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≪Computational Complexity 101≫



Algorithms vs. Heuristics

Definition (Algorithms)
Based on good understanding of performance and optimality with rigorous analysis
Supported by theoretical evidence and universal results
E.g., approximation algorithms with proven approximation ratios

Definition (Heuristics)
Based on mostly guess work
Empirically driven, but with no universal result and not backed by rigorous analysis
E.g., meta-heuristics (e.g. genetic algorithms)
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How to solve Towers of Hanoi? Is it Hard?

Let Hanoi[n, r] be the algorithm that moves
the smallest n disks from the left rod to rod
r ∈ {middle, right}

Algorithm Hanoi[n, r]
If n > 1 then

I Hanoi[n− 1, {middle, right}\{r}]
I Move the remaining n-th disk to rod r
I Hanoi[n− 1, r]

Else
I Move the smallest disk to rod r

Running time of Hanoi[n, r] is Ω(2n)

Is Towers of Hanoi a hard problem to solve?
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How to solve Sudoku? Is it Hard?

Can you solve a 32 × 32 Sudoku? How about solving a n2 × n2 Sudoku?
Can you check a given 32 × 32 Sudoku solution? How about checking a n2 × n2 Sudoku
solution?
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Mathematical Formalization of Algorithms

Figure: Watch a real-life Turing machine: ���� https://youtu.be/E3keLeMwfHY

Algorithms are represented by mechanical operations (i.e. program) of a universal
problem solver (i.e. Turing machine)

I An algorithm is a mapping from a tape of input sequence of symbols (i.e. problem instance)
to an output sequence of symbols (i.e. answer)

I Universal Turing Machine - Can simulate any programs and the tape is also consisted of an
input program
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Abstract Representation of Problems

Definition (Problems, Instances, Languages)
We fix a certain encoding scheme Enc(·) that maps a linguistic representation of a
sentence to a binary representation (e.g. ASCII)
A problem is represented by a subset of all (finite or infinite) binary strings ⊆ {0, 1}∗

I An instance of a problem is translated to a binary string by Enc(·), denoted by I ∈ {0, 1}∗
I Multiple instances may have the same answer
I The simplest of answer is binary (yes/no) for a decision problem
I A decision problem can be represented by all the “yes” instances, denoted by a subset

L ⊆ {0, 1}∗
I L is also called a “language”

����Caveat: Don’t need to pay attention to a particular encoding scheme
I We focus on an abstract representation of a problem
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Example: Decision Problem

Example (Problem: isPrime(X))
Enc(“isPrime(23)”) 7→ 101000100100
Enc(“isPrime(25)”) 7→ 000010110011
Enc(“isPrime(27)”) 7→ 1100010110011
Enc(“isPrime(29)”) 7→ 0000000100010
· · · · · · · · ·

Problem isPrime is represented by LisPrime = {101000100100, 0000000100010, . . .}
Let LisPrime , {0, 1}∗\LisPrime = {000010110011, 1100010110011, . . .}

Why do we need an abstract representation of a problem?
I Need a universal formalism, independent of any linguistic/programming languages
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Abstract Representation of Problems

We can classify problems by their abstract representation
I Which problems are easy or hard?
I Which problems need a lot of memory space?
I Which problems can be solved by a quantum computer?

Definition
Denote a realization of Turing Machine by M, which implements an algorithm for
problem L

I Running time of M should be polynomial in the input size (|I|, or the #bits to represent I)
If you claim that you know an answer of a decision problem (yes/no), then you should be
able to present a proof

I Denote an instance of L by I, a witness (a proof of yes) by w
I ����Caveat: A witness does not need to be a solution for I
I M(I, w) should return TRUE, if w is a witness for I
I Example: M(isComposite(21), 3× 7) returns TRUE
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What are Hard Problems?

Definition (Class NP)
Let |I| = #bits to represent I and |w| = #bits to represent w
Define a class of problems called NP: For all L ∈ NP, there exist a polynomial-time
bound M and a polynomial function p(·), such that

I If I ∈ L, then there exists a witness w where |w| ≤ p(|I|), such that M(I, w) returns
TRUE, and

I If I /∈ L, then for any witness w where |w| ≤ p(|I|), M(I, w) returns FALSE

NP stands for Non-deterministic Polynomial-time
NP are the problems that can be verified efficiently when given a proof
Question: Is LisPrime ∈ NP? Is LisComposite ∈ NP?
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What are Hard Problems?

