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Algorithms vs. Heuristics

Definition (Algorithms)
@ Based on good understanding of performance and optimality with rigorous analysis
@ Supported by theoretical evidence and universal results

o E.g., approximation algorithms with proven approximation ratios

Definition (Heuristics)
@ Based on mostly guess work

@ Empirically driven, but with no universal result and not backed by rigorous analysis

e E.g., meta-heuristics (e.g. genetic algorithms)
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How to solve Towers of Hanoi? Is it Hard?
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@ Let Hanoi[n, r| be the algorithm that moves
the smallest n disks from the left rod to rod
r € {middle, right}

Algorithm Hanoi[n, r]
o If n > 1 then
Hanoi[n — 1, {middle, right}\{r}]
Move the remaining n-th disk to rod r
Hanoi[n — 1, r]
o Else
Move the smallest disk to rod r

@ Running time of Hanoi[n,r] is 2(2")

@ Is Towers of Hanoi a hard problem to solve?
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How to solve Sudoku? Is it Hard?
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@ Can you solve a 32 x 32 Sudoku? How about solving a n? x n? Sudoku?

e Can you check a given 32 x 32 Sudoku solution? How about checking a n? x n? Sudoku
solution?
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Mathematical Formalization of Algorithms
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A Conceptual Turing Machine

Figure: Watch a real-life Turing machine: B8 https://youtu.be/E3keLeMwfHY

@ Algorithms are represented by mechanical operations (i.e. program) of a universal
problem solver (i.e. Turing machine)

» An algorithm is a mapping from a tape of input sequence of symbols (i.e. problem instance)
to an output sequence of symbols (i.e. answer)

» Universal Turing Machine - Can simulate any programs and the tape is also consisted of an
input program
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Abstract Representation of Problems

Definition (Problems, Instances, Languages)

@ We fix a certain encoding scheme Enc(-) that maps a linguistic representation of a
sentence to a binary representation (e.g. ASCII)

@ A problem is represented by a subset of all (finite or infinite) binary strings C {0,1}*
An instance of a problem is translated to a binary string by Enc(-), denoted by Z € {0, 1}*
Multiple instances may have the same answer
The simplest of answer is binary (yes/no) for a decision problem
A decision problem can be represented by all the “yes” instances, denoted by a subset
£ C{0,1}*

L is also called a “language”

e /\ Caveat: Don't need to pay attention to a particular encoding scheme
» We focus on an abstract representation of a problem
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Example: Decision Problem

Example (Problem: isPrime(X))
@ Enc("isPrime(23)") — 101000100100
° Enc( isPrime(25)") +— 000010110011
° c(‘ isPrime(27)") + 1100010110011
nc(” (29)")

° isPrime(29)") — 0000000100010
() coooooooo
@ Problem isPrime is represented by Lisprime = {101000100100, 0000000100010, ...}

Let Lisprime 2 {0, 11*\ Lisprime = {000010110011, 1100010110011, ...}

Why do we need an abstract representation of a problem?
> Need a universal formalism, independent of any linguistic/programming languages
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Abstract Representation of Problems

@ We can classify problems by their abstract representation

» Which problems are easy or hard?
» Which problems need a lot of memory space?
» Which problems can be solved by a quantum computer?

Definition
@ Denote a realization of Turing Machine by M, which implements an algorithm for
problem L
Running time of M should be polynomial in the input size (|Z|, or the #bits to represent 7)

@ If you claim that you know an answer of a decision problem (yes/no), then you should be
able to present a proof

Denote an instance of £ by Z, a witness (a proof of yes) by w
/\ Caveat: A witness does not need to be a solution for Z
M(Z,w) should return TRUE, if w is a witness for
Example: M (isComposite(21),3 x 7) returns TRUE

Sid Chau (ANU) Lec. 1: Computational Complexity 101 October 9, 2022 9/32



What are Hard Problems?

Definition (Class NP)
o Let |Z| = #bits to represent Z and |w| = #bits to represent w

@ Define a class of problems called NP: For all £ € NP, there exist a polynomial-time
bound M and a polynomial function p(-), such that

If Z € L, then there exists a witness w where |w| < p(|Z]), such that M(Z, w) returns
TRUE, and
If Z ¢ L, then for any witness w where |w| < p(|Z]), M(Z,w) returns FALSE

@ NP stands for Non-deterministic Polynomial-time
@ NP are the problems that can be verified efficiently when given a proof
@ Question: Is Lisprime € NP? Is Liscomposite € NP?
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What are Hard Problems?

