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ABSTRACT
Plug-in hybrid electric vehicles (PHEVs) are a viable energy-
efficient means of transportation, which enjoy both con-
venience of fuel refilling and cheap electrical energy. But
PHEVs have complex dynamics of orchestrating hybrid en-
ergy sources. While many prior results in energy manage-
ment consider the internal optimization processes of PHEVs,
this paper focuses on a driver-centric approach that enables
the drivers to select the appropriate drive modes for mini-
mizing fuel consumption. Drive modes are driver-selectable
pre-set profiles of configurations of powertrain and vehicle
parameters. Typical PHEVs have options of drive modes,
for example, electric vehicle (EV) mode (that draws fully on
battery) and charge sustaining (CS) mode (that utilizes in-
ternal combustion engine to charge battery while propelling
the vehicle). We develop optimization algorithms that opti-
mize drive mode selection based on trip information, and in-
tegrated with path planning to consider intermediate filling
and charging stations. We also provide an online algorithm
that requires minimal a-priori trip information. We imple-
ment our system and evaluate the results empirically on a
Chevrolet Volt, which can enable a significant improvement
in fuel efficiency.

CCS Concepts
•Applied computing→ Transportation; •Theory of com-
putation → Dynamic graph algorithms;

Keywords
Energy-efficient Transportation, Plug-in Hybrid Electric Ve-
hicles, Fuel Optimization, Path Planning

1. INTRODUCTION
Plug-in hybrid electric vehicles (PHEVs) are equipped

with rechargeable batteries and electrical machines (which
double as electric motors and generators), as well as conven-
tional internal combustion engines (see Fig. 1 (a)). PHEVs
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are becoming a viable energy-efficient means of transporta-
tion, benefited by the convenience of fuel refilling and cheap
electrical energy. In addition to using regenerative braking
to capture waste energy from braking and engine stop/start
assisted by electric motor, PHEVs can also harness the di-
versity of energy efficiency of electric motors and combustion
engines by managing the hybrid energy sources.

Electric motors and combustion engines exhibit different
degrees of energy efficiency at various vehicle speeds (see
Fig. 1 (b) for an illustration). Electric motors are more
effective for energy conversion at a lower speed, while the
energy-efficient operating regime of internal combustion en-
gines is around a higher speed. For a very high speed, a
combination of electric motor and combustion engine is more
efficient. Thus, one can explore the opportunities of charging
battery from combustion engine efficiently at a high speed
and discharging from battery to propel the vehicle at a low
speed (which will be empirically studied in the subsequent
section). Given a forecast of vehicle speed profile, it is a cru-
cial research problem to optimize the use of energy sources
to reduce the overall energy consumption.

Figure 1: (a) System components of a plug-in hybrid
electric vehicle (PHEV). (b) Comparison of equiv-
alent energy cost of electric motor and combustion
engine at different vehicle speeds.

Many prior results [5,7,13] in energy management consider
the internal optimization processes of PHEVs, which assume
complete controls of all system components of a PHEV (see
Sec. 3). As a departure from prior work, this paper focuses



on a driver-centric approach that involves drivers’ partici-
pations and decisions to minimize the fuel consumption. A
feasible approach is to optimize the selection of drive modes
for a given trip. Drive modes are a set of pre-set profiles of
configurations of powertrain and other vehicle parameters
that are selectable by drivers during driving. For example,
Sport mode maximizes the engine performance by allowing
larger horsepower, whereas ECO mode suppresses the ve-
hicle performance by constraining acceleration and throttle
response. In particular, there are special drive modes for
PHEVs that can affect the energy management system.

We describe several generic drive modes for PHEVs:

• Electric Vehicle (EV) mode allows the PHEV to draw
solely on battery without relying on internal combus-
tion engine.

• Charge Sustaining (CS) mode utilizes internal combus-
tion engine to charge battery and propel the PHEV
simultaneously.

• Aggregate Power (AP) mode combines both electric
motor and internal combustion engine to boost the
output power.

Although the preceding generic drive modes may not be
present in all models of PHEVs, they may be mapped from
certain available drive modes (as discussed in Secs. 2, 4.5).

In this paper, we consider general optimization problems
of drive mode selection for fuel minimization in two settings:

• Route-based Optimization: Given the trip information
for a particular route, we find an optimal solution of
drive mode selection for each segment of the trip. We
also provide an online algorithm that requires minimal
a-priori trip information.

• Integrated Path Planning: Given the source and desti-
nation of a trip, we find an optimal path together with
appropriate drive mode selection, taking into account
various fuel prices at intermediate filling stations and
the availability of battery charging.

