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ABSTRACT
Smart power plugs are notable cyber physical systems that can
track and control appliance behavior. Traditional smart plugs pro-
vide limited functions, often only capable of recording consumption
data, without advanced automation features. In future smart homes,
sophisticated functions are expected to be provided by smart plugs,
such as online learning, classification, and diagnosis of appliance
behavior. Instead of relying on centralized cloud servers for provid-
ing advanced functions, the paradigms of edge and fog computing
are increasingly populated by the applications of Internet-of-things,
which aim to provide timely intelligent processing using small local
memory space in a standalone manner. In this paper, we develop
standalone smart plugs that are capable of providing efficient on-
line classification and tracking functions on the continuous power
signals of appliances. We built and implemented our smart plug
systems using low-cost Arduino platform with a small amount of
memory space. In general, our standalone online classification and
tracking systems can be applied to a variety of smart sensors for
wearable, biomedical, and environmental monitoring applications.

CCS CONCEPTS
• Computer systems organization → Embedded hardware;
Embedded software; • Hardware → Sensor devices and plat-
forms;
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1 INTRODUCTION
The rise of cyber-physical systems enables diverse applications
of pervasive intelligence, such as smart sensors for smart homes,
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wearable, biomedical, and environmental monitoring. These sys-
tems are usually implemented in small-footprint low-cost embed-
ded systems, which only allow efficient computations and small
memory space. They can operate in standalone mode or connected
mode (if external communications are allowed for information ex-
changes). Recently, instead of relying on centralized cloud servers
for intelligent information processing, the paradigms of edge and
fog computing are increasingly populated by the applications of
Internet-of-things, which aim to provide timely intelligent process-
ing using small local memory space in a standalone manner. Edge
computing pushes the computational intelligence and data analyt-
ics of information processing directly into smart end nodes (e.g.,
smart sensors, tags), whereas fog computing pushes the computa-
tional intelligence down to the local-area networks in fog nodes
or gateways. Moreover, because of portability and limitation of
battery life, reduced external communication overhead to remote
cloud servers is often desirable.

To realize the potentials of edge and fog computing, online in-
formation processing tasks are required to be implemented directly
in smart sensors. One particular example is streaming data pro-
cessing systems, which are a class of information processing sys-
tems for a sequential stream of input data using a small amount
of local memory space. These systems are usually required for
cyber-physical systems with constrained local memory space and
limited external communications. Traditional settings of streaming
data processing often consider discrete digital input data, such as
data objects carrying unique digital identifiers. However, the para-
digm of Internet-of-things, which bolsters close interactions with
physical environments, has been increasingly applied to diverse
scenarios of data sensing in terms of continuous signals. For these
scenarios, streaming data processing systems are required to take
explicit consideration of input data as continuous signals.

As a primary example studied in this paper, we consider smart
power plugs (or simply smart plugs), which are computing devices
augmented to power plugs to monitor and track energy consump-
tion signals, as well as performing inference and diagnosis tasks for
the connected appliances. Smart plugs and sensors may share data
with each other if efficient information dissemination is provided
without exacerbating their battery life. We note that a similar set-
ting occurs for body area or biomedical sensors that track and infer
biological signals with constrained local memory space and limited
external communications. In general, the framework of Internet-
of-things requires distributed systems to perform sensing, tracking
and inference tasks using small local memory space.

In general context, one of the major tasks of cyber-physical sys-
tems is to record and recognize the occurrences of events associated
with certain continuous signals over time. Furthermore, multiple
sensors may need to correlate their records temporally to identify
a suitable context of events among the sensors. For example, one
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Figure 1: Basic framework of streaming data processing systems for classifying and tracking occurrences of continuous signal
inputs, using small local memory space.

has to recognize the activities of occupants by multiple sensors in
smart home applications. The basic framework of streaming data
processing systems is presented in Fig. 1.

The overall scope of our research is to study and extend stream-
ing data processing systems, where we explicitly consider continu-
ous signal inputs to support the following functions:

(1) Learning and classifying the events associated with the
continuous signal input in an online manner.

(2) Tracking the occurrences of events using small local mem-
ory space.

