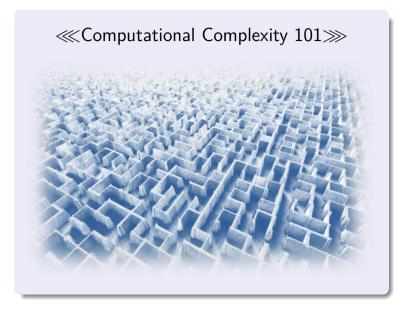
Lecture 1: Computational Complexity 101 Advanced Algorithms

Sid Chi-Kin Chau

Australian National University

🖂 sid.chau@anu.edu.au

October 9, 2022



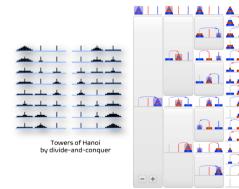
Definition (Algorithms)

- Based on good understanding of performance and optimality with rigorous analysis
- Supported by theoretical evidence and universal results
- E.g., approximation algorithms with proven approximation ratios

Definition (Heuristics)

- Based on mostly guess work
- Empirically driven, but with no universal result and not backed by rigorous analysis
- E.g., meta-heuristics (e.g. genetic algorithms)

How to solve Towers of Hanoi? Is it Hard?



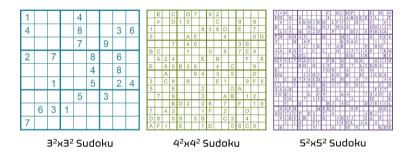
• Let Hanoi[n, r] be the algorithm that moves the smallest n disks from the left rod to rod $r \in {middle, right}$

Algorithm Hanoi[n, r]

- If n > 1 then
 - $\mathsf{Hanoi}[n-1, \{\mathsf{middle}, \mathsf{right}\} \backslash \{r\}]$
 - Move the remaining n-th disk to rod r
 - Hanoi[n-1,r]

Else

- Move the smallest disk to rod r
- Running time of $\mathsf{Hanoi}[n,r]$ is $\Omega(2^n)$
- Is Towers of Hanoi a hard problem to solve?



- Can you solve a $3^2 \times 3^2$ Sudoku? How about solving a $n^2 \times n^2$ Sudoku?
- $\bullet\,$ Can you check a given $3^2\times 3^2$ Sudoku solution? How about checking a $n^2\times n^2$ Sudoku solution?

Mathematical Formalization of Algorithms

Figure: Watch a real-life Turing machine: 🎬 https://youtu.be/E3keLeMwfHY

- Algorithms are represented by mechanical operations (i.e. program) of a universal problem solver (i.e. Turing machine)
 - An algorithm is a mapping from a tape of input sequence of symbols (i.e. problem instance) to an output sequence of symbols (i.e. answer)
 - Universal Turing Machine Can simulate any programs and the tape is also consisted of an input program

Sid Chau (ANU)

Definition (Problems, Instances, Languages)

- We fix a certain encoding scheme $Enc(\cdot)$ that maps a linguistic representation of a sentence to a binary representation (e.g. ASCII)
- \bullet A problem is represented by a subset of all (finite or infinite) binary strings $\subseteq \{0,1\}^*$
 - An instance of a problem is translated to a binary string by $\mathsf{Enc}(\cdot)$, denoted by $\mathcal{I}\in\{0,1\}^*$
 - Multiple instances may have the same answer
 - The simplest of answer is binary (yes/no) for a decision problem
 - A decision problem can be represented by all the "yes" instances, denoted by a subset $\mathcal{L}\subseteq\{0,1\}^*$
 - \mathcal{L} is also called a "language"
- A Caveat: Don't need to pay attention to a particular encoding scheme
 - We focus on an abstract representation of a problem

Example: Decision Problem

Example (Problem: isPrime(X))

- $Enc("isPrime(23)") \mapsto 101000100100$
- Enc("isPrime(25)") → 000010110011
- $Enc("isPrime(27)") \mapsto 1100010110011$
- Enc("isPrime(29)") → 000000100010

```
• • • • • • • • • • •
```

