Lecture 1: Computational Complexity 101
Advanced Algorithms

Sid Chi-Kin Chau

Australian National University

sid.chau@anu.edu.au

October 9, 2022
Computational Complexity 101
Algorithms vs. Heuristics

Definition (Algorithms)
- Based on good understanding of performance and optimality with rigorous analysis
- Supported by theoretical evidence and universal results
- E.g., approximation algorithms with proven approximation ratios

Definition (Heuristics)
- Based on mostly guess work
- Empirically driven, but with no universal result and not backed by rigorous analysis
- E.g., meta-heuristics (e.g., genetic algorithms)
How to solve Towers of Hanoi? Is it Hard?

Let Hanoi\([n, r]\) be the algorithm that moves the smallest \(n\) disks from the left rod to rod \(r \in \{\text{middle, right}\}\)

Algorithm Hanoi\([n, r]\)

- If \(n > 1\) then
 - Hanoi\([n - 1, \{\text{middle, right}\}\setminus\{r\}]\)
 - Move the remaining \(n\)-th disk to rod \(r\)
 - Hanoi\([n - 1, r]\)
- Else
 - Move the smallest disk to rod \(r\)

- Running time of Hanoi\([n, r]\) is \(\Omega(2^n)\)
- Is Towers of Hanoi a hard problem to solve?
How to solve Sudoku? Is it Hard?

- Can you solve a $3^2 \times 3^2$ Sudoku? How about solving a $n^2 \times n^2$ Sudoku?
- Can you check a given $3^2 \times 3^2$ Sudoku solution? How about checking a $n^2 \times n^2$ Sudoku solution?
Mathematical Formalization of Algorithms

Algorithms are represented by mechanical operations (i.e. program) of a universal problem solver (i.e. Turing machine)

- An algorithm is a mapping from a tape of input sequence of symbols (i.e. problem instance) to an output sequence of symbols (i.e. answer)
- Universal Turing Machine - Can simulate any programs and the tape is also consisted of an input program

Figure: Watch a real-life Turing machine: 📹 https://youtu.be/E3keLeMwfHY
Abstract Representation of Problems

Definition (Problems, Instances, Languages)

- We fix a certain encoding scheme $\text{Enc}(\cdot)$ that maps a linguistic representation of a sentence to a binary representation (e.g. ASCII)
- A problem is represented by a subset of all (finite or infinite) binary strings $\subseteq \{0, 1\}^*$
 - An instance of a problem is translated to a binary string by $\text{Enc}(\cdot)$, denoted by $I \in \{0, 1\}^*$
 - Multiple instances may have the same answer
 - The simplest of answer is binary (yes/no) for a decision problem
 - A decision problem can be represented by all the “yes” instances, denoted by a subset $\mathcal{L} \subseteq \{0, 1\}^*$
 - \mathcal{L} is also called a “language”

- **Caveat**: Don’t need to pay attention to a particular encoding scheme
 - We focus on an abstract representation of a problem
Example (Problem: isPrime(X))

- Enc("isPrime(23)") \mapsto 101000100100
- Enc("isPrime(25)") \mapsto 000010110011
- Enc("isPrime(27)") \mapsto 1100010110011
- Enc("isPrime(29)") \mapsto 0000000100010

Problem isPrime is represented by $L_{\text{isPrime}} = \{101000100100, 0000000100010, \ldots\}$

Let $\overline{L}_{\text{isPrime}} \triangleq \{0, 1\}^* \setminus L_{\text{isPrime}} = \{00010110011, 1100010110011, \ldots\}$

Why do we need an abstract representation of a problem?
- Need a universal formalism, independent of any linguistic/programming languages
Abstract Representation of Problems

- We can classify problems by their abstract representation
 - **Which problems are easy or hard?**
 - Which problems need a lot of memory space?
 - Which problems can be solved by a quantum computer?