(3) Tracking the temporal correlations amongmultiple sensors
to identify the context of events.

This paper studies the problem of learning and classifying sensor
events, and provides a high-level introduction to our approach for
tracking temporal occurrences of events. We develop standalone
smart plugs that are capable of providing efficient online classi-
fication and tracking functions on the continuous power signals
of appliances. Building upon our previous work [1, 2], we built
and implemented our smart plug systems using low-cost Arduino
platform with a small amount of memory space. In general, our
standalone online classification and tracking systems can be ap-
plied to a variety of smart sensors for wearable, biomedical, and
environmental monitoring applications.

2 BACKGROUND AND RELATEDWORK
There is a large body of work for streaming data algorithms. The
analysis of streaming data algorithms focuses on the worst-case
inputs, by which the adversary can select arbitrary inputs to in-
duce the worst-case performance of the algorithms, as compared
to the offline setting with known future inputs. The basic idea of
streaming data algorithms is to make use of randomized data struc-
tures which are able to amortize the worst-case inputs with high
probability. Clustering is often employed for the analysis of data
streams, whereby the data stream is partitioned into clusters such
that elements within a cluster are similar to each other and different
from events in other clusters. A large number of algorithms have
been proposed for clustering of data streams, which can be divided
into two classes: (i) algorithms that summarize that data stream
in an online manner, then generate clusters from the summary
data in offline mode, (ii) algorithms that are able to cluster the data
stream entirely in online manner without the need for the offline
processing. An extensive survey of both types of algorithms can be
found in [16]. The authors in [10] put forth a streaming algorithm
that balances clustering quality with time complexity using a small
amount of memory. An online variant of the k-Means clustering
algorithm is proposed in [5], which groups parallel streams of con-
tinuously evolving time series data in constant time. Another study

[18] proposed a technique to yield meaningful clusters based on
structural features instead of distance metrics to reduce dimension-
ality and decrease sensitivity to missing data. A comprehensive
review of the various experimental methods employed for data
stream clustering and its applications can be found in [9, 13].

The inference and diagnosis tasks for the electric appliances by
monitoring their energy consumption signals can be achieved using
either non-intrusive methods or intrusive methods. Non-intrusive
methods involve measuring the energy consumption of the entire
house and disaggregating it to identify individual appliances and
track their behaviors. Intrusive methods, on the other hand, require
measuring the energy consumption of individual appliances in a
home using some kind of energy meters or smart plugs. The au-
thors in [4] present an experimental method where they monitor
the power consumption data of a large number of electric appli-
ances and extract a small number of common characteristics, which
are then used to derive a small number of model types that describe
the power usage pattern of the majority of commonly used appli-
ances. A related work [11], apply statistical and machine-learning
methods for automatic modeling of appliances from their power
consumption data. Their method is able to automatically model
both the appliance type and its usage pattern. Their approach is to
fit a curve or a distribution onto the power consumption data that
best describes the appliance behavior.

The are several differences between our study and the existing
studies, which characterize the novelty of our solution: (i) With one
or two exceptions (such as [3]), most of the proposed non-intrusive,
as well as intrusive methods, do not perform real-time appliance
identification and instead work with pre-recorded data in an offline
manner, where all the available data is employed for identification.
Our smart plug system, on the other hand, is able to achieve real-
time monitoring and classification of appliances using only the data
seen thus far, without any knowledge of the future data; (ii) Our
smart plug is developed using low-cost embedded systems, and per-
forms all processing tasks locally in an online manner using small
memory space, which entails extremely efficient implementation of
the classification and clustering algorithms; (iii) The existing classi-
fication and clustering algorithms are not designed with storage
and/or computation limitations in mind. Thus, we make non-trivial
modifications to the existing algorithms so that our smart plug can
execute them for classification and clustering using the available
processing power and memory.

3 PROBLEM AND FORMULATIONS
We first formulate the problem considering a general setting of
data sensing with multiple sensors. We then also provide specific
examples regarding the applications of smart homes.
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3.1 Event Classification
First, we consider the single-sensor scenario. We denote by x(t) a
stream of continuous-time signal observed by a sensor. The signal
may be associated with multiple events at different times that are
not revealed to the sensor. Given the continuous nature of signals,
the sensor needs to interpret and identify the states and transitions
embodied by the signal.

