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Abstract—Stateless opportunistic forwarding is a simple fault-
tolerant distributed scheme for packet delivery, data gathering
and information querying in intermittently connected networks,
by which packets are forwarded to the next available neighbors
in a “random walk” fashion, until they reach their intended
destinations or expire. It has been employed in diverse situa-
tions, for instance, when (i) the global network topology is not
known or is highly dynamic, (ii) the availability of the next-hop
neighbors is not easily controllable, or (iii) the relaying nodes are
computationally constrained. Data delivery in sensor networks,
ad hoc networks, and delay tolerant networks are well-known
applications, besides of searching in peer-to-peer networks. A
major challenge for stateless opportunistic forwarding is the
difficulty to predict the end-to-end latency. To facilitate latency
evaluation, we study a simplified model of stateless opportunistic
forwarding, namely a “weighted random walk” in a finite graph.
This paper makes several contributions towards the analysis of
this model: 1) By spectral graph theory we derive a general
formula to efficiently compute the exact hitting and commute
times of random walks with heterogeneous transition times at
relay nodes. Such transition times can model the heterogeneous
delivery times and availability periods of the next-hop neighbors.
2) We study a common class of distance-regular networks
with a varying number of geographical neighbors, and obtain
exact and approximation formulas for the hitting time in such
networks. 3) Based on these results, we study other sophisticated
settings, such as random geographical locations, topology-aware
forwarding, and multi-copy random walk forwarding. Our results
provide the basic analytical tools for managing and controlling
the performance of stateless opportunistic forwarding in finite
networks.

Index Terms—Opportunistic Forwarding, Intermittently Con-
nected Networks, Random Walk in Finite Graphs, Spectral
Graph Theory

I. INTRODUCTION

Delivering information, gathering data or initiating a query
is a common task in most communication and information
networks that is handled by the underlying forwarding algo-
rithms. Traditional networks with mostly stationary topology
and abundant bandwidth, storage and energy resources can
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afford a “proactive” routing approach to keep track of the
topological changes and construct an accurate routing plan
for the forwarding algorithms from time to time. However,
in the emerging communication and information networks –
so called intermittently connected networks, such as wireless
sensor networks, a certain class of mobile ad hoc networks,
and delay tolerant networks, there may be frequent disruptions
of network connectivity. For instance, in sensor networks the
relaying transceiver nodes may be performing ad hoc duty
cycling to save energy, whereas in delay tolerant networks
the mobile packet carriers may be temporarily out of reach.
In the absence of reliable end-to-end connectivity, flooding
or epidemic dissemination to every available neighbor can
certainly achieve a good packet delivery ratio. However,
these approaches are also very resource-intensive. A simpler
approach is to use stateless opportunistic forwarding, such that
the packet is forwarded to one of the next available neighbors
at random, as a “random walk” on the underlying network,
regardless of the path traveled by the packet thus far, until it
either reaches the desired destination or expires.

This approach is particularly useful in the following sit-
uations: (i) the global network topology is not known or
is rapidly varying (e.g., in mobile ad hoc networks); (ii)
the presence or availability of the next-hop neighbors is not
easily controllable (e.g., in store-carry-forward networks, and
random duty cycling sensor networks); (iii) the relaying nodes
are computationally constrained devices that are incapable
of supporting highly sophisticated routing strategies (e.g., in
sensor networks with low-cost and low-power devices); and
(iv) load balancing of traffic and avoidance of single-points of
failure are desirable goals. Furthermore, stateless opportunistic
forwarding can often serve as a basic building block for
devising more sophisticated strategies, such as multi-copy or
topology-aware opportunistic forwarding strategies.

Despite the fact that stateless opportunistic forwarding is
simple to implement, it is generally difficult to predict its
end-to-end latency performance, because packets may (le-
gitimately) travel in loops, and follow different paths from
time to time. Although there have been several studies to
suggest the usefulness of stateless opportunistic forwarding in
intermittently connected networks (e.g., [1]–[4]), there appear
to be insufficient analytical tools to assist the management and
control of its performance.

We note that the study of stateless opportunistic forward-
ing in such networks is challenging. In some intermittently
connected networks, such as pocket-switched networks, more
complicated dynamic graph models have been studied [5], [6].
In contrast, in this paper we aim at providing a simple general
non-dynamic model (by a random walk on finite graphs) for
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several representative scenarios of intermittently connected
networks specified by certain attributes of the graph edges
(as described in the next section).

For this simplified model, we present exact analytical for-
mulas to predict the latency of a generic type of stateless
opportunistic forwarding in finite networks. Our approach of
using a non-dynamic model to approximately capture the
properties of edge dynamics of dynamic networks in an
expected value sense simplifies the problem of mean latency
estimation. The benefit of this style of analysis is to reduce
the dependence on simulation to ascertain performance1, and
produce more accurate expressions for more sophisticated
design optimization. Furthermore, our exact results are more
precise than the results that are yielded by asymptotic analyses
in terms of order of magnitude; the latter typically apply to
very large networks, whereas most practical wireless networks
are often moderate in size. In particular, we derive closed-
form expressions for the latency of opportunistic forwarding
in specific useful topologies, such as distance-regular networks
with varying numbers of geographical neighbors.

A. Motivating Scenarios

To motivate our study, we present three representative
scenarios that benefit from stateless opportunistic forwarding,
which leads to a general problem formulation presented in
Sec. II.

1) Duty Cycling Sensor Networks: In a network of battery-
powered nodes for a delay-tolerant application, the re-
laying nodes carry out random or pseudo-random duty
cycle schemes to conserve energy [7]–[9]. For low rate
of duty cycling (or wake-up probability), the network is
likely to be highly disconnected, and hence traditional
routing protocols that rely on freshly gathered topology
knowledge may be unsuitable. We are interested in the
use of stateless opportunistic forwarding, by which the
packets are forwarded to the next-hop neighbor that is
the first to wake up2.

2) Store-Carry-Forward Networks: In so-called “pocket
switched networks” [1], we consider a network where
the nodes are deposit sites that can store messages,
and have fixed geographical locations. There are some
mobile message carriers (e.g., vehicles) that randomly
wander from one deposit site to another. Every mobile
message carrier has a limited reachable region and
the messages can only be forwarded within a certain
geographical region by a single mobile message carrier.
In such networks, stateless opportunistic forwarding
is conveniently employed, by which the packets are
picked up by the first nearby carrier that approaches the
respective deposit site, and then are off-loaded to the
deposit site where the carrier stops next.

1In our experience, one has to run up to thousands of simulation trials to
get a good estimate of the mean latency even in small networks.

2Note that the a priori shared knowledge of the neighbors’ pseudo-random
number generators (seed and cycle position) enables a transmitter to wake
up in the precise time slot, in which a chosen receiver is supposed to wake
up [7], thus saving precious energy at the transmitter node.

3) Searching in Intermittent Peer-to-Peer Networks: Con-
sider a collection of peer nodes that may be online or
offline momentarily. A query generated by a node may
be forwarded to another node that is online simultane-
ously, provided by an a priori member list at each peer
node. By stateless opportunistic forwarding, a query will
be opportunistically forwarded among the online peer
nodes, even when the initiating node stays offline.

We remark that there are other scenarios of intermittently
connected networks where stateless opportunistic forwarding
can be used. The above scenarios can be modeled naturally
by a random walk in a finite graph. We focus on deriving
analytical results for its latency, such as:

1) Hitting time (or access time): The expected time of
a packet from the source to reach (or hit) a certain
destination. This can model the average packet delivery
time.