Definition (Class co-NP)
Define a class of problems called co-NP: For all L ∈ co-NP, there exist a polynomial-time
bound M and a polynomial function p(·), such that

I If I /∈ L, then there exists a witness w where |w| ≤ p(|I|), such that M(I, w) returns
TRUE, and

I If I ∈ L, then for any witness w where |w| ≤ p(|I|), M(I, w) returns FALSE

co-NP are problems that can be verified efficiently when given a counter-example
L ∈ co-NP ⇐⇒ L ∈ NP
Question: Is LisPrime ∈ co-NP? Is LisComposite ∈ co-NP?

Sid Chau (ANU) Lec. 1: Computational Complexity 101 October 9, 2022 11 / 32



What are Hard Problems?

Definition (Class P)
Define a class of problems called P: For all L ∈ P, there exists a polynomial-time bound
M, such that

I If I /∈ L, then without any witness, M(I, ?) returns TRUE, and
I If I ∈ L, then without any witness, M(I, ?) returns FALSE

P are problems that can generate a proof or a counter-example efficiently
P ⊆ co-NP ∩ NP
Question: Is LisPrime ∈ P?
What are Hard Problems?

I Conventional wisdom of computer scientists is that any problems that are not in P are hard
I Otherwise, it is not time efficient to solve the problem (i.e. generating a proof or a

counter-example)
I Is that true? Million-dollar question that makes you immortal: P ?

= NP
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Solve New Problems from Known Problems

Definition (Reduction)
Consider two decision problems L1,L2 ∈ NP

I There may exist a polynomial-time bound M such that it maps an instance I1 ∈ L1 to an
instance I2 ∈ L2

A polynomial-time reduction from L1 to L2 if there exists a polynomial-time bound M,
such that

I If I1 ∈ L1, then M(I1) ∈ L2

If L1 can be polynomial-time reduced to L2, we write L1 � L2

Intuitively, if we can solve every I2 ∈ L2, then we can also solve every I1 ∈ L1 (but not
necessarily vice versa). Namely, L2 is harder than L1
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Example: Reduction from HamCyc to TSP

Definition
TSP(C) (Travel Salesman Problem):

I Given complete graph G of n vertices & non-negative edge costs
I Decide if the minimum cost cycle that visits every vertex exactly once has a cost ≤ C

HamCyc (Hamiltonian Cycle Problem):
I Given a graph G′ (may be not complete) of n vertices,
I Decide if there is a cycle that visits every vertex exactly once

We can show HamCyc � TSP(c · n) for any constant c > 1
I Given G′, we construct G with the same set of vertices in G′

F If e ∈ G′, then cG(e) = 1, otherwise, cG(e) = c · n
I This is a reduction, because that

F If G′ has a Hamiltonian cycle, then there exists a Hamiltonian cycle in G with a cost ≤ c · n
F If G′ has no Hamiltonian cycle, then any Hamiltonian cycle in G will have a cost > c · n

Sid Chau (ANU) Lec. 1: Computational Complexity 101 October 9, 2022 14 / 32



Are all Hard Problems equally Hard?

Definition (NP-hard and NP-complete )
Define a class of problems called NP-hard:

I If L′ � L for any problem L′ ∈ NP, then L ∈ NP-hard
Define a class of problems called NP-complete :

I If L ∈ NP-hard and L ∈ NP, then L ∈ NP-complete

NP-complete = NP ∩ NP-hard
NP-hard refers to the problems that are at least as hard as any problem in NP
NP-complete refers to the hardest problem in NP
Which is the hardest problem in NP?
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Hardness: Are all hard problems equally hard?

Definition (SAT (Boolean Satisfiability Problem))
A SAT is to decide if a given Boolean expression (that combines Boolean variables with Boolean
operators) is satisfiable (i.e. there exists an assignment of truth values to the variables to make entire
expression true)

E.g., decide if ¬x1 ∨ (x2 ∧ x4) ∨ (x1 ∧ ¬x3 ∧ x4 ∧ x5) is satisfiable

Theorem (Cook’s Theorem)
SAT is NP-complete

Cook’s theorem implies that all NP-hard problems in NP are as hard as SAT
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Hierarchy of Hardness

����Unknown: P ( co-NP ∩ NP? P6=co-NP-complete 6=NP-complete? P=co-NP=NP?
Chains of reductions for NP-complete problems