Definition

- Denote a realization of Turing Machine by \(M \), which implements an algorithm for problem \(\mathcal{L} \)
 - Running time of \(M \) should be polynomial in the input size (\(|\mathcal{I}|\), or the \#bits to represent \(\mathcal{I} \))
- If you claim that you know an answer of a decision problem (yes/no), then you should be able to present a proof
 - Denote an instance of \(\mathcal{L} \) by \(\mathcal{I} \), a witness (a proof of yes) by \(w \)
 - Caveat: A witness does not need to be a solution for \(\mathcal{I} \)
 - \(M(\mathcal{I}, w) \) should return TRUE, if \(w \) is a witness for \(\mathcal{I} \)
 - Example: \(M(\text{isComposite}(21), 3 \times 7) \) returns TRUE
What are Hard Problems?

Definition (Class NP)

- Let $|I| = \#\text{bits to represent } I$ and $|w| = \#\text{bits to represent } w$
- Define a class of problems called NP: For all $L \in \text{NP}$, there exist a polynomial-time bound M and a polynomial function $p(\cdot)$, such that
 - If $I \in L$, then there exists a witness w where $|w| \leq p(|I|)$, such that $M(I, w)$ returns TRUE, and
 - If $I \notin L$, then for any witness w where $|w| \leq p(|I|)$, $M(I, w)$ returns FALSE

- NP stands for Non-deterministic Polynomial-time
- NP are the problems that can be verified efficiently when given a proof
- Question: Is $L_{\text{isPrime}} \in \text{NP}$? Is $L_{\text{isComposite}} \in \text{NP}$?
What are Hard Problems?

Definition (Class co-NP)

Define a class of problems called co-NP: For all $\mathcal{L} \in \text{co-NP}$, there exist a polynomial-time bound M and a polynomial function $p(\cdot)$, such that

- If $\mathcal{I} \notin \mathcal{L}$, then there exists a witness w where $|w| \leq p(|\mathcal{I}|)$, such that $M(\mathcal{I}, w)$ returns TRUE, and
- If $\mathcal{I} \in \mathcal{L}$, then for any witness w where $|w| \leq p(|\mathcal{I}|)$, $M(\mathcal{I}, w)$ returns FALSE

- co-NP are problems that can be verified efficiently when given a counter-example
- $\mathcal{L} \in \text{co-NP} \iff \overline{\mathcal{L}} \in \text{NP}$
- Question: Is $\mathcal{L}_{\text{isPrime}} \in \text{co-NP}$? Is $\mathcal{L}_{\text{isComposite}} \in \text{co-NP}$?
What are Hard Problems?

Definition (Class P)

- Define a class of problems called P: For all $L \in P$, there exists a polynomial-time bound M, such that
 - If $I \not\in L$, then without any witness, $M(I, ?)$ returns TRUE, and
 - If $I \in L$, then without any witness, $M(I, ?)$ returns FALSE

- P are problems that can generate a proof or a counter-example efficiently
- $P \subseteq \text{co-NP} \cap \text{NP}$
- Question: Is $L_{\text{isPrime}} \in P$?
- What are Hard Problems?
 - Conventional wisdom of computer scientists is that any problems that are not in P are hard
 - Otherwise, it is not time efficient to solve the problem (i.e. generating a proof or a counter-example)
 - Is that true? Million-dollar question that makes you immortal: $P \overset{?}{=} \text{NP}$
Define a polynomial-time reduction from L_1 to L_2 if there exists a polynomial-time bound M, such that

- $M(I_1) \in L_2$ for every $I_1 \in L_1$

Intuitively, if we can solve every $I_2 \in L_2$, then we can also solve every $I_1 \in L_1$ (but not necessarily vice versa). Namely, L_2 is harder than L_1.
Example: Reduction from HamCyc to TSP

Definition

- **TSP\((C)\) (Travel Salesman Problem):**
 - Given complete graph \(G\) of \(n\) vertices & non-negative edge costs
 - Decide if the minimum cost cycle that visits every vertex exactly once has a cost \(\leq C\)

- **HamCyc (Hamiltonian Cycle Problem):**
 - Given a graph \(G'\) (may be not complete) of \(n\) vertices,
 - Decide if there is a cycle that visits every vertex exactly once

We can show HamCyc \(\leq TSP(c \cdot n)\) for any constant \(c > 1\)

- Given \(G'\), we construct \(G\) with the same set of vertices in \(G'\)
 - If \(e \in G'\), then \(c_G(e) = 1\), otherwise, \(c_G(e) = c \cdot n\)
 - This is a reduction, because that
 - If \(G'\) has a Hamiltonian cycle, then there exists a Hamiltonian cycle in \(G\) with a cost \(\leq c \cdot n\)
 - If \(G'\) has no Hamiltonian cycle, then any Hamiltonian cycle in \(G\) will have a cost \(> c \cdot n\)
Are all Hard Problems equally Hard?