2) Commute time: The expected round-trip time experi-
enced by a packet between the source and the destination
(and back to the source). This can model the query return
time to a specific node.

3) Cover time: The expected time of a packet from the
source to visit every other node in the network. This
can give an upper bound on the packet delivery time to
an unknown group of destinations in the network.

B. Related Work and Our Contributions

The latency of random walk has been studied extensively
in the literature. In this section, we present the related work
and highlight our contributions in the context of stateless
opportunistic forwarding in intermittently connected networks.

There have been a number of proposals of using random
walk as a viable and robust forwarding mechanism in various
intermittently connected networks [?], [2], [3], [10]–[12]. In
the theory literature, the hitting, commute and cover times
of random walk have been studied by [13]–[20]. A major
approach is based on spectral graph theory [13], [19]–[21],
in addition to effective resistance methods [16]–[18].

We particularly study a general setting of random walk with
weighted edges and heterogeneous transition times at relaying
nodes. For instance, these can correspond to the heterogeneous
duty cycling rates in sensor networks, or the heterogeneous
delivery times in store-carry-forward networks. We generalize
the formulas in [13], [19] to compute the exact hitting and
commute time in the presence of heterogeneous transition
times.

Furthermore, we study random walks in a common class
of distance-regular networks with varying numbers of nearest
neighbors, which captures the notion of geographical prox-
imity in sensor networks and delay tolerant networks. For
instance, in an r-nearest neighbor cycle (or torus), there is an
edge between every pair of neighbors that are r-hops away on
a cycle (or torus). The varying numbers of nearest neighbors
(by r’s) can capture the levels of overhead for maintaining lo-
cal neighbors (e.g., the transmission power in sensor networks,
or the reachable regions of carriers in delay tolerant networks).
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One of our aims is to enable the optimization of the latency-
overhead trade-off in these distance-regular networks.

We note that there has been an asymptotic study in [22]
about the order of magnitude of the commute and cover
time for the r-nearest neighbor torus (called k-fuzz of torus)
based on effective resistance techniques. However, this paper
provides the exact formulas based on spectral graph theory to
compute the hitting and commute time in r-nearest neighbor
torus. Our results concern the exact analysis of the latency of
stateless opportunistic forwarding in finite general graphs, and
these are unsurprisingly more precise than asymptotic analysis.
Our formulas are useful for solving optimization problems,
such as latency-overhead optimization.

There are many other studies of hitting time in 1-nearest
neighbor torus that consider only homogeneous transition
times in various applications [23]–[27]. In contrast, our work
presents the more general results of hitting time considering
heterogeneous transition and r-nearest neighbor torus. Further-
more, we also extend our study to various more sophisticated
settings, such as multiple-copy and topology-aware forwarding
strategies, and networks resulting from random geographical
locations.

In summary, our contributions are outlined as follows:
1) In Sec. III, we use spectral graph theory to derive a

general formula to efficiently compute the exact hitting
and commute time of weighted random walks with
heterogeneous transition times at relaying nodes.

2) In Sec. IV, we study a common class of distance-
regular networks with varying numbers of geographical
neighbors, and obtain exact and approximation formulas
of hitting time in such networks.

3) In Sec. V, we apply the results of distance-regular
networks to estimate the latency of random walk con-
sidering random geographical locations of nodes.

4) In Sec. VI, we study other sophisticated settings, such
as topology-aware forwarding and multi-copy strategy
to obtain new insights on latency performance.

Due to paucity of space, additional discussion and proofs
are deferred to the full technical report [28].

II. PROBLEM FORMULATION

In this section, we formulate a model to capture a general
type of stateless opportunistic forwarding by random walk in
finite graphs. Also, we formulate a common class of distance-
regular networks with varying numbers of nearest neighbors to
model the geographical proximity in opportunistic forwarding.

A. Random Walk in a Finite Graph

To model stateless opportunistic forwarding, we consider
a finite connected undirected graph G = (V, E), where V is
the set of nodes (e.g., relaying devices or deposit sites) and
E is the set of edges. Each edge is interpreted as a possible
one-hop forwarding action between a pair of nodes (e.g., by
radio transmission, packet carriers, or table lookup in a list of
known neighbors). Let n , |V|, m , |E|. We also let Nu ⊆ V
be the set of neighbors of u, and its degree be du , |Nu|.

We consider the setting of slotted time. In random walk
based forwarding, a packet is stored at a node for certain time
slots before there is an opportunity to be forwarded to its next
hop neighbor. We assume that the forwarding operation in the
current hop is stateless, which is independent of the forwarding
operations of the previous hops.

For each neighboring pair of nodes u, v ∈ V , we let `u,v be
the expected transition time of a packet that travels from u to
v, and ρu,v be the forwarding probability that u will forward
packets to v ∈ Nu.

Then, the hitting time Hu,v from source u to reach desti-
nation v can be recursively expressed as:

Hu,v =

{ ∑
w∈Nu

ρu,w(`u,w+Hw,v) = `u+
∑

w∈Nu
ρu,wHw,v if u 6= v

0 if u = v
(1)

where `u ,
∑
w∈Nuρu,w · `u,w is the expected transition time

at node u. Note that Eqn. (1) also holds for random transition
times. In such case, `u,v represents the mean transition time.

Also, it is possible to consider self-loops at each node. In
such a case, `u ,

∑
w∈Nuρu,w · `u,w + ρu,u · `u,u, where `u,v

is the sojourn time at u, and ρu,u is the probability of the
existence of a self-loop.

We consider a simple setting of forwarding probability
ρu,v , where we assign a weight wu,v to each edge (u, v)
to indicate the availability of an opportunistic forwarding
operation between the pair of nodes. Then ρu,v is defined as:

ρu,v ,
wu,v
wu

, where wu ,
∑
v′∈Nu

wu,v′ (2)

See Fig. 1 for an illustration. Note that in this paper, we
assume the symmetric case: wu,v = wv,u. Therefore, this
defines a random walk in a weighted graph, or equivalently,
a reversible Markov chain [14]. Next, we give some concrete
examples of our model as follows.

latency: lu,vsource: s

weight: wu,vvu

destination: t

with probability: ρu,v
Fig. 1. An illustration of a weighted random walk in a finite graph with
transition times given by {`u,v}.

Example 1 (I.I.D. Random Duty Cycling Sensor Networks):
Let ρdc be the duty cycling rate of all nodes, such that in
one time slot, each node is awake with i.i.d.3 probability ρdc,
and is dormant with probability 1-ρdc. Hence, every neighbor
has an equal chance of receiving a packet by opportunistic
forwarding (namely, wu,v = 1). Then the waiting time
for both u and v to be awake in the same time slot is a

3We also address the setting of heterogeneous random duty cycles in the
full technical report [28].
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geometric random variable with parameter ρ2dc. As shown in
Lemma 7 in the Appendix, the expected transition time at u
(the waiting time that a packet is forwarded to the earliest
wake-up neighbor) is `u = 1

1−(1−ρ2dc)du

Example 2 (I.I.D. Pseudo-Random Duty Cycling Sensor
Networks): As proposed in [7], the neighboring nodes can first
exchange the seed of pseudo-random sequence that generates
the random duty cycling. Then a node can predict the exact
awake time slots of its neighbors. Let ρdc be the duty cycling
rate. Similarly, wu,v = 1. Then the waiting time for both
u and v to be awake in the same time slot is a geometric
random variable with parameter ρdc. As shown in Lemma 7,
the expected transition time at u is `u = 1

1−(1−ρdc)du

Example 3 (Delay Tolerant Networks with Geographical
Dependence): We suppose that each deposit site has its packet
carriers randomly commuting among its neighboring sites
within a certain bounded reachable region. And we assume
a simple setting where the transition time depends linearly
on the geographical distance, such that `u,v = ||u− v|| and
wu,v = 1. That is, the further away the nodes are, the longer
transition time is incurred. Although other mobility models
(e.g., random waypoint model) can also be considered, the
expressions for wu,v and `u,v will be more complicated. We
may also set the weight wu,v to depend on the geographical
distance `u,v , such as wu,v = `−αu,v or wu,v = e−β`u,v , as to
model the random encounters between the packet carriers and
deposit sites.