- \bullet Problem isPrime is represented by $\mathcal{L}_{isPrime} = \{101000100100, 0000000100010, \ldots\}$
- Let $\overline{\mathcal{L}}_{\mathsf{isPrime}} \triangleq \{0,1\}^* \setminus \mathcal{L}_{\mathsf{isPrime}} = \{000010110011, 1100010110011, \ldots\}$
- Why do we need an abstract representation of a problem?
 - Need a universal formalism, independent of any linguistic/programming languages

Abstract Representation of Problems

- We can classify problems by their abstract representation
 - Which problems are easy or hard?
 - Which problems need a lot of memory space?
 - Which problems can be solved by a quantum computer?

Definition

- \bullet Denote a realization of Turing Machine by $\mathcal M,$ which implements an algorithm for problem $\mathcal L$
 - Running time of $\mathcal M$ should be polynomial in the input size ($|\mathcal I|$, or the #bits to represent $\mathcal I$)
- If you claim that you know an answer of a decision problem (yes/no), then you should be able to present a proof
 - Denote an instance of $\mathcal L$ by $\mathcal I$, a witness (a proof of yes) by w
 - \frown \bigwedge Caveat: A witness does not need to be a solution for $\mathcal I$
 - $\mathcal{M}(\mathcal{I},w)$ should return TRUE, if w is a witness for $\mathcal I$
 - Example: $\mathcal{M}(\mathsf{isComposite}(21), 3 \times 7)$ returns TRUE

Definition (Class NP)

- \bullet Let $|\mathcal{I}|=\# \mathrm{bits}$ to represent $\mathcal I$ and $|w|=\# \mathrm{bits}$ to represent w
- Define a class of problems called NP: For all $\mathcal{L} \in NP$, there exist a polynomial-time bound \mathcal{M} and a polynomial function $p(\cdot)$, such that
 - If $\mathcal{I} \in \mathcal{L}$, then there exists a witness w where $|w| \leq p(|\mathcal{I}|)$, such that $\mathcal{M}(\mathcal{I}, w)$ returns TRUE, and
 - If $\mathcal{I} \notin \mathcal{L}$, then for any witness w where $|w| \leq p(|\mathcal{I}|)$, $\mathcal{M}(\mathcal{I},w)$ returns FALSE
- NP stands for Non-deterministic Polynomial-time
- NP are the problems that can be verified efficiently when given a proof
- Question: Is $\mathcal{L}_{isPrime} \in \mathsf{NP}?$ Is $\mathcal{L}_{isComposite} \in \mathsf{NP}?$

Definition (Class co-NP)

- Define a class of problems called co-NP: For all $\mathcal{L} \in$ co-NP, there exist a polynomial-time bound \mathcal{M} and a polynomial function $p(\cdot)$, such that
 - If $\mathcal{I} \notin \mathcal{L}$, then there exists a witness w where $|w| \le p(|\mathcal{I}|)$, such that $\mathcal{M}(\mathcal{I}, w)$ returns TRUE, and
 - If $\mathcal{I} \in \mathcal{L}$, then for any witness w where $|w| \leq p(|\mathcal{I}|)$, $\mathcal{M}(\mathcal{I},w)$ returns FALSE
- co-NP are problems that can be verified efficiently when given a counter-example
- $\bullet \ \mathcal{L} \in \mathsf{co-NP} \iff \overline{\mathcal{L}} \in \mathsf{NP}$
- Question: Is $\mathcal{L}_{isPrime} \in co-NP$? Is $\mathcal{L}_{isComposite} \in co-NP$?

What are Hard Problems?