Definition (NP-hard and NP-complete)

- Define a class of problems called NP-hard:
 - If $L' \leq L$ for any problem $L' \in \text{NP}$, then $L \in \text{NP-hard}$

- Define a class of problems called NP-complete:
 - If $L \in \text{NP-hard}$ and $L \in \text{NP}$, then $L \in \text{NP-complete}$

- NP-complete $= \text{NP } \cap \text{NP-hard}$
- NP-hard refers to the problems that are at least as hard as any problem in NP
- NP-complete refers to the hardest problem in NP
- Which is the hardest problem in NP?
Hardness: Are all hard problems equally hard?

Definition (SAT (Boolean Satisfiability Problem))
- A SAT is to decide if a given Boolean expression (that combines Boolean variables with Boolean operators) is satisfiable (i.e. there exists an assignment of truth values to the variables to make entire expression true)

E.g., decide if $\neg x_1 \lor (x_2 \land x_4) \lor (x_1 \land \neg x_3 \land x_4 \land x_5)$ is satisfiable

Theorem (Cook’s Theorem)
- SAT is NP-complete

Cook’s theorem implies that all NP-hard problems in NP are as hard as SAT
Hierarchy of Hardness

⚠️ Unknown: $P \subsetneq \text{co-NP} \cap \text{NP}$? $P \neq \text{co-NP-complete} \neq \text{NP-complete}$? $P = \text{co-NP} = \text{NP}$?

- Chains of reductions for NP-complete problems
 - E.g., HamCyc \leq TSP and SAT \leq HamCyc
 - Hence, HamCyc and TSP are also NP-complete
NP-Complete Problems

- **3SAT:**
 - 3-literal satisfiability problem, where each clause is limited to at most three literals
 - E.g., \((\neg x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_4) \land (x_1 \lor \neg x_2 \lor x_4)\)

- **CLIQUE:**
 - Decide if there exists a clique (a complete sub-graph) of a certain size in a given graph

- **VexCover:**
 - Decide if there exists a subset of vertices of a certain size that include at least one endpoint of every edge of a given graph

- **SubsetSum:**
 - Decide if there exists a subset of numbers that sum to a certain value in a given set of numbers

- and many real-life NP-complete problems ...
Hard Recreational Games

- Sudoku is NP-complete
- Minesweeper is NP-complete
 - Decide if there exist consistent mine locations for the uncovered cells given a number of covered cells in a Minesweeper game
- SuperMario is NP-complete
 - Decide if there exists a game play to win a Super Mario game
 - Watch a proof for the NP-Hardness of SuperMario: ![YouTube link](https://youtu.be/oS8m9fSk-Wk)
Hard Problems: So What? 🤔

OUR PROJECT PLAN IS SO COMPLICATED THAT FAILURE IS ASSURED.

BUT COMPLEXITY IS TOO ABSTRACT FOR YOU TO MANAGE, SO INSTEAD YOU WILL SPRAY MY ENERGY INTO THE VORTEX OF FAILURE.

GO.

I NEED YOU TO FINISH IT SIX WEEKS SOONER FOR A TRADE SHOW.
Often, we don’t need to solve the hard problems \textbf{exactly}.

Definition (NP-optimization)

- An optimization problem \mathcal{X} has an objective function $f(\cdot)$, which maps every instance \mathcal{I} and solution (or witness) S to a numerical value $f(\mathcal{I}, S)$.
 - E.g., In TSP, \mathcal{I} is a graph G, S is a cycle in G, $f(\cdot)$ measures the total cost of S.
- A minimization (or maximization) problem \mathcal{X} is optimization problem \mathcal{X} to find S such that $f(S, \mathcal{I})$ is minimized (or maximized) for a given instance \mathcal{I}.
- A minimization (or maximization) problem \mathcal{X} is NP-optimization, if deciding there exists S such that $f(S, \mathcal{I}) \leq C$ (or $f(S, \mathcal{I}) \geq C$) is NP-hard.