Example 4 (Searching in Peer-to-peer Networks): Suppose
that the frequency of peer node u to meet node v online
simultaneously is captured by weight wu,v . Then ρu,v =

wu,v
wu

naturally characterizes the likelihood that u will forward a
query message to v. And `u,v represents the average waiting
time that u waits for v to be online simultaneously.

These examples can be captured by weighted random walk
with heterogeneous transition times. In this paper, we suppose
that the topology G, weights {wu,v} and latency {`u,v} are a
priori given or measured empirically. The natural question is
to predict the hitting time of stateless opportunistic forwarding
in such a formulation.

B. Nearest Neighbor Networks

We also particularly consider a common class of distance-
regular networks that can capture the notion of geographical
proximity. For simplicity, we consider a boundary-less space.
Suppose that there is a set of n nodes placed evenly in a one
dimension as a cycle, or in a two dimensional space as a torus.

We define an r-nearest neighbor cycle as the graph with
edges between every pair of nodes within r-hops away in the
cycle. This naturally captures the notion geographical prox-
imity, such that neighbors lie within the bounded transmission
range in sensor networks, or are reachable by a single carrier
wandering in a bounded region in delay tolerant networks. See
Fig. 2 (b) for an example of 2-nearest neighbor cycle.

To generalize to the two dimensional case as a torus, we note
that there are various ways of defining the nearest neighbors
in two dimensions. One may use the L1 norm such that there
is an edge between the nodes whose shortest path is within r
hops in the torus (see Fig. 3 (a)), or L∞ norm such that the
vertical and horizontal distance are both within r hops in the
torus (see Fig. 3 (b)). Generally, we can consider other norms
(e.g., L2 norm to model circular transmission range), which
however are less convenient to study.

III. HITTING AND COMMUTE TIME OF RANDOM WALK

To solve the hitting and commute time of random walk
in arbitrary graphs, we present two general techniques: 1)
effective resistance and 2) spectral graph theory. Our study will
be based on spectral graph theory to derive efficient general
formulas for the hitting and commute time of random walk
with heterogeneous transition times at relaying nodes.

A. Effective Resistance
We first survey the approach of effective resistance [16]–

[18]. Given a finite graph G, we assign each edge (u, v) ∈ E
a resistance of value 1/wu,v . For any pair of nodes u, v ∈
V (which may not necessarily be neighbors), we define the
effective resistance Ru,v as the voltage difference between u
and v, when a unit current is injected at u and removed from
v.

Denote the commute time between node u and node v as
Cu,v . Thus, Cu,v = Hu,v+Hv,u (i.e., the sum of hitting time
from u to v and vice versa).

In [18], it is shown that

Cu,v = Ru,v ·
∑

(u,v)∈E

wu,v(`u,v + `v,u) (3)

In the case of homogeneous transition times (i.e., `u,v = 1
for all u, v ∈ V), [17] has shown that

Hu,v =
1

2

(
Cu,v +

∑
w∈V

πw(Cw,v −Cw,u)
)

(4)

where we define a vector π = (πu)u∈V such that

πu ,
wu
W

where W ,
∑
u′∈V

wu′ (5)

By standard Markov chain theorem [14], π is the unique
stationary distribution of random walk in G.

However, it is not clear how to obtain the hitting time from
effective resistance, with arbitrary `u,v . In this paper, we rely
on an alternate approach based on spectral graph theory.

B. Spectral Graph Theory
First, we define some notations. Denote the adjacency

matrix of G as A such that

Au,v ,

{
wu,v if (u, v) ∈ E
0 otherwise (6)

We also denote the adjacency matrix of a given graph G as
A[G]. Define the diagonal matrix of G as D such that

Du,v ,

{
wu if u = v
0 otherwise (7)
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(a) (b)

Fig. 2. (a) A cycle. (b) A 2-nearest neighbor cycle.

(a) (b)

r=1

r=2

Fig. 3. (a) L1 Nearest neighbor tori. (b) L∞ Nearest neighbor tori. The dotted
boxes indicate the neighborhoods of the centre node.

And define the normal matrix as N , D
− 1

2 AD
− 1

2 . That is,

Nu,v ,

{ wu,v√
wuwv

if (u, v) ∈ E
0 otherwise

(8)

Note that N is symmetric, and hence there exist real
eigenvalues and eigenvectors of N. Let λk and νk be the
(k+1)-th eigenvalue4 and the corresponding eigenvector of N.

B.1. Homogeneous Transition Times
Consider homogeneous transition times: `u = 1 for all u. In

[13] (Theorem 3.1), Lovasz solved Eqn. (1) with a solution:

Hu,v =
∑

k:λk 6=1

W

1− λk

(ν2
k,v

wv
− νk,uνk,v√

wuwv

)
(9)

where νk,u is the u-th entry of vector νk.
By Cu,v = Hu,v + Hv,u,

Cu,v =
∑

k:λk 6=1

W

1− λk

( νk,u√
wu
− νk,v√

wv

)2
(10)

Although Lovasz considered unweighted graphs where wu =
du (the degree of u) and W = 2m (twice as the number of
edges), it can be easily generalized to weighted graphs.

In [19] (Theorem 8), Chung and Yau considered the (nor-
malized) Laplacian of a graph defined as L , I − N, and
independently proved Eqn. (9) via discrete Green’s function5.

The complexity of Eqn. (9) or (10) is O(n), and solving
the eigen spectrum of a symmetric matrix is O(n3). Since the
eigen spectrum of N can be reused for all source-destination
pairs. Hence, the complexity of computing the hitting and
commute time for all n2 source-destination pairs is O(n3).

B.2. Heterogeneous Transition Times
In this paper, we consider a general setting with heteroge-

neous transition times {`u} at different nodes.
We are interested in obtaining similar formulas as Eqns. (9)-

(10) for computing the hitting time, whose time complexity
takes only O(n3). A major contribution of this paper is
Theorem 1, which extends the formulas in [13], [19] to the
setting of heterogeneous transition times. Furthermore, we will
study the eigenvalues and eigenvectors for specific network
topologies in the next section.

4The order of eigenvalues does not matter.
5The proof given by Lovasz in [13] is rather sketchy. Hence, our results

are based on the one in [19].

We define a latency matrix S as:

Su,v ,

{
`u if u = v
0 otherwise (11)

and define “generalized” Laplacian L̃ , S
− 1

2 (I−N)S
− 1

2 as:

L̃u,v ,


1
`u

if u = v

− wu,v√
wu`uwv`v

if (u, v) ∈ E
0 otherwise

(12)

Note that L̃ is also symmetric, hence there exist real
eigenvalues and eigenvectors of L̃. Let σk and µk be the
(k+ 1)-th eigenvalue and the corresponding eigenvector of L̃.