Definition (Class co-NP)

@ Define a class of problems called co-NP: For all £ € co-NP, there exist a polynomial-time
bound M and a polynomial function p(-), such that

If Z ¢ L, then there exists a witness w where |w| < p(|Z
TRUE, and
If Z € L, then for any witness w where |w| < p(|Z]), M(Z,w) returns FALSE

). such that M(Z,w) returns

@ co-NP are problems that can be verified efficiently when given a counter-example
@ L Eco-NP «— L& NP
@ Question: Is Lisprime € co-NP? Is Liscomposite € cO-NP?
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What are Hard Problems?

Definition (Class P)

@ Define a class of problems called P: For all £ € P, there exists a polynomial-time bound
M, such that

If Z ¢ L, then without any witness, M(Z,?) returns TRUE, and
If Z € L, then without any witness, M(Z,?) returns FALSE

@ P are problems that can generate a proof or a counter-example efficiently
@ P C co-NP N NP
@ Question: Is Lisprime € P?

@ What are Hard Problems?

» Conventional wisdom of computer scientists is that any problems that are not in P are hard
» Otherwise, it is not time efficient to solve the problem (i.e. generating a proof or a
counter-example)

R
> |s that true? Million-dollar question that makes you immortal: P = NP
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Solve New Problems from Known Problems

Definition (Reduction)

@ Consider two decision problems L1, Lo € NP

There may exist a polynomial-time bound M such that it maps an instance Z; € £; to an
instance 7o € Lo

@ A polynomial-time reduction from L1 to Lo if there exists a polynomial-time bound M,
such that

If Z; € L4, then M(Il) € Lo

@ If £1 can be polynomial-time reduced to Lo, we write £1 < Lo

o Intuitively, if we can solve every 7y € L5, then we can also solve every Z; € £; (but not
necessarily vice versa). Namely, £, is harder than £
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Example: Reduction from HamCyc to TSP

Definition
e TSP(C) (Travel Salesman Problem):
Given complete graph G of n vertices & non-negative edge costs
Decide if the minimum cost cycle that visits every vertex exactly once has a cost < C
e HamCyc (Hamiltonian Cycle Problem):

Given a graph G’ (may be not complete) of n vertices,
Decide if there is a cycle that visits every vertex exactly once

@ We can show HamCyc < TSP(c - n) for any constant ¢ > 1
» Given G’, we construct G with the same set of vertices in G’
* If e € G', then cg(e) = 1, otherwise, cg(e) =c-n
» This is a reduction, because that

* If G’ has a Hamiltonian cycle, then there exists a Hamiltonian cycle in G with a cost <c¢-n
* If G’ has no Hamiltonian cycle, then any Hamiltonian cycle in G will have a cost > c-n
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Are all Hard Problems equally Hard?

Definition (NP-hard and NP-complete )

@ Define a class of problems called NP-hard:
If L' < L for any problem £’ € NP, then £ € NP-hard

Define a class of problems called NP-complete :
If £ € NP-hard and £ € NP, then £ € NP-complete

NP-complete = NP N NP-hard

NP-hard refers to the problems that are at least as hard as any problem in NP
NP-complete refers to the hardest problem in NP

Which is the hardest problem in NP?
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Hardness: Are all hard problems equally hard?

Definition (SAT (Boolean Satisfiability Problem))

@ A SAT is to decide if a given Boolean expression (that combines Boolean variables with Boolean

operators) is satisfiable (i.e. there exists an assignment of truth values to the variables to make entire

expression true)

e E.g., decide if —z1 V (x2 Axg) V (21 A 23 A x4 A X5) is satisfiable

Theorem (Cook’s Theorem)
@ SAT js NP-complete

@ Cook's theorem implies that all NP-hard problems in NP are as hard as SAT
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Hierarchy of Hardness
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@ Chains of reductions for NP-complete problems

» E.g., HomCyc < TSP and SAT < HamCyc
» Hence, HamCyc and TSP are also NP-complete
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NP-Complete Problems

@ 3SAT:

> 3-literal satisfiability problem, where each clause is limited to at most three literals
» Eg., (mz1 Vaa V-xg) A(ze VasVxg) A(zy Vze Vay)