Definition (Class P)

- Define a class of problems called P: For all $\mathcal{L} \in P$, there exists a polynomial-time bound \mathcal{M} , such that
 - If $\mathcal{I} \notin \mathcal{L}$, then without any witness, $\mathcal{M}(\mathcal{I},?)$ returns TRUE, and
 - If $\mathcal{I}\in\mathcal{L}$, then without any witness, $\mathcal{M}(\mathcal{I},?)$ returns FALSE
- P are problems that can generate a proof or a counter-example efficiently
- $\bullet \ \mathsf{P} \subseteq \mathsf{co-NP} \, \cap \, \mathsf{NP}$
- Question: Is $\mathcal{L}_{isPrime} \in P$?
- What are Hard Problems?
 - ► Conventional wisdom of computer scientists is that any problems that are not in P are hard
 - Otherwise, it is not time efficient to solve the problem (i.e. generating a proof or a counter-example)
 - ▶ Is that true? Million-dollar question that makes you immortal: $P \stackrel{?}{=} NP$

Definition (Reduction)

- \bullet Consider two decision problems $\mathcal{L}_1, \mathcal{L}_2 \in \mathsf{NP}$
 - There may exist a polynomial-time bound \mathcal{M} such that it maps an instance $\mathcal{I}_1 \in \mathcal{L}_1$ to an instance $\mathcal{I}_2 \in \mathcal{L}_2$
- A *polynomial-time reduction* from \mathcal{L}_1 to \mathcal{L}_2 if there exists a polynomial-time bound \mathcal{M} , such that
 - If $\mathcal{I}_1 \in \mathcal{L}_1$, then $\mathcal{M}(\mathcal{I}_1) \in \mathcal{L}_2$
- If \mathcal{L}_1 can be polynomial-time reduced to \mathcal{L}_2 , we write $\mathcal{L}_1 \preceq \mathcal{L}_2$
- Intuitively, if we can solve every $\mathcal{I}_2 \in \mathcal{L}_2$, then we can also solve every $\mathcal{I}_1 \in \mathcal{L}_1$ (but not necessarily vice versa). Namely, \mathcal{L}_2 is harder than \mathcal{L}_1

Example: Reduction from HamCyc to TSP

Definition

- TSP(C) (Travel Salesman Problem):
 - Given complete graph ${\mathcal G}$ of n vertices & non-negative edge costs
 - Decide if the minimum cost cycle that visits every vertex exactly once has a cost $\leq C$
- HamCyc (Hamiltonian Cycle Problem):
 - Given a graph \mathcal{G}' (may be not complete) of n vertices,
 - Decide if there is a cycle that visits every vertex exactly once
- \bullet We can show $\mathsf{HamCyc} \preceq \mathsf{TSP}(c \cdot n)$ for any constant c > 1
 - Given \mathcal{G}' , we construct \mathcal{G} with the same set of vertices in \mathcal{G}'
 - This is a reduction, because that
 - $\star~$ If \mathcal{G}' has a Hamiltonian cycle, then there exists a Hamiltonian cycle in \mathcal{G} with a cost $\leq c \cdot n$
 - $\star~$ If \mathcal{G}' has no Hamiltonian cycle, then any Hamiltonian cycle in \mathcal{G} will have a cost $>c\cdot n$

Definition (NP-hard and NP-complete)

- Define a class of problems called NP-hard:
 - If $\mathcal{L}' \preceq \mathcal{L}$ for any problem $\mathcal{L}' \in \mathsf{NP}$, then $\mathcal{L} \in \mathsf{NP}$ -hard

• Define a class of problems called NP-complete :

If $\mathcal{L} \in \mathsf{NP}\text{-hard}$ and $\mathcal{L} \in \mathsf{NP}$, then $\mathcal{L} \in \mathsf{NP}\text{-complete}$

- NP-complete = NP \cap NP-hard
- NP-hard refers to the problems that are at least as hard as any problem in NP
- NP-complete refers to the hardest problem in NP
- Which is the hardest problem in NP?