Theorem 1: Given arbitrary transition time `u > 0 for each
u, the hitting time and commute time from u to v can be
computed by:

Hu,v =
∑

k:σk 6=0

W̃

σk

( µ2
k,v

wv`v
−

µk,uµk,v√
wu`uwv`v

)
(13)

Cu,v =
∑

k:σk 6=0

W̃

σk

( µk,u√
wu`u

−
µk,v√
wv`v

)2
(14)

where µk,u is the u-th entry of vector µk, and W̃ ,∑
(u,v)∈E wu,v(`u,v + `v,u) =

∑
u′∈V wu′`u′ .

Proof: The idea is to generalize the one in [19] to a setting
with heterogeneous transition times. See the Appendix.

When `u,v = 1 for all (u, v) ∈ E , it is easy to see that
σk = 1− λk and µk = νk. Hence, Eqns. (13)-(14) reduce to
Eqns. (9)-(10). The time complexity of computing the hitting
and commute time with heterogeneous transition times by
Eqn. (9) for all n2 source-destination pairs is also O(n3).

We present a numerical example of Example 3 in Fig. 4
with hitting time computed by Eqn. (13). We have verified
that the hitting times in Fig. 4 indeed satisfy Eqn. (1).

Finally, we remark that [29] recently generalizes some of
our results of the hitting time for irreversible Markov chains,
using the notion of pseudo-inverse of Laplacian.

IV. r-NEAREST NEIGHBOR NETWORKS

In this section, we especially study the Laplacian of the
nearest neighbor networks and obtain specific formulas for
computing the hitting and commute time. For clarity, in this
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Fig. 4. A randomly generated instance of Example 3, where the radius
of one-hop reachable region is 0.3. On each node is the hitting time to hit
the blue circled node, where the red number on each edge is the Euclidean
distance of its end nodes, and the number in bracket is the expected transition
time at each node.

section we consider the homogeneous case: `u,v = 1 for all
(u, v) ∈ E .

A. r-Nearest Neighbor Cycles

Denote a cycle of n nodes as Cn. We construct an r-nearest
neighbor cycle (denoted as Crn) as the graph with edges
between nodes and their r-nearest left and r-nearest right
neighbors on Cn. We label the nodes by the order around the
cycle as: 0, 1, ..., n − 1. We consider the uniform symmetric
case, such that wu,u+j = wu,n−j+u = aj for 1 ≤ j ≤ r.

Lemma 1: The (k+1)-th eigenvalue and eigenvector of the
Laplacian L̃ of r-nearest neighbor cycle Crn are:

σk = 1−
∑r
j=1 aj cos

(
2πjk
n

)∑r
j′=1 aj′

, µk =
1√
n

(
1, εk, ..., ε(n−1)k

)T
where ε is a complex number defined as: ε , cos

(
2π
n

)
+

i sin
(
2π
n

)
.

Proof: We show that 1 − σk and µk are the eigenvalue
and eigenvector of normal matrix N of Crn. See the Appendix.

Lemma 1 is an extension to [30] Lemma 11.

Theorem 2: Suppose aj = 1 for 1 ≤ j ≤ r. Without loss
of generality, we consider the hitting time from u to 0 in r-
nearest neighbor cycle Crn. Then, it can be computed by:

Hu,0 = 2r

n−1∑
k=1

1− cos
(
2πku
n

)
(2r + 1)− sin

(
πk(2r+1)

n

)
sin
(
πk
n

) (15)

Proof: Note that the degree du = 2r is a constant for all
u. Thus, W = 2rn. By Lemma 1 and Eqn. (9), we obtain:

Hu,0 = 2rn

n−1∑
k=1

1− cos
(
2πku
n

)
− i sin

(
2πku
n

)
2rn
(

1− 1
r

r∑
j=1

cos
(
2πjk
n

)) (16)

=

n−1∑
k=1

1− cos
(
2πku
n

)
1− 1

r

r∑
j=1

cos
(
2πjk
n

) (17)

This is due to the identities: cos
(
2πjk
n

)
= cos

( 2πj(n−k
n

)
and sin

(
2πku
n

)
= − sin

( 2π(n−k)u
n

)
. Finally, Eqn. (15) fol-

lows from the trigonometric identity of Dirichlet kernel from
Lemma 5 in Appendix.

Theorem 2 generalizes our previous results in [21] for only
the maximum hitting time in r-nearest neighbor cycle.

Theorem 3: When n is even, the maximum hitting time in
an r-nearest neighbor cycle can be approximated by:

Hn
2 ,0
≈ 3n2

2(1 + r)(1 + 2r)
(18)

Proof: It is based on the careful approximation of the
Taylor series expansion of Eqn. (15). See the Appendix.

When r = 1, it is well known that via effective resistance
[14], [15] the hitting time for a pair of farthest nodes in an
n-node cycle is indeed n2

4 . Hence, Theorem 3 is accurate for
1-nearest neighbor cycles. For r-nearest neighbor cycles, Fig. 5
numerically shows that Eqn. (18) gives a relatively accurate
approximation to the exact computation based on Eqn. (15).

r=1

r=2
r=3

r=4
r=5

Maximum Hitting Time

n

exact

3 n
2

2 H1 + rL H2 r + 1L

0 50 100 150 200
0

2000

4000

6000

8000

10 000

Fig. 5. Hn
2
,0 computed exactly by Eqn. (15) is plotted against the

approximation using Eqn. (18).

B. r-Nearest Neighbor Tori

For convenience of presentation, we label the nodes on a
torus by (0, 0) to (n, n). Namely, there are n2 nodes, whereas
there are n nodes in the cycle case.

Theorem 4: The hitting time H(u,v),(0,0) from node (u, v)
to node (0, 0) can be computed by:

1) (Torus):∑
(k,l)6=(0,0)

1− cos
( 2π(ku+lv)

n

)
1− 1

2

(
cos
(
2πk
n

)
+ cos

(
2πl
n

)) (19)

2) (L1 r-Nearest Neighbor Torus):∑
(k,l) 6=(0,0)

1− cos
( 2π(ku+lv)

n

)
1− 1

2r2+2r

( r∑
i=−r

r−|i|∑
j=−r+|i|

cos
(
2πik
n

)
cos
(
2πjl
n

)
− 1
)

(20)
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3) (L∞ r-Nearest Neighbor Torus):∑
(k,l)6=(0,0)

1− cos
( 2π(ku+lv)

n

)
1− 1

4r2+4r

( r∑
i=−r

r∑
j=−r

cos
(
2πik
n

)
cos
(
2πjl
n

)
− 1
)

(21)
(Proof idea): We first give the basic idea as follows. The

proof relies on the notion of two types of composed graphs.
Recall that the adjacency matrix of graph G is A[G]. We define
two types of composed graphs as follows:

1) Union Graph: Given G = (V, E) andH = (V,F), define
a graph, G ∪ H, such that the set of nodes is V and its
adjacency matrix is just the sum of those of G and H:

A[G ∪ H] = A[G] + A[H] (22)

Namely, the edge weights are the sum of those of G,H.
2) Tensor Product Graph: Given G = (V, E) and G′ =

(V ′, E ′), define a graph, G × G′, such that the set of
nodes is V × V ′, and its adjacency matrix is the tensor
product6 of those of G,G′:

A[G × G′] = A[G]⊗A[G′] (23)

See the Appendix for the formal definition of tensor
product of matrices. Namely, (u, u′) and (v, v′) are
adjacent in G × G′, if (u, v) ∈ E and (u′, v′) ∈ E ′.
Particularly, if n = |V| and I is the n×n identity matrix,
then A[G]⊗ I defines n disjoint copies of G.

The combinations of union graphs and tensor product graphs
over nearest neighbor cycles can generate a large class of
nearest neighbor tori with arbitrary norms. We next give some
examples of such constructions in Fig. 6 as follows.