CLIQUE:

» Decide if there exists a clique (a complete sub-graph) of a certain size in a given graph

@ VexCover:

» Decide if there exists a subset of vertices of a certain size that include at least one endpoint
of every edge of a given graph

@ SubsetSum:

» Decide if there exists a subset of numbers that sum to a certain value in a given set of
numbers

@ and many real-life NP-complete problems ...
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Hard Recreational Games 68

[ ]
&
E

‘ﬁé& xz0 VEEE® BB BEI8, s M RS

= o 0 |
I 2 |

mN
"
=

Nre

e |

= W)

o

I
SIS i

Minesweeper Super Mario

@ Sudoku is NP-complete

@ Minesweeper is NP-complete
» Decide if there exist consistent mine locations for the uncovered cells given a number of
covered cells in a Minesweeper game
@ SuperMario is NP-complete
» Decide if there exists a game play to win a Super Mario game
» Watch a proof for the NP-Hardness of SuperMario: B https://youtu.be/oS8m9fSk-Wk
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Hard Problems: So What? i}
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Optimization Problems

@ Often, we don't need to solve the hard problems exactly

Definition (NP-optimization)

@ An optimization problem X has an objective function f(-), which maps every instance Z
and solution (or witness) S to a numerical value f(Z,S)
E.g., In TSP, Z is a graph G, S is a cycle in G, f(-) measures the total cost of S

@ A minimization (or maximization) problem X is optimization problem X to find S such
that f(S,Z) is minimized (or maximized) for a given instance Z

@ A minimization (or maximization) problem X" is NP-optimization, if deciding there exists
S such that f(S,Z) < C (or f(S,Z) > C) is NP-hard

@ We also call a NP-optimization problem NP-hard
» Finding an optimal solution is harder than deciding if a solution of a certain value exists
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Approximation Algorithms

e Finding an optimal solution to a NP-hard problem is difficult. How about approximation?

Definition (Approximation Ratio for Minimization Problem)

@ Consider an NP-hard minimization problem X with an instance denoted by 7
Let Opt(Z) be an optimal solution, and objective function be f(Opt(Z))
Consider a polynomial-time algorithm A that produces a solution A(Z)

f(4@)

@ Define minimization approximation ratio: ay,(A) = maxz. 7j<, ———~
" H1<n % (ope()

Definition (Approximation Ratio for Maximization Problem)

@ Consider an NP-hard maximization problem X with an instance denoted by 7
Consider a polynomial-time algorithm A that produces a solution A(Z)
f(4@)

e Define maximization approximation ratio: ay,(A) = ming. 7j<, —~——~
g HE1<n % (opr()
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Approximation Algorithms

@ We aim to find a polynomial-time approximation algorithm A with a good
approximation ratio «,(.A) to bound the gap from an optimal solution
» Minimization Problem: f(A(Z)) < o, (A) - f(Opt(Z))
» Maximization Problem: f(A(Z)) > a,(A) - f(Opt(Z))
e ay,(A) depends on the input size |Z|
» «,(A) is the worst-case ratio considering all instances that are bounded by size n
e For a NP-hard problem, «,,(A) = 1 is impossible, unless P = NP
@ However, can we come up with a polynomial-time algorithm A, such that «,(A) is
sufficiently good? What is the best a,,(A) that we can achieve?
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Approximation Algorithm: Vertex Cover

Example (VexCover)

@ VexCover (Minimum Vertex Cover Problem):
Given a graph G = (V, &), find a minimum subset of vertices V C V), such that every e € £
has one end-vertex in V

e MaximalMatch (Maximal Matching Problem):
Given a graph G = (V, £), find a maximal subset of edges & C &, such that no e € & share
the same vertex

@ VexCover is NP-complete

@ But MaximalMatch is easy
Is MaximalMatch in P?
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Approximation Algorithm: Vertex Cover

S
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Min Vex Cover Max Matching Max Matching
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Approximation Algorithm: Vertex Cover

Algorithm A,
@ Solve MaximalMatch on G, and the solution is denoted by &

e Output the set of end-vertices in every e € £

Theorem (2-Approximability of VexCover)

Ayxc always outputs a vertex cover. The approximation ratio of Ay is ap(Auxc) < 2