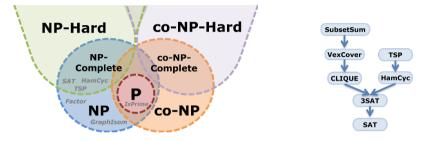
Definition (SAT (Boolean Satisfiability Problem))

- A SAT is to decide if a given Boolean expression (that combines Boolean variables with Boolean operators) is satisfiable (i.e. there exists an assignment of truth values to the variables to make entire expression true)
- E.g., decide if $\neg x_1 \lor (x_2 \land x_4) \lor (x_1 \land \neg x_3 \land x_4 \land x_5)$ is satisfiable

Theorem (Cook's Theorem)

- SAT is NP-complete
- Cook's theorem implies that all NP-hard problems in NP are as hard as SAT

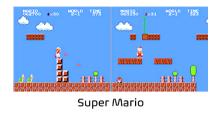
Hierarchy of Hardness



- \land Unknown: P \subsetneq co-NP \cap NP? P \neq co-NP-complete \neq NP-complete? P=co-NP=NP?
- Chains of reductions for NP-complete problems
 - E.g., HamCyc \leq TSP and SAT \leq HamCyc
 - ► Hence, HamCyc and TSP are also NP-complete

- 3SAT:
 - > 3-literal satisfiability problem, where each clause is limited to at most three literals
 - $\blacktriangleright \mathsf{E.g.}, \ (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_4) \land (x_1 \lor \neg x_2 \lor x_4)$
- CLIQUE:
 - ▶ Decide if there exists a clique (a complete sub-graph) of a certain size in a given graph
- VexCover:
 - Decide if there exists a subset of vertices of a certain size that include at least one endpoint of every edge of a given graph
- SubsetSum:
 - Decide if there exists a subset of numbers that sum to a certain value in a given set of numbers
- and many real-life NP-complete problems ...

Hard Recreational Games 🎮



- Sudoku is NP-complete
- Minesweeper is NP-complete
 - Decide if there exist consistent mine locations for the uncovered cells given a number of covered cells in a Minesweeper game
- SuperMario is NP-complete
 - Decide if there exists a game play to win a Super Mario game

Optimization Problems

• Often, we don't need to solve the hard problems exactly

Definition (NP-optimization)

• An optimization problem $\mathcal X$ has an objective function $f(\cdot)$, which maps every instance $\mathcal I$ and solution (or witness) $\mathcal S$ to a numerical value $f(\mathcal I,\mathcal S)$

E.g., In TSP, \mathcal{I} is a graph \mathcal{G} , \mathcal{S} is a cycle in \mathcal{G} , $f(\cdot)$ measures the total cost of \mathcal{S}

- A minimization (or maximization) problem \mathcal{X} is optimization problem \mathcal{X} to find \mathcal{S} such that $f(\mathcal{S}, \mathcal{I})$ is minimized (or maximized) for a given instance \mathcal{I}
- A minimization (or maximization) problem \mathcal{X} is NP-optimization, if deciding there exists \mathcal{S} such that $f(\mathcal{S}, \mathcal{I}) \leq C$ (or $f(\mathcal{S}, \mathcal{I}) \geq C$) is NP-hard
- We also call a NP-optimization problem NP-hard
 - Finding an optimal solution is harder than deciding if a solution of a certain value exists

Approximation Algorithms

• Finding an optimal solution to a NP-hard problem is difficult. How about approximation?

Definition (Approximation Ratio for Minimization Problem)

- \bullet Consider an NP-hard minimization problem ${\mathcal X}$ with an instance denoted by ${\mathcal I}$
 - Let $\mathsf{Opt}(\mathcal{I})$ be an optimal solution, and objective function be $fig(\mathsf{Opt}(\mathcal{I})ig)$
 - Consider a polynomial-time algorithm ${\mathcal A}$ that produces a solution ${\mathcal A}({\mathcal I})$

• Define minimization approximation ratio: $\alpha_n(\mathcal{A}) = \max_{\mathcal{I}:|\mathcal{I}| \leq n} \frac{f(\mathcal{A}(\mathcal{I}))}{f(\mathsf{Opt}(\mathcal{I}))}$

Definition (Approximation Ratio for Maximization Problem)