(-s,-t)

(s, t)

(a) (b) (c)

(s, -t)

(-s, t)

Fig. 6. Three different settings of neighbors of the center node, as explained
in (n1)-(n3)

We consider n2 nodes placed evenly on the two dimensional
boundary-free surface of a torus. We assume that the setting
of neighbors is uniform to all nodes. We label the nodes by
the coordinates: (u, v), where 0 ≤ u, v ≤ n−1 on the surface.

We explain the examples in Fig. 6 as follows:
n1 In Fig. 6 (a), each node has four neighbors (two horizon-

tal and two vertical). This indeed forms a torus, whose
adjacency matrix is: A[Cn]⊗ I + I⊗A[Cn]

n2 In Fig. 6 (b), each node has four neighbors (all diagonal).
If n is odd, then this forms a connected graph. This
defines a graph, with adjacency matrix as: A[Cn]⊗A[Cn]

n3 Let Crn(s) be an r-nearest neighbor cycle such that
as = 1 and aj = 0 for j 6= s. In Fig. 6 (c), each node

6The definition of tensor product of matrices can be found in Appendix.

(u, v) has only four neighbors as (u± s mod n, v ± t
mod n). This defines a graph, with adjacency matrix as:
A[Crn(s)]⊗A[Crn(t)]

In fact, a nearest neighbor torus defined by arbitrary norm
can be regarded as a union graph of a collection of graphs
with suitable A[Crn(s)]⊗A[Crn(t)].

Note that, for 0 ≤ k, l ≤ n− 1, we define a vector µ(k,l):

µ(k,l) ,
1

n

(
1, εk, ..., ε(n−1)k

)T ⊗ (1, εl, ..., ε(n−1)l)T (24)

By Lemma 1, it follows that µ(k,l) is the (kn + l + 1)-th
eigenvector of the Laplacian of the example in Fig. 6 (c),
whose eigenvalue is 1− 1

2

(
cos
(
2πsk
n

)
+ cos

(
2πtl
n

))
.

In general, it can be generalized as the following lemma.

Lemma 2: Given a set of tuples: {(s1, t1), ..., (sr, tr)} such
that (sj , tj) 6= (0, 0) for 1 ≤ j ≤ r. Consider a graph G with
n2 nodes, such that each node (u, v) has only four neighbors
as (u ± sj mod n, v ± tj mod n) for 1 ≤ j ≤ r, whose
edge weight is 1. Then the (kn+ l + 1)-th eigenvalue of the
Laplacian L̃ of G is:

σ(k,l) = 1− 1

r

r∑
j=1

cos
(2πsjk

n

)
cos
(2πtjk

n

)
(25)

and the corresponding eigenvector is µ(k,l).

Proof: (Theorem 4) Since for a L1 r-nearest neighbor
torus the degree is 2r2 + 2r, and for a L∞ r-nearest neighbor
torus the degree is 4r2 + 4r, applying Lemma 2 to substitute
into Eqn. (9), we complete the proof of Theorem 4.

Theorem 4 can be extended to even more sophisticated
geographical proximity relations, other than L1 and L∞ norms.

Theorem 5: The maximum hitting time in an r-nearest
neighbor torus is:

H(n2 ,
n
2 ),(0,0) = Θ

(n2 log(n)

(1 + 2r)2

)
(26)

The proof can be found in the full technical report [28]. We
remark that [22] has proven a similar result of Theorem 5 for
the commute time in k-fuzz of torus.

Furthermore, we numerically approximate the exact formu-
las in Theorem 4 (and corroborated in Figs. 7-8):

1) (L1 r-Nearest Neighbor Torus):

H(n2 ,
n
2 ),(0,0) ≈

3.98n2 log(n)

(1 + 2r)2
+ 0.96n2 (27)

2) (L∞ r-Nearest Neighbor Torus):

H(n2 ,
n
2 ),(0,0) ≈

2.34n2 log(n)

(1 + 2r)2
+ 0.96n2 (28)

These equations will be useful for the latency-overhead
optimization, and the determination of time-to-live (TTL)
value of packets in stateless opportunistic forwarding.
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Maximum Hitting Time

n

exact

3.98 n
2

 log HnL

H2 r + 1L2
+0.96n

2

0 50 100 150 200
0

20 000

40 000

60 000

80 000

100 000

120 000

Fig. 7. For L1 r-nearest neighbor torus, H(n
2
,n
2
),(0,0) computed ex-

actly by Eqn. (27) is plotted against the approximation using Eqn. (20).

r=1
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Fig. 8. For L∞ r-nearest neighbor torus, H(n
2
,n
2
),(0,0) computed exactly by

Eqn. (28) is plotted against the approximation using Eqn. (21).
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Fig. 9. Example 2 (sensor networks with i.i.d. pseudo-random duty
cycling) over a random geometric graph Ggeo(N,R), where we set
ρdc = 0.1. We also compare to the approximation by Eqn. (30).
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Fig. 10. Example 3 (store-carry-forward networks with geographical depen-
dence) over a random geometric graph Ggeo(N,R), where we set `u,v =
||u− v|| and wu,v = 1. We also compare to the approximation by Eqn. (32).

V. RANDOM GEOGRAPHICAL LOCATIONS

In this section, we apply the results of Sec. IV to the set-
tings of random geographical locations and distance-dependent
weights and transition times, using random geometric graphs.

Random geometric graphs have been widely-used for mod-
eling diverse wireless ad hoc networks, in which nodes are
randomly placed in a confined area, and the communication
links are established between nodes that are within a pre-
defined transmission radius. Here we study the hitting time
of random walk in random geometric graphs.

We denote a random geometric graph by Ggeo(N,R), which
is an ensemble of N -node graphs, such that the position of
each node is independently uniformly distributed on a 2D unit
area, and there is an edge between a pair of nodes if they are
within the transmission radius R.

Next, we quote a lemma from [22], which shows the
distribution of degrees of a random geometric graph is
concentrated on the mean degree.

Lemma 3: [22] (Lemma 3.2-3.4) Given a random geo-
metric graph Ggeo(N,R), such that R = c

√
logN
N ) for some

constant c. Then the degree of every node u is:

du = Θ(NπR2) w.h.p.

It is easy to see that the degree distribution of a node
follows the Binomial distribution, where NπR2 is the mean.
Lemma 3 implies that the degree distribution of random
geometric graphs is concentrated around the mean for large N
and appropriate R. Hence, it seems reasonable to approximate
random geometric graph by a nearest-neighbor network to
estimate the hitting time. By simulation, we observe that the
degree is close to NπR2 with a negligible variant, when c ≈ 2.

Next, we consider the settings of Example 2 (i.i.d. pseudo-
random duty cycling sensor networks) and Example 3 (delay
tolerant networks with geographical dependence) from Sec. II
on a random geometric graph. Figs. 9 and 10 show the
numerical results of the maximum hitting time between the
farthest pair of nodes for Examples 2 and 3 in Ggeo(N,R).

The numerical study was performed as follows. We first
randomly generated a geometric graph in Ggeo(N,R), such that
R scales as c

√
logN/N for c ≈ 2 to ensure high probability

of a connected geometric graph. Then, we applied Eqn. (13) to
compute the maximum hitting time between the farthest pair
of nodes, averaged over 1000 different graph instances, where
wu,v and `u,v are set according to Example 2 and Example 3.

We observe that the maximum hitting time in Example 2
scales linearly in N . This observation can be explained by
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Theorem 5 in Sec. IV-B. First, we let the number of hops as:

L(N,R) ,
N logN

r2
(29)

where r2 is the number of neighbors. By Lemma 3 we obtain
r2 ∼ logN and L(N,R) ∼ N .

