "
@ Combining both bounds together,
1\ MD 3N\ MR
L Y (SR (f> wmA-
(2) SRV "
@ Taking the In on both sides, we have

—Mi(T) < logn + log (%) ’M\S\/TI\%A

T T
M\EV,\),IA < 241 (Mi( )+logn)
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Multiplicative Weights Update Algorithm

@ Aggregator makes a random decision instead of a deterministic decision

o Aggregator picks some distribution p) = (pgt), ...,pg)) over experts, where pgt)

the probability of following expert i¢'s prediction on the t-th day

represents

o Adversary is still omniscient: with knowledge of the experts’ prediction and of p®, it
determines the costs m(*) = (m(lt), ...,mS)) € [-1,1]", where m( ) is the cost of following
expert i's prediction on the t-th day

@ The expected cost on the t-th day is

@ Goal: Pick the distribution p(*) on each ¢-th day to minimize the regret between the
expected total cost and the minimum total cost of following the best expert
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Multiplicative Weights Update Algorithm

Multiplicative Weights Update Algorithm (MWU)

1)

@ Assign a weight w; ’ = 1 to each expert ¢

w®
@ On each t-th day, pick the distribution pE ) = d)gt) , where ¢() =377 w(t)
(t+1)

o After observing m®, set w; — wgt) -e € m! for each expert i

(t) . . (t) . .
@ Note that e < 1, if ml(t) > (0. Otherwise, e~ > 1. Hence, the weights increase
when it was profitable to follow the expert, and decrease when it was not

o Let Cost; = ZtT:l mgt) be the total cost of expert ¢, and Costpywy be the random total
cost of MWU for all T days. Note that

E[Costmwu] = Zp(t) m®,  E[Regret] = E[Costywy] — min Cost;

i=1,...,n
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Multiplicative Weights Update Algorithm

Theorem

Suppose € < 1, and p\*) is chosen by MWU fort = 1,...,T. Then for any expert i:

1 |
E[COSthu] < Cost; + An + €T, E[Regret] < mn 4 €T
€ €

Proof:
o For lower bound: ¢(T+1) =37 w](TH) > w (TH) = wl(l) TIE, ememy) — gme Sy mi?
@ For upper bound:
t+1 Zn:wt+1 Zn:wtefemg” <Zn: 1_€m +(m (t))2)
7j=1 7=1 a 7j=1 ]

Because e * <1 —x+a22for -1 <2 <1
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Multiplicative Weights Update Algorithm

Proof (Cont.):

(j)(tH) < Z w(t)(l — emg»t) + eQ(mg.t))Q) < ij(-t)(l —emW¥ + 62)
j=1 j=1
= Zwt (1+¢€%) Zw m = o1+ &) —GZ¢(t)p§-t)m§t)
j=1 j=1
< ¢( )L €] 11’“)’”“) (because 1 + x < e”)
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Multiplicative Weights Update Algorithm

Proof (Cont.):

@ This implies that we can bound the final value of the potential function by

¢(T+1) < ¢(1) X 662T_€ Z?:l Ej:1 pg_t)m;_t) —n- ee2T—e 23:1 Zj:l p.(jf)mg_t)

@ Combining both bounds together,

t
e Siaml?) < (T+1) < g (ETe T pOm®

@ Taking the In on both sides, we have
T T
—€ Z m§t) <lnn+ T —¢ Z p(t) -m®
t=1 t=1
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Improved Weighted Majority Algorithm

Theorem

After observing the outcome, for every incorrect expert i, WMA'’ set wgtﬂ) — wft)(l—e)
Suppose € < % then we have

T
(T) (T) 2lnn
Migga <20 +¢)- > M +
t=1

After observing the outcome, for every expert i, MWU' set wgtﬂ) — wl(t)(l—emz(-t))
Suppose € < % then we have

d 4 a Inn
t t
E p(t)-m(t)gg ml()—l—eg ]mz(-)H—i
t=1 t=1 t=1
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Improved Weighted Majority Algorithm

Proof:
@ Note that
Pt < Z w(-t)+(1—e)- Z wi = Zn:w(.t) —e- Z wlt) < (I—E)qb(t)
= J J J j = 2
J is correct 7 is incorrect j=1 J is incorrect

@ Hence, we have

o Note that —z — 2? <In(1—z) < —z for 0 < = < §

In(1—e)- M <In (1-2) - M)

(T)

s tlnn = (—e—€*) M, (D

< (—5) Mypa +1nn
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Multiplicative Weights Update Algorithm

@ Sometimes, it is useful to consider the average cost incurred per day

o Generalize the cost vector so that m(*) = (mgt), o mgf)) € [—p, p]"