We also call a NP-optimization problem NP-hard.
- Finding an optimal solution is harder than deciding if a solution of a certain value exists.
Approximation Algorithms

- Finding an optimal solution to a NP-hard problem is difficult. How about approximation?

Definition (Approximation Ratio for Minimization Problem)

- Consider an NP-hard minimization problem \mathcal{X} with an instance denoted by \mathcal{I}
 - Let $\text{Opt}(\mathcal{I})$ be an optimal solution, and objective function be $f(\text{Opt}(\mathcal{I}))$
 - Consider a polynomial-time algorithm \mathcal{A} that produces a solution $\mathcal{A}(\mathcal{I})$

- Define minimization approximation ratio: $\alpha_n(\mathcal{A}) = \max_{\mathcal{I}: |\mathcal{I}| \leq n} \frac{f(\mathcal{A}(\mathcal{I}))}{f(\text{Opt}(\mathcal{I}))}$

Definition (Approximation Ratio for Maximization Problem)

- Consider an NP-hard maximization problem \mathcal{X} with an instance denoted by \mathcal{I}
 - Consider a polynomial-time algorithm \mathcal{A} that produces a solution $\mathcal{A}(\mathcal{I})$

- Define maximization approximation ratio: $\alpha_n(\mathcal{A}) = \min_{\mathcal{I}: |\mathcal{I}| \leq n} \frac{f(\mathcal{A}(\mathcal{I}))}{f(\text{Opt}(\mathcal{I}))}$
Approximation Algorithms

- We aim to find a polynomial-time **approximation algorithm** A with a good approximation ratio $\alpha_n(A)$ to bound the gap from an optimal solution
 - Minimization Problem: $f(A(I)) \leq \alpha_n(A) \cdot f(\text{Opt}(I))$
 - Maximization Problem: $f(A(I)) \geq \alpha_n(A) \cdot f(\text{Opt}(I))$

- $\alpha_n(A)$ depends on the input size $|I|$
 - $\alpha_n(A)$ is the worst-case ratio considering all instances that are bounded by size n

- For a NP-hard problem, $\alpha_n(A) = 1$ is impossible, unless $P = NP$

- However, can we come up with a polynomial-time algorithm A, such that $\alpha_n(A)$ is sufficiently good? What is the best $\alpha_n(A)$ that we can achieve?
Approximation Algorithm: Vertex Cover

Example (VexCover)

- **VexCover (Minimum Vertex Cover Problem):**
 - Given a graph $G = (V, E)$, find a minimum subset of vertices $\tilde{V} \subseteq V$, such that every $e \in E$ has one end-vertex in \tilde{V}.

- **MaximalMatch (Maximal Matching Problem):**
 - Given a graph $G = (V, E)$, find a maximal subset of edges $\tilde{E} \subseteq E$, such that no $e \in \tilde{E}$ share the same vertex.

- **VexCover is NP-complete**
- **But MaximalMatch is easy**
 - Is MaximalMatch in P?
Approximation Algorithm: Vertex Cover

Min Vex Cover

Max Matching

End-vertices of Max Matching
Approximation Algorithm: Vertex Cover

Algorithm A_{vxc}

- Solve MaximalMatch on G, and the solution is denoted by \tilde{E}
- Output the set of end-vertices in every $e \in \tilde{E}$

Theorem (2-Approximability of VexCover)

A_{vxc} always outputs a vertex cover. The approximation ratio of A_{vxc} is $\alpha_{n}(A_{vxc}) \leq 2$

Proof:

- Let Opt be a minimum set of vertex cover
- Consider an edge (u, v) in a maximal matching \tilde{E}
- One of u, v must be in Opt, otherwise, (u, v) is not covered. Hence, $|\tilde{E}| \leq |\text{Opt}|$
- The number of vertices output from A_{vxc} is $f(A_{vxc}) \leq 2|\tilde{E}|$. Hence, $f(A_{vxc}) \leq 2|\text{Opt}|$
Approximation Algorithm: TSP