I E.g., HamCyc � TSP and SAT � HamCyc
I Hence, HamCyc and TSP are also NP-complete
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NP-Complete Problems

3SAT:
I 3-literal satisfiability problem, where each clause is limited to at most three literals
I E.g., (¬x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ ¬x2 ∨ x4)

CLIQUE:
I Decide if there exists a clique (a complete sub-graph) of a certain size in a given graph

VexCover:
I Decide if there exists a subset of vertices of a certain size that include at least one endpoint

of every edge of a given graph
SubsetSum:

I Decide if there exists a subset of numbers that sum to a certain value in a given set of
numbers

and many real-life NP-complete problems ...

Sid Chau (ANU) Lec. 1: Computational Complexity 101 October 9, 2022 18 / 32



Hard Recreational Games���������

Sudoku is NP-complete
Minesweeper is NP-complete

I Decide if there exist consistent mine locations for the uncovered cells given a number of
covered cells in a Minesweeper game

SuperMario is NP-complete
I Decide if there exists a game play to win a Super Mario game
I Watch a proof for the NP-Hardness of SuperMario: ���� https://youtu.be/oS8m9fSk-Wk
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Hard Problems: So What? �������
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Optimization Problems

Often, we don’t need to solve the hard problems exactly

Definition (NP-optimization)
An optimization problem X has an objective function f(·), which maps every instance I
and solution (or witness) S to a numerical value f(I,S)

I E.g., In TSP, I is a graph G, S is a cycle in G, f(·) measures the total cost of S
A minimization (or maximization) problem X is optimization problem X to find S such
that f(S, I) is minimized (or maximized) for a given instance I
A minimization (or maximization) problem X is NP-optimization, if deciding there exists
S such that f(S, I) ≤ C (or f(S, I) ≥ C) is NP-hard

We also call a NP-optimization problem NP-hard
I Finding an optimal solution is harder than deciding if a solution of a certain value exists
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Approximation Algorithms

Finding an optimal solution to a NP-hard problem is difficult. How about approximation?

Definition (Approximation Ratio for Minimization Problem)
Consider an NP-hard minimization problem X with an instance denoted by I

I Let Opt(I) be an optimal solution, and objective function be f
(
Opt(I)

)
I Consider a polynomial-time algorithm A that produces a solution A(I)

Define minimization approximation ratio: αn(A) = maxI:|I|≤n
f
(
A(I)

)
f
(

Opt(I)
)

Definition (Approximation Ratio for Maximization Problem)
Consider an NP-hard maximization problem X with an instance denoted by I

I Consider a polynomial-time algorithm A that produces a solution A(I)

Define maximization approximation ratio: αn(A) = minI:|I|≤n
f
(
A(I)

)
f
(

Opt(I)
)
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Approximation Algorithms

We aim to find a polynomial-time approximation algorithm A with a good
approximation ratio αn(A) to bound the gap from an optimal solution

I Minimization Problem: f
(
A(I)

)
≤ αn(A) · f

(
Opt(I)

)
I Maximization Problem: f

(
A(I)

)
≥ αn(A) · f

(
Opt(I)

)
αn(A) depends on the input size |I|

I αn(A) is the worst-case ratio considering all instances that are bounded by size n

For a NP-hard problem, αn(A) = 1 is impossible, unless P = NP
However, can we come up with a polynomial-time algorithm A, such that αn(A) is
sufficiently good? What is the best αn(A) that we can achieve?
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Approximation Algorithm: Vertex Cover

Example (VexCover)
VexCover (Minimum Vertex Cover Problem):

I Given a graph G = (V, E), find a minimum subset of vertices Ṽ ⊆ V, such that every e ∈ E
has one end-vertex in Ṽ

MaximalMatch (Maximal Matching Problem):
I Given a graph G = (V, E), find a maximal subset of edges Ẽ ⊆ E , such that no e ∈ Ẽ share

the same vertex
VexCover is NP-complete
But MaximalMatch is easy

I Is MaximalMatch in P?
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Approximation Algorithm: Vertex Cover
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Approximation Algorithm: Vertex Cover

Algorithm Avxc

Solve MaximalMatch on G, and the solution is denoted by Ẽ
Output the set of end-vertices in every e ∈ Ẽ

Theorem (2-Approximability of VexCover)
Avxc always outputs a vertex cover. The approximation ratio of Avxc is αn(Avxc) ≤ 2