Known Event Types: The signal may be triggered by a finite
number of events (e.g., consumption of a particular appliance),
which may be known by the sensor. In particular, there are several
common models suitable for describing the energy consumption
of appliances (see Section 4.2). One may assume that the signal is
generated by one of these models, and the sensor attempts to match
and classify according to a set of known class of events.

Unknown Event Types: Alternatively, one can employ a clus-
tering algorithm to learn the events and associate with the seg-
ments signal in a way to minimize the distance between events. Let
x(t1, t2) be the segment of signal from time t1 to t2, and S be a non-
overlapping segmentation of time, such that (t1, t2), (t2, t3) ∈ S,
then x(t1, t2) and x(t2, t3) are non-overlapping segments of x . We
denote the set of events of signal be E. For each event i ∈ E, de-
note ci be a canonical signal. Let d

(
x(t1, t2), ci

)
be a distance metric

given x . One example of distance metric is dynamic time warping
(DTW). We aim to find suitable S and E, such that

min
S,E

ρ |E | +
∑
i ∈E

∑
(t1,t2)∈Si

d
(
x(t1, t2), ci

)
(1)

where ρ is a weight assigned to balance the two objectives, and

Si ,
{
(t1, t2) ∈ S | d

(
x(t1, t2), ci

)
≥ d

(
x(t1, t2), c j

)
,∀j ∈ E\{i}

}
3.2 Occurrence Tracking
Suppose that the sensor can infer the events E and the respective
segmentation S. The occurrences of each event will be recorded.
In general, there is a stream of items with multiple occurrences.
We want to record the items with the most prominent occurrences
when observing the stream continuously. Note that we do not know
the number of distinct items in advance, and the available storage
space is much less than the number of distinct items in the stream.

Let Xi be the total occurrence of event i ∈ E with a certain
an epoch of time T . Our objective is that given a memory space
constraint c in an epoch of time T , one can identify the occurrences
of the common events Xi , while only using a storage space of size
c. The difficulty is that |T | may be a large number, and the memory
space constraints c cannot grow at the same pace as |E |, and E is
supposed to be observed continuously.

Hence, we focus on the task of approximate tracking, by obtaining
the estimated occurrence X̂i at the end of T . We aim at a proven
bound of error probability for accuracy guarantee, defined as an
(ϵ,δ )-accurate estimation, which satisfies:

P
(
|X̂i − Xi | ≥ ϵ · |T |

)
< δ

ϵ and δ are the parameters for controlling the trade-off between
accuracy and memory space.

4 EVENT CLASSIFICATION RESULTS
This section presents the algorithms and results for learning and
classifying the events associated with the continuous signals in an
online manner. As a case study, we consider the continuous power
consumption signals of electrical appliances.

4.1 Event Detection
The first step is the detection of the events embodied by the ap-
pliance power consumption signal. An appliance may transition
through several operating states, where the power consumption
pattern usually varies from one state to the next. A state transition
may signify a switch from one basic load to another, where the
basic loads together constitute the overall load of the appliance.
For example, a dishwasher contains a motor and a heating element.
The motor powers the pump to propel and spray the hot water on
the dirty dishes. The heating element is responsible for heating
the water to wash the dirty dishes or heating the air to dry the
clean dishes off. A state transition may also occur among the dif-
ferent active states of the same load. For instance, electric clothes
Irons are equipped with temperature control dials, which allows
a user to select the Iron’s operating temperature. Changing the
position of the control dial causes the Iron to change from one
active power state to another. We treat all such state transitions as
events and aim to interpret and identify these events. Specifically,
we propose Algorithm 1 to detect the appliance state transition
events by analyzing the appliance power consumption data stream.
The algorithm is an online variant of the Energy-specific Change
Point Detection algorithm originally proposed in [11].