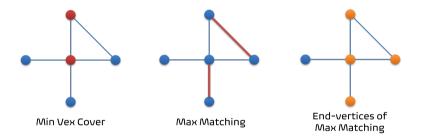
- \bullet Consider an NP-hard maximization problem ${\mathcal X}$ with an instance denoted by ${\mathcal I}$
 - Consider a polynomial-time algorithm ${\mathcal A}$ that produces a solution ${\mathcal A}({\mathcal I})$
- Define maximization approximation ratio: $\alpha_n(\mathcal{A}) = \min_{\mathcal{I}:|\mathcal{I}| \le n} \frac{f(\mathcal{A}(\mathcal{I}))}{f(\mathsf{Opt}(\mathcal{I}))}$

- We aim to find a polynomial-time **approximation algorithm** A with a good approximation ratio $\alpha_n(A)$ to bound the gap from an optimal solution
 - Minimization Problem: $f(\mathcal{A}(\mathcal{I})) \leq \alpha_n(\mathcal{A}) \cdot f(\mathsf{Opt}(\mathcal{I}))$
 - Maximization Problem: $f(\mathcal{A}(\mathcal{I})) \geq \alpha_n(\mathcal{A}) \cdot f(\mathsf{Opt}(\mathcal{I}))$
- $\alpha_n(\mathcal{A})$ depends on the input size $|\mathcal{I}|$
 - $\alpha_n(\mathcal{A})$ is the worst-case ratio considering all instances that are bounded by size n
- For a NP-hard problem, $\alpha_n(\mathcal{A}) = 1$ is impossible, unless $\mathsf{P} = \mathsf{NP}$
- However, can we come up with a polynomial-time algorithm \mathcal{A} , such that $\alpha_n(\mathcal{A})$ is sufficiently good? What is the best $\alpha_n(\mathcal{A})$ that we can achieve?

Example (VexCover)

- VexCover (Minimum Vertex Cover Problem):
 - Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, find a minimum subset of vertices $\tilde{\mathcal{V}} \subseteq \mathcal{V}$, such that every $e \in \mathcal{E}$ has one end-vertex in $\tilde{\mathcal{V}}$
- MaximalMatch (Maximal Matching Problem):
 - Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, find a maximal subset of edges $\tilde{\mathcal{E}} \subseteq \mathcal{E}$, such that no $e \in \tilde{\mathcal{E}}$ share the same vertex
- VexCover is NP-complete
- But MaximalMatch is easy
 - Is MaximalMatch in P?

Approximation Algorithm: Vertex Cover



Algorithm \mathcal{A}_{vxc}

- \bullet Solve MaximalMatch on $\mathcal{G},$ and the solution is denoted by $\tilde{\mathcal{E}}$
- Output the set of end-vertices in every $e\in \tilde{\mathcal{E}}$

Theorem (2-Approximability of VexCover)

 A_{vxc} always outputs a vertex cover. The approximation ratio of A_{vxc} is $\alpha_n(A_{\text{vxc}}) \leq 2$

Proof:

- Let Opt be a minimum set of vertex cover
- \bullet Consider an edge (u,v) in a maximal matching $\tilde{\mathcal{E}}$
- One of u, v must be in Opt, otherwise, (u, v) is not covered. Hence, $|\tilde{\mathcal{E}}| \leq |\mathsf{Opt}|$
- The number of vertices output from \mathcal{A}_{vxc} is $f(\mathcal{A}_{vxc}) \leq 2|\tilde{\mathcal{E}}|$. Hence, $f(\mathcal{A}_{vxc}) \leq 2|\mathsf{Opt}|$

Approximation Algorithm: TSP

Example (TSP)

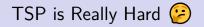
• Recall that $\mathsf{HamCyc} \preceq \mathsf{TSP}(c \cdot n)$ for any constant c > 1

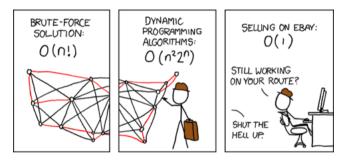
Theorem (Inapproximability of TSP)

There exists no polynomial-time A for TSP such that $\alpha_n(A)$ is a constant c, unless P = NP