Proof:
Let Opt be a minimum set of vertex cover
Consider an edge (u, v) in a maximal matching Ẽ
One of u, v must be in Opt, otherwise, (u, v) is not covered. Hence, |Ẽ | ≤ |Opt|
The number of vertices output from Avxc is f(Avxc) ≤ 2|Ẽ |. Hence, f(Avxc) ≤ 2|Opt|
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Approximation Algorithm: TSP

Example (TSP)
Recall that HamCyc � TSP(c · n) for any constant c > 1

Theorem (Inapproximability of TSP)
There exists no polynomial-time A for TSP such that αn(A) is a constant c, unless P = NP

Proof:
Let Opt be a minimum cycle in TSP
Use contradiction – suppose αn(A) = c, and use reduction HamCyc � TSP(c · n)
Then there exists a polynomial-time algorithm A that produces a cycle in TSP with
f(A) ≤ c · f(Opt)
By reduction HamCyc � TSP(c · n), if there exists a Hamiltonian cycle, f(Opt) = n

Hence, f(A) ≤ c · n ⇐⇒ there exists a Hamiltonian cycle
This gives a polynomial-time algorithm to solve HamCyc and hence, P = NP
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TSP is Really Hard����

TSP is not only NP-hard, but also inapproximable within any constant approximation ratio
I In fact, it is inapproximable within any polynomial approximation ratio

Is it inapproximable in practice?
I Not in specific settings, e.g. in an Euclidean space
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Follow-up Questions���

Is NP-hardness an accurate description of computational hardness?
I No, but it is close. Turing Machine, with no memory access bottleneck, is not a realistic

computer model
I A more realistic model is von Neumann model, which has a memory hierarchy with different

access speeds and capacities

Why do we expect P 6= NP, even though we may not be able to prove it?
I “If P = NP, then the world would be a profoundly different place than we usually assume it to be. There

would be no special value in “creative leaps,” no fundamental gap between solving a problem and recognizing
the solution once it’s found. Everyone who could appreciate a symphony would be Mozart; everyone who
could follow a step-by-step argument would be Gauss; everyone who could recognize a good investment
strategy would be Warren Buffett.” - Scott Aaronson

I Cryptography critically relies on efficiently verifiable but intractable problems. If P = NP,
then there will be no asymmetric cryptography, or one-way hash function
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Follow-up Questions���

Why do we bother NP-hard problems, if powerful quantum computers are coming soon?
I Only two useful quantum algorithms can solve classical (non-quantum) problems: Shor

algorithm and Gover algorithm – both are insufficient to solve NP-hard problems in general
I Quantum heuristics are applied to solve classical problems. But they are not proven to be

better than classical approximation algorithms - in fact, there are a lot of skepticisms
I Quantum computers are better for solving quantum problems

Why do we bother approximation algorithms, if machine learning can solve many hard
problems?

I Machine learning is mostly heuristics – do not have universal results on approximation ratios
I Many empirical results are not replicable, or are specific to particular experimental data
I Machine learning can not be extended to a problem of arbitrary size – it needs a lot of

training data, which is impractical for large problems
I But there are provable machine learning algorithms for limited applications
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������ References

Reference Materials
Introduction to Algorithms (Cormen, Leiserson, Rivest, Stein), 4th ed, MIT Press

I Chapters 34-35
Approximation Algorithms (V. Vazirani), Springer

I Chapter 1, Appendix A

Recommended Materials

Survey of P ?
= NP (Scott Aaronson),

https://www.scottaaronson.com/papers/pnp-kindle.pdf
���� Watch online tutorial videos:
https://youtube.com/playlist?list=PLlwsleWT767dnN25K_QgvdKkovK_t4K6-
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��� Related Courses in Advanced Algorithms

Related Courses in Other Universities
Harvard (CS 224) Advanced Algorithms:
https://people.seas.harvard.edu/~cs224/fall14/lec.html
CMU (15-850) Advanced Algorithms:
http://www.cs.cmu.edu/~15850/
Princeton (COS 521) Advanced Algorithm Design:
https://www.cs.princeton.edu/courses/archive/fall18/cos521/
MIT (6.854J) Advanced Algorithms:
https://ocw.mit.edu/courses/6-854j-advanced-algorithms-fall-2005/
Stanford (CS 361B) Advanced Algorithms:
https://web.stanford.edu/class/cs361b/
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