Algorithm 1: Online detection of appliance state transitions
Initialization :H ← ∅, edge← False, tprev_event ← 1
Input: X , tnow, ϕ, δ, η < δ

1 if |H | < η then
2 H ← H ∪ ApEn(X [tnow − ϕ : tnow])
3 else
4 H ← H − H [1] ◃discard oldest element

5 H ← H ∪ ApEn(X [tnow − ϕ : tnow]) ◃add new element

6 edge← CannyEdge1D(H ) ◃returns True if detects edge

7 end
8 if edge = True and tnow − tprev_event > δ then
9 tprev_event ← tnow

10 return True ◃state transition event detected at tnow
11 else
12 return False ◃no state transition at tnow
13 end

The algorithm is based on the notion of Approximate Entropy
(ApEn), which is an algorithm for quantifying the repeatability or
predictability within time series data [15]. Our algorithm operates
over a sliding look back window of the appliance power consump-
tion data stream. For each element of the data stream arriving at
time tnow, it computes the approximate entropy over a look back
window of length ϕ, from tnow − ϕ to tnow. The algorithm, then,
executes the one-dimensional variant of the Canny edge algorithm
CannyEdge1D [11], which analyzes a sliding look back window of
the most recent η approximate entropy values and identifies sudden
and significant changes in entropy as edges. If an edge is detected
and at least δ time has elapsed since the time of the previous event
tprev_event, then the algorithm has detected a state transition event
at tnow. The time constraint δ is enforced because in practice an
appliance stays in a given state for at least some time.
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Figure 2: Results of online appliance state transition event detection using Algorithm 1.

The results of Algorithm 1 are illustrated in Fig. 2. Each vertical
dashed line in the figures indicates a state transition event that
is detected by Algorithm 1. During the experiment, ϕ, δ , and η
were set to 60, 200, and 7, respectively. In addition, approximate
entropy calculation requires specifying two parameters: the se-
quence lengthM and filtering level r . Following [11],M = ϕ/4 and
r = .2.σ (X [tnow − ϕ : tnow]) were used during the experiment. In
particular, Fig. 2a shows the results of state transition detection for
the power trace of multiple appliances (Lamp, Microwave Oven,
Laptop Computer, and Iron), where at any given time only one appli-
ance was connected to the smart plug. As can be seen, Algorithm 1
is able to partition the power trace into segments corresponding to
different appliances through accurate detection of state transition
events in most cases. We also obtained results of state transition
detection for the power consumption trace of a washing machine as
shown in Fig. 2b. A washing machine is a composite load with sev-
eral active power states, each corresponding to a constituent basic
load. Again, Algorithm 1 is able to partition the trace into segments
of active power states as indicated by the vertical dashed lines. We
note that the figures contain additional information, which will be
described in the next two subsections, where we classify the events
detected by Algorithm 1.

4.2 Classification of Known Events
An event may belong to a finite number of events (e.g., consump-
tion of a particular appliance), which may be known by the smart
plug. Every electrical appliance possesses its own power signature
which can be used to automatically identify the specific appliance.
There are a few basic models suitable for describing the power
consumption of appliances [4]:

(1) On-off model: Appliances belonging to this model draw fixed
power Pon when active.

(2) On-off decay model: In this case the appliance power consump-
tion follows an exponential decay curve, dropping from initial
surge power Ppeak to a stable power Pactive at a decay rate λ.

(3) On-off growth model: The power consumption of these ap-
pliances follows a logarithmic growth curve, starting with a
power level Pbase and a growth rate λ.

(4) Stable min-max model: These appliances draw stable power
Pstable with random upward or downward spikes Pspike. The
magnitude of random spikes is uniformly distributed between
Pstable and Pspike. The interarrival time of spikes follows
exponential distribution with mean λ.

(5) Random range model: The power consumption of these ap-
pliances is similar to a random walk between a maximum
power Pmax and a minimum power Pmin, where the power
consumption randomly varies within these bounds.

(6) Cyclic model: These appliances exhibit repeating power con-
sumption patterns.

Common resistive and inductive appliances exhibit on-off, on-off de-
cay, or on-off growth behavior, whereas appliances with non-linear
power consumption exhibit stable-min, stable-max, or random-walk
behavior. In addition, many appliances (such as washing machine,
air-conditioner etc) are composed of a combination of the above
described resistive, inductive, and non-linear constituent loads, due
to which these appliances exhibit complex power usage patterns.