Then the maximum hitting time for Example 2 can be
estimated by:

Hmax ∼
L(N,R)

1− (1− ρdc)NπR2 (30)

which follows from the regularity suggested by Lemma 3.
We next consider Example 3. The maximum hitting time

can be estimated by:

Hmax ∼ L(N,R)¯̀(N,R) (31)

where ¯̀(N,R) is the expected per-hop latency at each node,
which can be approximated by R. Thus, the maximum hitting
time is:

Hmax ∼
√
N logN (32)

We observe that both Eqns. (30) and (32) match reasonably
well with the trend obtained from simulations, as shown in
Figs. 9-10, even for moderate values of N (≤ 250). This gives
useful scaling laws for stateless opportunistic forwarding on
uniform random geometric networks.

VI. ADVANCED STATELESS OPPORTUNISTIC FORWARDING

In this section, we consider the latency in various more
sophisticated settings and extend the work in Sec. III. First,
we study the usefulness of partial topology information by
a hybrid approach, combining opportunistic forwarding and
shortest path routing, and obtain useful insights on the perfor-
mance. Second, we study the case of multi-copy strategy, such
that multiple instances of stateless opportunistic forwarding
are initiated. Third, we evaluate the cover time considering
heterogeneous transition times.

A. Topology-Aware Forwarding

If the local topology information (or a decent estimate)
is available, opportunistic forwarding can leverage on such
information to improve performance. Particularly, we consider
the following situations:

1) Mobile Ad Hoc Networks: Smart link state protocols,
such as Hazy Sighted Link State routing (HSLS) [31],
disseminate the link state information more frequent to
nearby nodes and less frequently to farther nodes. Such
biased dissemination can reduce the control overhead.

2) Duty Cycling Sensor Networks: For energy efficiency,
a sink will only broadcast its reachability information
(e.g., the full availability schedules of itself and its
neighbors) to the nodes within a limited scope. Limited
local broadcast can conserve more energy.

In these situations, we consider a hybrid approach of for-
warding. First, stateless opportunistic forwarding is used until
reaching one of the topology-aware nodes (e.g., the nodes have
received information state in HSLS, or the full availability

schedules in duty cycling sensor networks). Then, (determin-
istic) shortest path routing is used to minimize the expected
latency from the topology-aware node to the destination. We
call this k-hop topology-aware opportunistic forwarding, if
only the neighbors within k hops away from the destination
will carry out shortest path routing.

In this section, we especially study the latency of k-hop
topology-aware opportunistic forwarding in the setting of Ex-
ample 2 (i.i.d. pseudo-random duty cycling sensor networks)
with duty cycling rate ρdc. In the setting of mobile ad hoc
networks with HSLS, one can simply set ρdc = 1.

Next, we apply the generalized Lovasz formula Eqn. (13)
to compute the hitting time of k-hop topology-aware oppor-
tunistic forwarding. First, one can simply replace the set of
topology-aware neighbors by a super node, and the stateless
opportunistic forwarding hitting any topology-aware neighbors
is equivalent to hitting the supernode (see Fig. 11).

source: s

destination: t

source: s

supernode
edge contraction

(b)  Gmer(t,1)(a)  G

tmer
Fig. 11. An illustration of 1-hop neighbors replaced by a super node.

Formally, we define edge contraction. Given a graph G, we
write G\e as the resultant graph of the edge contraction on
edge e in G, such that the edge e = (u, v) is removed from G
by merging the nodes u and v, and all other edges incident at
either u or v become incident at the merged node. Then given
a destination t in G, we define Gmer(t, k):

Gmer(t, k) , G\
{
e = (u, v) | v ∈ N k

t and u ∈ N k
t

}
(33)

where N k
t is the set of neighbors within k hops from t

(including t). See an illustration in Fig. 11. We refer to the
supernode as tmer in Gmer(t, k). Another important distinction
between G and Gmer(t, k) is that in the latter graph, the
weights of the edges connecting tmer to its neighbors may
have non-unit edge weights even though G had unit edge costs.
Specifically, the new weight will be set as:

wGmer(t,k)(u, tmer) ,
∑

v∈Nkt \N
k−1
t

wG(u, v) (34)

Hence, the hitting to destination by k-hop topology-aware
opportunistic forwarding becomes:

Hs,t(G) =

{
Hs,tmer

(
Gmer(t, k)

)
+ k

ρdc
if s /∈ N k

t
k′

ρdc
if s ∈ N k′

t and k′ ≤ k
(35)

It follows from the fact that the latency of shortest path
from a k-hop neighbor to the destination is just k

ρdc
. In the

following, we also make use of Eqn. (35) to numerically study
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the properties of latency for obtaining insights of performance.

Numerical Study 1: First, we investigate how the latency of
topology-aware opportunistic forwarding varies as a function
of k and ρdc. Fig. 12 shows the average maximum hitting
time of topology-aware opportunistic forwarding in a random
geometric graph of 100 nodes in a similar setting of Sec. V.

There are two key observations from this numerical study:
1) For each fixed value of k, decreasing ρdc has a certain

effect to reduce the hitting time. But the gain is only
marginal beyond a certain value of ρdc. We also note
that for sparser topologies such as grid networks, the
hitting time curve does not appear as rapidly flattening
with increasing ρdc.

2) For each fixed value of ρdc, there is a significant reduc-
tion in latency as k is increased from 0 to 2.

The second observation indicates that even though with little
topology knowledge, e.g., link state in the 2-hop neighborhood
of every node, we can still achieve latency almost as low
as shortest path routing. Although this is not generally true
for arbitrary network topologies, our simulation with random
geometric graphs suggests that this can be a vital heuristic
for controlling the latency of topology-aware opportunistic
forwarding.

Fig. 12. The average maximum hitting of k-hop topology-aware opportunistic
forwarding in a random geometric graph of 100 nodes as a function of the
duty cycling rate ρdc and the scope k.

Numerical Study 2: Second, we study how the average
maximum hitting time varies as the topology dissemination
overhead in such random networks as a function of scope
k. We focus on the ρdc = 1.0 scenario since this applies to
general routing and not just duty cycling. We define a simple
measure of dissemination overhead as follows. Given graph
G = (V, E), for each node v, compute the subgraph Gkv induced
by the nodes that are within k hops from v. We define the
normalized mean overhead per node as:

Overhead(G, k) ,
∑
v∈V

|E(Gkv )|
|V| · |E|

(36)

where E(Gkv ) is the set of edges in Gkv .
We then plot both metrics computed (and averaged) over 10

random instances of random geometric graphs with 100 nodes
in Figs. 13 and 14. We observe that as the dissemination scope
k goes up from 0 (i.e., pure stateless opportunistic forwarding)

to 8 (i.e., pure shortest path routing), the latency between the
farthest pair of nodes drops significantly and Overhead(G, k)
increases as k. A key observation from Fig. 14 is that both the
latency and overhead curves have an inflection point at k = 2
(i.e., the latency drop becomes more gradual after that and
the overhead increase becomes slightly sharper). This suggests
that k = 2 is a good operational value. Ideally, if we can
find a general closed form expression (even approximately) for
Eqn. (35) for random geometric graphs at critical connectivity
radius, then these inflection points could be found analytically,
if they exist. This will be pursued in the future research.

B. Multi-Copy Opportunistic Forwarding

The previous sections concern only single-copy stateless
opportunistic forwarding. We briefly show how to extend
these results to the setting of multi-copy forwarding, by the
construction of appropriate Cartesian product graphs.