@ The following theorem tells us that the average daily performance of MWU is as good as
the best expert’s average daily performance, within a linear term 2e

Theorem

Suppose € < 1, and p\*) is chosen by MWU fort =1, ..., T
2
IfT > 4”6#, then for any expert i

1 1
TE[COStIVIWU] < TCOSti + 2¢
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Application: Learning Linear Classifier

o Consider a set of k labeled examples (aj, 1), ..., (ag, lx):
» a; = (a;1,...,a;,) is a n-dimensional feature vector and [; is a label in {—1,1}

@ Goal: Find a linear classifier:
» Unit vector p = (p1, ..., pn) Such that Z?lej =1and;(a; -p) >0

o Define p = max;—; __pmaxj—i ., |a;n]

Learning Linear Classifier by MWU

o Initialize w'" = 1 for all 7, and p(l) accordingly

7
o At each t-th round, if there exists j such that I;(a; - p{!)) < 0 (i.e. a; is not classified
correctly), then
Set costs m®*) = —%aj, note that m® € [—1,1]"
Run MWU to update p**1) and proceed to the (¢ + 1)-th round

o Otherwise, if there exists no j such that [;(a; - p)) < 0, then terminate
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Application: Learning Linear Classifier

Assume that there exists p* such that 37, p; =1 and [;(a; - p*) > 0 for some >0

Note that for ¢ (or some j)

Ls

Suppose the learning linear classifier algorithm terminates at the 7T-th round

e By MWU, we have
T In
Zp(t)~m(t) < min m +7+ el
=1 =L..m
" 0T Inn
< m +6T<——+7+ eT
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Application: Learning Linear Classifier

o Note that when t < T' (before termination), we have /;(a; -p®)) <0 = p® - m® >0
@ Hence, we have 5

T 1

0< -4l e
p €
_ 3
o If we set € = 2 then ,
4p°1lnn
T < 52

@ Namely, if there exists a linear classifier, then the learning linear classifier algorithm

rounds

. . 2
terminates, and that it finds it in less than 4'05#

Sid Chau (ANU) Lec. 10: Online Learning October 5, 2022 19/23



Application: Boosting

e Given a sequence of training data points X = {z1,...,z,} sampled from a universe set
according to some (unknown) distribution D
» Each point has an (unknown) label ¢(z;) € {0,1}
» Find a hypothesis function h € C that assigns labels to training data points, where the
function h is taken from a set of functions (a concept class) C (e.g., the class of all linear
classifiers), and predicts the function ¢ in the best way possible (on average over D)

@ Strong learning algorithm: Output a hypothesis h, with o weiges
probability at least 1—4, such that =
.. ®
o] < ]l ST
@ Weak learning algorithm: Output a hypothesis h, such "."_;"@ ey fé;?.r”,i
t h at 1 77'7,7\',\/;3;7 ' | 'T;k‘
E[’h<$z)—c($l)q S 5 — f‘Y Learner #1 Learner #2
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Application: Boosting

@ Goal: Use weak learning algorithms to construct a strong learning algorithm

AdaBoost
e Fort=1,...,T (where T is sufficiently large)
Use a weak learning algorithm to generate a hypothesis h; : X — {0, 1}
Compute the error of hy: By = 1 1pzt)|ht( i)—c(x;)]
Set B =

Set welght w(tH) wgt)/é’z*_‘ht(wi)—
Run MWU to update p(*+1)

@ Output the final hypothesis A : X — {0, 1} based on weighted majority vote:

ha) _{ i S los(g)h(x) > § S los(s,)

0, otherwise

@l for each training data point z;
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Regret vs. Competitive Ratio

@ Online learning for regret minimization
» Compare with the best expert (i.e. stationary offline optimal solution)

@ Online algorithm for competitive ratio minimization
» Compare with the best sequence of experts (i.e. dynamic offline optimal solution)

o Metrics
> Regret: Cost[Algo] — Cost[Opt]
» Competitive Ratio: %Zitt[{?)lﬁa]

» Bounded regret = bounded ratio

Offline Optimal Comparsion Metrics
Online Learning Stationary (Weaker) Difference (Stronger)b
Online Algorithm Dynamic (Stronger) b Ratio (Weaker)
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[] References

Recommended Materials

@ The Multiplicative Weights Update Method: A Meta Algorithm and its Applications
(Arora, Hazan, Kale), Theory of Computing, 2012

e BH Watch online tutorial video about AdaBoost:
https://www.youtube.com/watch?v=LsK-xG1cLYA
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