Proof:
o Let Opt be a minimum set of vertex cover
o Consider an edge (u,v) in a maximal matching £
@ One of u,v must be in Opt, otherwise, (u,v) is not covered. Hence, || < |Opt|
@ The number of vertices output from Ay is f(Awe) < 2|€|. Hence, f(Awe) < 2|Opt|
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Approximation Algorithm: TSP

Example (TSP)
@ Recall that HamCyc < TSP(c - n) for any constant ¢ > 1 {

Theorem (Inapproximability of TSP)
There exists no polynomial-time A for TSP such that o, (A) is a constant ¢, unless P = NP {

Proof:
@ Let Opt be a minimum cycle in TSP
@ Use contradiction — suppose ay,(A) = ¢, and use reduction HamCyc < TSP(c - n)
@ Then there exists a polynomial-time algorithm A that produces a cycle in TSP with
f(A) < c- f(Opt)
@ By reduction HamCyc < TSP(c - n), if there exists a Hamiltonian cycle, f(Opt) =n
@ Hence, f(A) < c¢-n <= there exists a Hamiltonian cycle
@ This gives a polynomial-time algorithm to solve HamCyc and hence, P = NP
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TSP is Really Hard ()
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@ TSP is not only NP-hard, but also inapproximable within any constant approximation ratio

» In fact, it is inapproximable within any polynomial approximation ratio

@ Is it inapproximable in practice?

» Not in specific settings, e.g. in an Euclidean space
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Follow-up Questions O

@ Is NP-hardness an accurate description of computational hardness?

» No, but it is close. Turing Machine, with no memory access bottleneck, is not a realistic
computer model

» A more realistic model is von Neumann model, which has a memory hierarchy with different
access speeds and capacities

@ Why do we expect P # NP, even though we may not be able to prove it?

> “If P = NP, then the world would be a profoundly different place than we usually assume it to be. There

would be no special value in “creative leaps,” no fundamental gap between solving a problem and recognizing
the solution once it's found. Everyone who could appreciate a symphony would be Mozart; everyone who
could follow a step-by-step argument would be Gauss; everyone who could recognize a good investment
strategy would be Warren Buffett.” - Scott Aaronson

» Cryptography critically relies on efficiently verifiable but intractable problems. If P = NP,

then there will be no asymmetric cryptography, or one-way hash function
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Follow-up Questions O

@ Why do we bother NP-hard problems, if powerful quantum computers are coming soon?
» Only two useful quantum algorithms can solve classical (non-quantum) problems: Shor
algorithm and Gover algorithm — both are insufficient to solve NP-hard problems in general
» Quantum heuristics are applied to solve classical problems. But they are not proven to be
better than classical approximation algorithms - in fact, there are a lot of skepticisms
» Quantum computers are better for solving quantum problems

@ Why do we bother approximation algorithms, if machine learning can solve many hard
problems?
» Machine learning is mostly heuristics — do not have universal results on approximation ratios
» Many empirical results are not replicable, or are specific to particular experimental data
» Machine learning can not be extended to a problem of arbitrary size — it needs a lot of
training data, which is impractical for large problems
» But there are provable machine learning algorithms for limited applications
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[] References

Reference Materials
@ Introduction to Algorithms (Cormen, Leiserson, Rivest, Stein), 4th ed, MIT Press
Chapters 34-35
@ Approximation Algorithms (V. Vazirani), Springer
Chapter 1, Appendix A

Recommended Materials

@ Survey of P Z NP (Scott Aaronson),
https://www.scottaaronson.com/papers/pnp-kindle.pdf

e BR Watch online tutorial videos:
https://youtube.com/playlist?list=PL1wsleWT767dnN25K_QgvdKkovK_t4K6-
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& Related Courses in Advanced Algorithms

Related Courses in Other Universities
@ Harvard (CS 224) Advanced Algorithms:
https://people.seas.harvard.edu/~cs224/falll4/lec.html
e CMU (15-850) Advanced Algorithms:
http://wuw.cs.cmu.edu/~15850/
@ Princeton (COS 521) Advanced Algorithm Design:
https://www.cs.princeton.edu/courses/archive/fall18/cos521/

e MIT (6.854J) Advanced Algorithms:
https://ocw.mit.edu/courses/6-854j-advanced-algorithms-fall-2005/

e Stanford (CS 361B) Advanced Algorithms:
https://web.stanford.edu/class/cs361b/
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