Once the smart plug detects an event, it classifies the power data
segment for the event into one of the above six types ofmodels. For a
given appliance, the smart plug chooses themodel that best explains
the observed power consumption. For the first three models, the
smart plug uses ordinary linear least squares method to fit a straight
line, an exponential decay curve, or a logarithmic growth curve onto
the data. To fit exponential curve, we employ a special technique
proposed in [12], since fitting an exponential decay curve involves
inferring three parameters (i.e. Ppeak, Pactive, λ), which can not be
accomplished using ordinary linear least squares method. For the
remaining three models, which are exhibited by appliances with
non-linear power consumption, the smart plug fits a probability
distribution following [4].

The classification results for trace segments partitioned by Algo-
rithm 1 are shown in Figure 2. In particular, Figure 2a provides the
fitted model along with the model error for each segment, whereas
Figure 2b additionally provides parameters of the fitted model. We
determine the curve fitting error for linear segments using Mean
Absolute Percentage Error (MAPE) [11], where a lower MAPE in-
dicates a better fit. Commenting on MAPE in Figure 2, we get rea-
sonably low MAPE values in all cases except for Microwave Oven
because the particular segment contains data from the previous
as well as the next state of the appliance due to slightly imprecise
detection of the state transition event by Algorithm 1. Similarly,
to evaluate distribution fitting for non-linear segments, we use
Kullback-Leibler (KL) Divergence [8], which indicates the informa-
tion loss incurred by fitting a specific probability distribution to the
data. Similar to MAPE, a lower KL divergence (Dkl ) value implies
a better fit. Looking at the Dkl values in Figure 2, we can see that
the fitted probability distribution is a good approximation of the
true probability distribution for each non-linear segment.
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4.3 Classification of Unknown Events
In the previous section, we assumed that an event may belong to a
finite number of events (e.g., consumption of a particular appliance),
which may be known by the smart plug. In this section, we assume
that events are unknown to the smart plug. For the case of unknown
events, our approach is to employ online clustering to group the
events detected by Algorithm 1 into clusters such that events within
a cluster are similar to each other and different from events in other
clusters. We note that the number of data elements in one event may
be different from another event since appliance state transitions
do not necessarily occur at fixed time intervals. Thus, we use the
following five summary statistics to represent each event in order
to facilitate uniform clustering of the events:

• Measures of central tendency: (i) arithmetic mean, (ii) me-
dian, and (iii) mode.

• Measures of statistical dispersion: (iv) standard deviation,
and (v) range.

Our clustering algorithm, which is based on The Doubling Algo-
rithm [7] and Online k-Means Clustering with Discounted Updating
Rule [14], is provided in Algorithm 2. The algorithm aims to find
a suitable solution to the problem posed in Equation 1. It consists
of two stages: the first is the update stage in which the algorithm
adds each event either to an existing cluster or puts it in a new
cluster. This stage continues until the number of clusters exceeds k ,
at which point the algorithm moves to the second stage. In the sec-
ond stage, the algorithm reduces the number of clusters by simply
merging the two nearest clusters. The merging stage guarantees
that no more than k clusters are used to cluster the events in the
data stream even if the stream arrives forever. What follows is a
detailed description of the pseudo code provided in Algorithm 2.
(a) Initialization: The algorithm starts by initializing the first k+1
events as separate clusters, where E denotes the set of clusters and
C represents the set of cluster centers. At this point, each event
itself is the cluster center since each cluster has only one event. The
minimum inter cluster distance in E is denoted by d∗.
(b) Updating Clusters: Upon receiving a new event zt , the al-
gorithm finds the cluster whose center is nearest to zt (line 2).
If the distance between the nearest cluster center and zt is less
than 2d*, then zt is added to that cluster (line 4) and the cluster
center is shifted proportionally (line 5). If, however, the distance
is greater than 2d*, then a new cluster is created and event zt is
added to it (line 7). Notably, we use the discounted updating rule
shown in line 5 instead of standard online k-Means updating rule
(ci ← ci +