Given a graph G = (V, E), we define a Cartesian product
graph as G�G, such that the set of nodes is V ×V , and (u, v)
and (u′, v′) are adjacent in G�G, if and only if either one of
the two cases is true:

Case (1): u = u′ and (v, v′) ∈ E .
Case (2): v = v′ and (u, u′) ∈ E .

We then denote G�k as the graph by taking Cartesian product
of k copies of G:

G�k , G�G� · · ·�G︸ ︷︷ ︸
k copies

(37)

It is easy to see that k copies of independent random walks
in G is equivalent to a single random walk in G�k. Suppose
that t ∈ V is the destination. In k-copy stateless opportunistic
forwarding, the hitting time to t is defined as the expected time
that at least one of k packets hits t, when each packet follows
an independent random walk. To incorporate this property
into G�k, we also make use of edge contraction, G\e (see
an illustration in Fig. 15).

(b)  G�2(a)  G

source: s

destination: t

(s, s)

u

v

(s, u) (s, v) (s, t)

(u, s) (u, u) (u, v) (u, t)

(v, s) (v, u) (v, v) (v, t)

(t, s) (t, u) (t, v) (t, t)

(s, u) (s, v)

(u, s) (u, u) (u, v)

(v, s) (v, u) (v, v)

t

edge contraction

(s, s)

(c)  G�2mer(t)
Fig. 15. An illustration of the Cartesian product of graphs G�2, and edge
contractions for all the edges with at least one coordinate as t.

Next, we apply edge contraction to all the edges in G�k that
have t in one of the coordinates. Denote E(G�k) as the set of
edges of G�k. We define a new graph G�k

mer(t) as:

G�k
mer(t) , G�k\

{
(u, v) ∈ E(G�k) | v = (v1, ..., vk), u = (u1, ..., uk),

and ui = vj = t for some i., j ∈ {1, ..., k}
}

That is, there is no difference between a pair of nodes that have
t as one of the coordinates in G�k

mer(t) (see Fig. 15). Hence, a
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Fig. 13. Hitting time vs. overhead analysis for random geometric graph
as a function of topology dissemination scope k for ρdc = 1.0.
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Fig. 14. Mean normalized overhead computed per node. The results are aver-
aged over 10 instances of random geometric graphs with the same parameters.

packet hitting one of these nodes is equivalent to hitting the
destination in k-copy opportunistic forwarding.

Without loss of generality, we also denote the merged node
in G�k

mer(t) as t. Then, we can apply the Lovasz formula
Eqn. (13) to compute the hitting time of k-copy opportunistic
forwarding in G�k

mer(t), from node (s, ..., s) to t.
We note that the order of magnitude of Lovasz formula

depends on the number of nodes in a graph. In the Cartesian
product graph of k graphs, the number of nodes is nk.
Hence, the complexity becomes O(n3k) for a pair of source-
destination. G�k

mer(t) does not appear to have simple expressions
even for simple topology as cycle, it remains an open question
for obtaining a more tractable expression for the hitting time
of k-copy stateless opportunistic forwarding.

We remark that recently there are other studies of multi-copy
opportunistic forwarding by multiple random walks [32], [33].

C. Cover Time
The cover time, the expected time of a packet from the

source to visit every other node by random walk, is more
difficult to obtain than hitting and commute time. A viable
approach is to estimate based on the hitting time using
Matthew’s bound [14], [15].

Considering homogeneous transition times (i.e., `(u,v) = 1),
the cover time from node u, Cover(u), can be estimated by
Matthew’s bound as follows:

n∑
i=1

1

i
min
u,v

Hu,v ≤ Cover(u) ≤
n∑
i=1

1

i
max
u,v

Hu,v (38)

We next outline the proof of Matthew’s bound and show
that it can be also applied to the setting of heterogeneous
transition times. For the upper bound, the basic idea is that we
pick a random order of nodes, and observe when the random
walk hits these nodes sequentially. Let Tk be the random time
that the random walk hits all the nodes from the first to k-th
node in the random order. Let E[Tk − Tk−1] be the expected
difference between Tk and Tk−1. If the k-th node is hit before
any preceding node in the random order, then Tk = Tk−1. The
probability that such event does not occur is 1

k . Hence,

E[Tk − Tk−1] = 1
kE
[
Tk − Tk−1 | k-th node is hit in k-th place

]
≤ 1

k maxu,v Hu,v

This proves the upper bound of Matthew’s bound by summing
E[Tk − Tk−1] for all k. The lower bound can be proved
similarly. Note that such argument of proof does not rely on
homogeneous transition times. Hence, Matthew’s bound can
be also applied to the case of heterogeneous transition times.

VII. CONCLUSION

We have studied stateless opportunistic forwarding as a
random walk in a finite graph, and presented several exact
results for the hitting and commute time of random walk in 1)
arbitrary finite graphs with heterogeneous transition times at
relaying nodes, 2) one dimensional r-nearest neighbor cycles,
3) two dimensional r-nearest neighbor tori. Particularly, we
obtained good approximation formulas for the hitting time in
r-nearest neighbor cycles and r-nearest neighbor tori. More-
over, we have applied our results to various settings, such as
networks resulting from the presence of random geographical
locations, and the extensions to topology-aware and multiple-
copy forwarding strategies. We also discussed the evaluation of
cover time. In the future, we will apply our results to practical
applications augmented with empirical measurements, such as
in delay tolerant networks and peer-to-peer networks.
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VIII. APPENDIX

A. Definition of Tensor Product

Suppose X is an (r + 1) × (s + 1) matrix and Y is a
(p+ 1)× (q + 1) matrix. Define the tensor product matrix as
X ⊗Y, which is a (r + 1)(p + 1) × (s + 1)(q + 1) matrix,
such that for 0 ≤ a ≤ r, 0 ≤ b ≤ p, 0 ≤ c ≤ s, 0 ≤ d ≤ q,
the entry at position (a(p+ 1) + b, c(q+ 1) + d) is defined as:

(X⊗Y)a(p+1)+b, c(q+1)+d , Xa,cYb,d (39)

B. Proof of Theorems and Lemmas

Lemma 4: Let J be the all-ones matrix. We reformulate
Eqn. (1) as a matrix equation as Φ , SJ + (D-1A − I)H,
where the non-diagonal entry Φu,v represents the recursive
relationship of hitting times in Eqn. (1). Then,

Φu,v =

{ ∑
u′∈V πu′`u′

πu
if u = v

0 otherwise
(40)

Proof: Note that (SJ)u,v = `u. Since the non-diagonal
entries Φu,v represent Eqn. (1),

Φu,v = SJ + (D-1A− I)H = 0, for u 6= v (41)

Namely, Φ is a diagonal matrix. Also, we observe that the
u-th entry of πTΦ is:(

πTΦ
)T
u

=
(
πTSJ

)T
u

=
∑
u′∈V πu′`u′ (42)

Therefore, the diagonal entry Φu,u =
∑
u′∈V πu′`u′

πu
.

Theorem 1: Given arbitrary transition time `u > 0 for each
u, the hitting time and commute time from u to v can be
computed by:

Hu,v =
∑

k:σk 6=0

W̃

σk

( µ2
k,v

wv`v
−

µk,uµk,v√
wu`uwv`v

)
(43)

Cu,v =
∑

k:σk 6=0

W̃

σk

( µk,u√
wu`u

−
µk,v√
wv`v

)2
(44)

where W̃ ,
∑

(u,v)∈E wu,v(`u,v+`v,u) =
∑
u′∈V wu′`u′ , and

σk and µk are the k-th eigenvalue and eigenvector of L̃.
Proof: First, we let ωu =

√
wu`u. Then we observe that

L̃u,uωu =

√
wu
`u

and (45)
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∑
v∈Nu

L̃v,uωv = −
∑
v∈Nu wu,v√
wu`u

= −
√
wu
`u

(46)

Hence, ωT L̃ = 0. That is, 0 is an eigenvalue, and ω/
√
W̃

is the corresponding eigenvector of L̃. Note that since G is
connected, by Frobenius-Perron Theorem [14], one can show
that σ0 = 0 is the unique eigenvalue.