Proof:

- Let Opt be a minimum cycle in TSP
- Use contradiction suppose $\alpha_n(\mathcal{A}) = c$, and use reduction HamCyc $\preceq \mathsf{TSP}(c \cdot n)$
- Then there exists a polynomial-time algorithm ${\cal A}$ that produces a cycle in TSP with $f({\cal A}) \leq c \cdot f({\rm Opt})$
- By reduction HamCyc \leq TSP $(c \cdot n)$, if there exists a Hamiltonian cycle, $f(\mathsf{Opt}) = n$
- \bullet Hence, $f(\mathcal{A}) \leq c \cdot n \iff$ there exists a Hamiltonian cycle
- $\bullet\,$ This gives a polynomial-time algorithm to solve HamCyc and hence, $\mathsf{P}=\mathsf{NP}$





• TSP is not only NP-hard, but also inapproximable within any constant approximation ratio

- In fact, it is inapproximable within any polynomial approximation ratio
- Is it inapproximable in practice?
 - ▶ Not in specific settings, e.g. in an Euclidean space

Follow-up Questions 🤔

- Is NP-hardness an accurate description of computational hardness?
 - No, but it is close. Turing Machine, with no memory access bottleneck, is not a realistic computer model
 - ► A more realistic model is von Neumann model, which has a memory hierarchy with different access speeds and capacities
- Why do we expect $P \neq NP$, even though we may not be able to prove it?
 - "If P = NP, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in "creative leaps," no fundamental gap between solving a problem and recognizing the solution once it's found. Everyone who could appreciate a symphony would be Mozart; everyone who could follow a step-by-step argument would be Gauss; everyone who could recognize a good investment strategy would be Warren Buffett." Scott Aaronson
 - Cryptography critically relies on efficiently verifiable but intractable problems. If P = NP, then there will be no asymmetric cryptography, or one-way hash function

Follow-up Questions 🤔

- Why do we bother NP-hard problems, if powerful quantum computers are coming soon?
 - Only two useful quantum algorithms can solve classical (non-quantum) problems: Shor algorithm and Gover algorithm – both are insufficient to solve NP-hard problems in general
 - Quantum heuristics are applied to solve classical problems. But they are not proven to be better than classical approximation algorithms - in fact, there are a lot of skepticisms
 - Quantum computers are better for solving quantum problems
- Why do we bother approximation algorithms, if machine learning can solve many hard problems?
 - ▶ Machine learning is mostly heuristics do not have universal results on approximation ratios
 - Many empirical results are not replicable, or are specific to particular experimental data
 - Machine learning can not be extended to a problem of arbitrary size it needs a lot of training data, which is impractical for large problems
 - ▶ But there are provable machine learning algorithms for limited applications

References

Reference Materials

- Introduction to Algorithms (Cormen, Leiserson, Rivest, Stein), 4th ed, MIT Press
 - Chapters 34-35
- Approximation Algorithms (V. Vazirani), Springer
 - Chapter 1, Appendix A

Recommended Materials

• Survey of $P \stackrel{?}{=} NP$ (Scott Aaronson),

https://www.scottaaronson.com/papers/pnp-kindle.pdf

• f Watch online tutorial videos:

https://youtube.com/playlist?list=PLlwsleWT767dnN25K_QgvdKkovK_t4K6-

Related Courses in Advanced Algorithms

Related Courses in Other Universities

- Harvard (CS 224) Advanced Algorithms: https://people.seas.harvard.edu/~cs224/fall14/lec.html
- CMU (15-850) Advanced Algorithms: http://www.cs.cmu.edu/~15850/
- Princeton (COS 521) Advanced Algorithm Design: https://www.cs.princeton.edu/courses/archive/fall18/cos521/
- MIT (6.854J) Advanced Algorithms: https://ocw.mit.edu/courses/6-854j-advanced-algorithms-fall-2005/
- Stanford (CS 361B) Advanced Algorithms: https://web.stanford.edu/class/cs361b/