1
|ei | (zt − ci )) because the discounted update has been

shown to work comparatively better when the data lends itself to
clustering and the cluster centers are shifting over time [14]. The
variable α ∈ (0, 1) determines the relative weightage of the new
event zt and has the effect of exponential smoothing.
(a) Merging Clusters: Whenever the total number of cluster ex-
ceeds k , the merging step is invoked to reduce the total number of
clusters back to k . In this step, the algorithm first finds and merges
the two closest clusters (lines 10-12). Then, it adds the newlymerged
cluster to E and removes both old clusters from E (line 13). Simi-
larly, the center of the new cluster is added to C and the old centers
are deleted (line 14). Finally, the cost of creating new clusters d∗ is
doubled (line 15). The effect of doubling the cost is that eventually

it will become prohibitively expensive to create new clusters and
the algorithm will simply assign new events to one of the existing
k clusters. The intuition behind doubling the cost is that most elec-
trical appliances have a limited number of distinct power states,
and the algorithm is likely to encounter the different power states
of an appliance within a finite time period.

Algorithm 2: Online event clustering using k-Means
Input: Event: zt , Max clusters: k , Weight: α
Initialization : E ← {{zi } : i ∈ {1, . . . , k + 1}} C ← {zi : i ∈ {1, . . . , k + 1}}

d∗ ← min
(c1,c2 |c1,c2)∈C

∥c1, c2 ∥22
1 if |E | <= k then ◃CLUSTERS UPDATING STEP
2 i ← argmin

i∈{1, . . .,k }
∥zt , ci ∥22 ◃get the nearest cluster to zt

3 if ∥zt , ci ∥22 <= 2d∗ then
4 ei ← ei ∪ zt ◃add event zt to the nearest cluster

5 ci ← ci + α (zt − ci ) ◃update the cluster center

6 else
7 E ← E ∪ {zt } ◃create new cluster comprising of zt
8 end
9 else ◃CLUSTERS MERGING STEP

10 (i, j) ← argmin
(i, j |i,j )∈|C|

∥ci , cj ∥22 ◃find two closest clusters

11 e′ ← {ei ∪ ej } ◃merge the clusters

12 c′ ← 1
|e′ |

∑
y∈e′

y ◃center of the merged cluster

13 E ← E ∪ e′ − {ei , ej } ◃update clusters

14 C ← C ∪ c′ − {ci , cj } ◃update cluster centers

15 d∗ ← 2d∗ ◃double of the cost of creating new clusters

16 end

Figure 3 illustrates the results of Algorithm 2 applied to cluster
the segments in Figure 2b. The number of clusters k was set to 4,
while α was set to 0.5 during the experiment. There is a total of 4
subfigures, each representing a separate cluster. The plotted curves
in the subfigures represent segments of the washing machine power
trace (Figure 2b) that are clustered together by Algorithm 2. It can
be seen that similar segments are clustered together. For instance,
all curves in Figure 3b have Random Range model.
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Figure 3: Classification of unknownevents using online clus-
tering. X-axis shows time in seconds.

To evaluate the clustering performance without reference to
external information, we use within-cluster sum of squares error
(WSSE) and between-clusters sum of squares error (BSSE), calcu-
lated using the following formulas:

WSSE =
k∑
i

∑
z∈ei
(z − ci )2, BSSE =

k∑
i
|ei |(c − ci )2
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where z is an event, ei is the ith cluster, ci is the center of cluster
i , |ei | is the size of cluster i , and c is the center of all clusters.
WSSE measures measures how closely related are the events in a
cluster (i.e., cohesion), while BSSE indicates how well-separated the
clusters are from each other (i.e., separation). A good value for k is
the one that minimizesCH = BSSE/(k−1)

WSSE/(n−k ) , where n is total number
of events, and CH is Calinski-Harabasz Index [6]. Table 1 lists the
WSSE, BSSE, and CH for different values of k when clustering
the segments in Figure 2b using Algorithm 2. The CH row in the
table indicates that the clustering performance will improve as we
increase k .

Number of clusters (k) 2 3 4 5
Cohesion (WSSE) 2942862 3751363 4223219 4650565
Separation (BSSE) 2133919 1785765 2243008 2707623

Calinski-Harabasz Index (CH) 5.8 1.66 1.06 0.72

Table 1: Performance evaluation of online event clustering.