Second, define (generalized) discrete Green’s function G̃:

G̃ ,
∑

k:σk 6=0

1

σk
µkµ

T
k (47)

Note that this is the same definition in [19], when `u = 1 for
all u. Since ω/

√
W̃ is an eigenvector of L̃, it follows that:

ωT G̃ = 0 and G̃L̃ = I− 1

W̃
ωωT (48)

Thrid, by Lemma 4 and πu = wu
W , the diagonal entry is:(

SJ+(D-1A−I)H
)
u,u

=

∑
u′∈V πu′`u′

πu
=

∑
u′∈V wu′`u′

wu
=
W̃

wu

Combining these facts, we obtain:

SJ+(D-1A− I)H = W̃D-1 (49)
(I−D-1A)H = SJ− W̃D-1 (50)

D
1
2 (I-D-1A)D

- 1
2 D

1
2 HD

1
2 = D

1
2 (SJ-W̃D-1)D

1
2 (51)

S
- 1
2 (I-N)S

- 1
2 S

1
2 D

1
2 HD

1
2 = S

- 1
2 D

1
2 (SJ-W̃D-1)D

1
2(52)

L̃S
1
2 D

1
2 HD

1
2 S

1
2 = S

- 1
2 D

1
2 (SJ-W̃D-1)D

1
2 S

1
2

L̃S
1
2 D

1
2 HD

1
2 S

1
2 = W̃ (

1

W̃
ωωT -I) (53)

G̃L̃S
1
2 D

1
2 HD

1
2 S

1
2 = W̃ G̃(

1

W̃
ωωT -I) (54)

(I-
1

W̃
ωωT )S

1
2 D

1
2 HD

1
2 S

1
2 = −W̃ G̃ (55)

Eqn. (53) is because that D and S are diagonal matrices. The
diagonal entry (u, u) of the above matrix equation is:

wu`uHu,u −
wu`u

W̃

∑
w∈V

ww`wHw,u = −W̃
∑

k:σk 6=0

1

σk
µ2
k,u

(56)
while the non-diagonal entry (u, v) is:√

wu`uwv`vHu,v −
√
wu`uwv`v

W̃

∑
w∈V

ww`wHw,u

= −W̃
∑

k:σk 6=0

1

σk
µk,uµk,v

(57)
Combining the two equations and using Hu,u = 0, we obtain
Eqn. (13). Eqn. (14) follows from Cu,v = Hu,v + Hv,u.

Lemma 1: The (k+1)-th eigenvalue and eigenvector of the
Laplacian L̃ of r-nearest neighbor cycle Crn:

σk = 1−

∑r
j=1 aj cos

(
2πjk
n

)
∑r
j′=1 aj′

, µk =
1√
n

(
1, εk, ..., ε(n−1)k

)T
ε is complex number defined as: ε , cos

(
2π
n

)
+ i sin

(
2π
n

)
.

Proof: The adjacancy matrix A[Crn] is:
0 a1 . . . a2 a1
a1 0 . . . a3 a2
...

...
. . .

...
...

a1 a2 . . . a1 0

 (58)

which is a circulant matrix [34]. It is well-known that the k-th
eigenvector is µk and the corresponding eigenvalue is:

a1ε
k + · · ·+ arε

rk + arε
(r−1)k + · · ·+ a1ε

(n−1)k

= 2

r∑
j=1

aj cos
(2πjk

n

)
(59)

Finally, W = 2
r∑

j′=1

aj′ and L̃[Crn] = I− A[Crn]
2
∑
j′=1raj′

.

Lemma 5: Trigonometric identity of Dirichlet kernel [35]:

1 + 2

r∑
j=1

cos(jx) =
sin
(
(r + 1

2 )x
)

sin(x2 )
(60)

Lemma 6: When x→ 0,
1

1− 1
r

r∑
j=1

cos(jx)
≈ 12

(r + 1)(2r + 1)x2
(61)

Proof: By Lemma 5 and Taylor series expansion at x = 0,

sin
(
(r+ 1

2 )x
)

sin( x2 )
= (2r + 1)− 1

6r(r + 1)(2r + 1)x2 +O(x4)

By numerical study, we observe that Eqn. (61) gives a
relatively good approximation even for 0 ≤ x ≤ π and small
r (see Fig. 16).

r=1

r=2
3

4
5

x

1

1 - �
1

r
 Új=1

r
cos H jxL

12

Hr +1L H2 r +1L x2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

5

10

15

20

Fig. 16. The comparison of 1

1− 1
r

r∑
j=1

cos(jx)
against 12

(r+1)(2r+1)x2 for

0 ≤ x ≤ π.

Theorem 2: When n → ∞, the maximum hitting time in
r-nearest neighbor cycle Crn can be approximated by:

Hn
2 ,0
≈ 3n2

2(1 + r)(1 + 2r)
(62)
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Proof: It suffices to consider the case n = 4c for integer
c, because we can always extrapolate in the approximation.

Hn
2 ,0

=

n−1∑
k=1

1− cos(πk)

1− 1
r

r∑
j=1

cos
(
2πjk
n

) (63)

=

n
2∑

k=0

2

1− 1
r

r∑
j=1

cos
( 2πj(2k+1)

n

) (64)

(1)
=

n
4∑

k=0

4

1− 1
r

r∑
j=1

cos
( 2πj(2k+1)

n

) (65)

(2)
≈

n
4∑

k=0

12n2

π2(r + 1)(r + 1)(2k + 1)2
(66)

The derivation of (1) follows from the fact that
cos
( 2πj(2k+1)

n

)
= cos

( 2πj(n−2k−1)
n

)
, whereas (2) follows

from Lemma 6.
We complete the proof by the following identity:

lim
n→∞

n∑
k=0

1

(2k + 1)2
=
π2

8
(67)

Lemma 7: Consider the settings of Example 1 and Example
2 in Sec. II. Let L(u) be the random number of slots for
node u before a neighbor becomes active. Therefore, L(u) =
min{L1, L2, . . . , Ldu}, where Lv is the random waiting time
for neighbor v ∈ Nu to become active.

1) (I.I.D. Random Duty Cycling Sensor Networks):

`u = E[L(u)] =
1

1− (1− ρ2dc)du
(68)

2) (I.I.D. Pseudo-Random Duty Cycling Sensor Networks):

`u = E[L(u)] =
1

1− (1− ρdc)du
(69)

Proof: We consider pseudo-random duty cycling, as ran-
dom duty cycling can be proven similarly. Note that each Lv
is a geometrically distributed random variable with parameter
ρdc. For t ≥ 1, the per-hop latency probability distribution is:

P
(
L(u) ≥ t

)
= P

(
min{L1, L2, . . . , Ldu} ≥ t

)
(70)

= P
(
Lv ≥ t, for all j ∈ Nu,

)
(71)

= (1− ρdc)(t−1)du (72)

Since L(u) is non-negative, we obtain:

E[L(u)] =

∞∑
t=1

P
(
L(u) ≥ t

)
(73)

=

∞∑
t=1

(1− ρdc)(t−1)du =
1

1− (1− ρdc)du
(74)