Example (TSP)
- Recall that $\text{HamCyc} \leq \text{TSP}(c \cdot n)$ for any constant $c > 1$

Theorem (Inapproximability of TSP)

There exists no polynomial-time \mathcal{A} for TSP such that $\alpha_n(\mathcal{A})$ is a constant c, unless $P = NP$

Proof:
- Let Opt be a minimum cycle in TSP
- Use contradiction – suppose $\alpha_n(\mathcal{A}) = c$, and use reduction $\text{HamCyc} \leq \text{TSP}(c \cdot n)$
- Then there exists a polynomial-time algorithm \mathcal{A} that produces a cycle in TSP with $f(\mathcal{A}) \leq c \cdot f(\text{Opt})$
- By reduction $\text{HamCyc} \leq \text{TSP}(c \cdot n)$, if there exists a Hamiltonian cycle, $f(\text{Opt}) = n$
- Hence, $f(\mathcal{A}) \leq c \cdot n \iff$ there exists a Hamiltonian cycle
- This gives a polynomial-time algorithm to solve HamCyc and hence, $P = NP$
TSP is Really Hard 😞

- TSP is not only NP-hard, but also inapproximable within any constant approximation ratio
 - In fact, it is inapproximable within any polynomial approximation ratio
- Is it inapproximable in practice?
 - Not in specific settings, e.g. in an Euclidean space
Is NP-hardness an accurate description of computational hardness?

- No, but it is close. Turing Machine, with no memory access bottleneck, is not a realistic computer model
- A more realistic model is von Neumann model, which has a memory hierarchy with different access speeds and capacities

Why do we expect $P \neq NP$, even though we may not be able to prove it?

- “If $P = NP$, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in “creative leaps,” no fundamental gap between solving a problem and recognizing the solution once it’s found. Everyone who could appreciate a symphony would be Mozart; everyone who could follow a step-by-step argument would be Gauss; everyone who could recognize a good investment strategy would be Warren Buffett.” - Scott Aaronson
- Cryptography critically relies on efficiently verifiable but intractable problems. If $P = NP$, then there will be no asymmetric cryptography, or one-way hash function
Follow-up Questions 🙋

- Why do we bother NP-hard problems, if powerful quantum computers are coming soon?
 - Only two useful quantum algorithms can solve classical (non-quantum) problems: Shor algorithm and Gover algorithm – both are insufficient to solve NP-hard problems in general
 - Quantum heuristics are applied to solve classical problems. But they are not proven to be better than classical approximation algorithms - in fact, there are a lot of skepticisms
 - Quantum computers are better for solving quantum problems

- Why do we bother approximation algorithms, if machine learning can solve many hard problems?
 - Machine learning is mostly heuristics – do not have universal results on approximation ratios
 - Many empirical results are not replicable, or are specific to particular experimental data
 - Machine learning can not be extended to a problem of arbitrary size – it needs a lot of training data, which is impractical for large problems
 - But there are provable machine learning algorithms for limited applications
References

Reference Materials
- Introduction to Algorithms (Cormen, Leiserson, Rivest, Stein), 4th ed, MIT Press
 - Chapters 34-35
- Approximation Algorithms (V. Vazirani), Springer
 - Chapter 1, Appendix A

Recommended Materials
- Survey of P \neq NP (Scott Aaronson),
- Watch online tutorial videos:
 https://youtube.com/playlist?list=PLlws1eWT767dnN25K_QgvdKkovK_t4K6-
Related Courses in Advanced Algorithms

Related Courses in Other Universities

- **Harvard (CS 224) Advanced Algorithms:**
 https://people.seas.harvard.edu/~cs224/fall14/lec.html

- **CMU (15-850) Advanced Algorithms:**

- **Princeton (COS 521) Advanced Algorithm Design:**
 https://www.cs.princeton.edu/courses/archive/fall18/cos521/

- **MIT (6.854J) Advanced Algorithms:**

- **Stanford (CS 361B) Advanced Algorithms:**
 https://web.stanford.edu/class/cs361b/