5 OCCURRENCE TRACKING
We briefly describe our approach for tracking of the occurrences of
events. Recall from Section 3.2 that we want to keep track of the
most frequently occurring events in the data stream using small
memory space. The approach we use for occurrence tracking is
called count-min sketch. A count-min sketch uses k hash functions
to track the events (or items in general) with the help ofm counters
organized in a 2-dimensional (k × m

k ) array referred to as a sketch.
Each event is mapped by the k hash functions, where the ith hash
function hi maps the event into one of the m

k counters in the ith
row of the sketch, and increments the particular counter. Thus, for
each event z in the stream, a counter is incremented in each of the
k rows of the sketch. The number of occurrences of an event z at a
given time is the minimum of the all the counters mapped by the
hash functions for the event z.

N (z) =min{Counteri,hi (z) : i = i, . . . ,k} (2)

N(z) is of course an overestimate of the true number of occurrences,
because multiple items can be mapped to the same counter by a
hash function. However, N(z) is not far from the true value.

6 TESTBED AND HARDWARE
In this section, we present the implementation details of the smart
plug platform. The smart plug needs to have sufficiently powerful
hardware to carry out real-time computation of the various tasks
involved in event detection, classification, and clustering such as
Approximate Entropy, Edge Detection, Smoothing, Linear Regression,
Least Square Fitting, Autocorrelation, and k-Means Clustering. With
this inmind, we decided to develop the smart plug platform based on
the Arduino-compatible WiFi-enabled ESP-12s hardware platform
[17]. Unlike the Arduino-family micro-controller boards (such as
Arduino Uno, Nano, Micro, and Pro), ESP-12s has the processing
power and memory capacity to compute the above tasks in a real-
time. Figure 4 shows the hardware components of the smart plug.
The smart plug contains a relay to control the power to the attached
appliance and sensors to measure the instantaneous AC voltage and
current. The smart plug performs the following additional functions
besides online detection, classification, and tracking.

(i) Accurate power measurement. The ability to measure instan-
taneous voltage and current enables the computation of active
power, reactive power, power factor, and more advanced power
quality parameters, which can be helpful in power quality monitor-
ing, and detection of malfunctions, etc.
(ii) Remote control. The smart plug supports remote control of
the appliances locally or over the internet through an intermedi-
ate server. It provides RESTful APIs for controlling the attached
appliance and querying its status using smartphones or web clients.

Figure 4: Hardware components of the smart plug.

A key component of the smart plug system is the computational
overhead, which is important to evaluate whether the technique
can be extrapolated to other data streams. Table 2 lists three of
the computationally demanding tasks (first column) performed
by our smart plug. For each task, the table provides the time it
takes for the smart plug to execute the task in increasing order of
complexity. In case of model fitting, for instance, the time taken by
the smart plug grows sub-linearly with data length, whereas, for the
remaining two tasks (Autocorrelation and Approximate Entropy),
the growth is more than linear. Notably, the last column represents
the maximum complexity of the given task such that if we increase
the task complexity any further, the smart plug will not be able to
perform appliance monitoring and classification in real-time.

Autocorrelation Lag 50 100 200 400
Time Taken (milliseconds) 24 88 344 1351

Model Fitting Data Length 200 400 800 1600
Time Taken (milliseconds) 529 711 1085 1564

Approximate Entropy Sliding Window Length 60 120 240 480
Time Taken (milliseconds) 38 126 616 2010

Table 2: Computational overhead by the smart plug.

7 CONCLUSION AND FUTUREWORK
This work presented a smart plug system that can perform sophis-
ticated monitoring of the appliance power consumption behavior
such as real-time detection, classification, and clustering of the
appliance events. These monitoring features offer many benefits
to researchers, e.g., automated demand response, appliance local-
ization, detection of anomalous appliance behavior, and effective
power allocation. The smart plug was developed using the low-cost
Arduino open hardware platform. In future, we plan to use the
smart plug system for implementing the functionality to track the
temporal occurrences of events and identify the context of events
by finding correlations among events from multiple smart plugs.
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