In Sec. 4, we formulate the above problems by integer pro-
gramming problems, which capture several practical aspects
of PHEVs (e.g., multi-mode transmission, and vehicle speed
dependency in combustion engine management). In Sec. 5,
we devise effective algorithms for solving these drive mode
selection problems. We also provide fast approximation al-
gorithms for a large problem size.

To demonstrate the practical value of our results, we im-
plement our system and evaluate the results empirically on
a Chevrolet Volt in Sec. 8. Validated by real-world data
measured in Chevrolet Volt, we observe that our system can
enable a significant improvement in fuel efficiency.

We remark that although our current system relies on
drivers’ inputs of drive modes, the system can be loaded
as a software application on the vehicle system platform for
automatic drive mode selection, as we expect that the future
vehicle platform will support third-party applications.

2. BASICS AND BACKGROUND
We first present some basic and background information

about PHEVs. The powertrain mechanics of PHEVs can be
classified by the following patterns:

• Series Hybrids: The internal combustion engine is al-
ways connected to the generator to charge battery.
The drivetrain is only powered directly by electric mo-
tor. Once the state-of-charge of battery becomes low,
the internal combustion engine will start to charge bat-
tery. Series hybrid vehicles are regarded as range ex-
tenders of pure electric vehicles.

• Parallel Hybrids: The internal combustion engine and
electric motors can operate in tandem to power the
drivetrain. A conventional transmission gear train may
operate with the internal combustion engine. A power
split system is present to combine the parallel power
sources. There is a possible clutch to enable the in-
ternal combustion engine to charge battery and propel
the vehicle simultaneously.

• Series/Parallel Hybrids: By using a combination of
planetary gear trains, it allows flexible power split be-
tween the internal combustion engine and a multiple
number of electric motors. An auxiliary electric mo-
tor/generator may be present to provide additional
performance improvement.

Despite the differences of powertrain mechanics, the inter-
nal operations of PHEVs are often transparent to drivers.
There are automatic systems to manage the transmission
gear, powertrain and hybrid energy sources. Given the steer-
ing and petal control status, the automatic system will con-
trol the torque, rpm of combustion engine, transmission
gears, output power of battery, etc., to match the load of
drivetrain [5, 13]. Note that practical control system will
normally set the rpm of combustion engine related to the
vehicle speed, even for series hybrids in which the combus-
tion engine is not directly connected to the drivetrain. There
is a safety hazard for the combustion engine operating in a
high speed, when the vehicle is stationary.

Figure 2: Options to select drive modes in Chevrolet
Volt (model 2013) on (a) the console display unit,
or (b) a dedicate button on the center console.

Although the low-level mechanics are not controllable by
drivers, typical vehicles are usually customizable by setting
certain high-level drive modes. In following, we describe the
available drive modes in several production PHEV models
that can affect the behavior of energy management system:

• Chevrolet Volt (model 2011-2015) operates as a series
hybrid. The available drive modes are Normal, Sport,
Mountain and Hold (see Fig. 2). In Normal and Moun-
tain modes, Volt draws only on battery until the state-
of-charge drops to 22% and 45% respectively. Then,



Volt turns on internal combustion engine to charge
battery, which continues to propel the vehicle. In Hold
mode, Volt uses internal combustion engine to main-
tain the current state-of-charge. Note that Chevrolet
Volt (model 2016) operates as a series/parallel hybrid
that can utilize internal combustion engine and electric
motor in parallel to propel the vehicle.

• Toyota Prius Plug-in (model 2012-2015) provides four
drive modes: ECO, Normal, Power and EV. Normal
mode uses both internal combustion engine and elec-
tric motor for propelling the vehicle. It is observed that
Prius maintains the state-of-charge to a certain level
using internal combustion engine occasionally, as well
as from regenerative braking. Power mode increases
throttle response of internal combustion engine more
than Normal mode. In EV mode, Prius always draws
on battery, if there is sufficient state-of-charge, and the
vehicle speed is within EV mode range.

• Ford Fusion Energi (model 2013-2015) offers three drive
modes: EV Now, EV Auto and EV Later. In EV
Now mode, Energi draws on battery entirely, if there
is sufficient state-of-charge. In EV Auto mode, En-
ergi uses both internal combustion engine and elec-
tric motor, depending on the vehicle speed. In EV
Later mode, Energi conserves battery for future use, by
mostly drawing on internal combustion engine, which
possibly charges battery.

Rather than considering model-specific drive modes, we
consider four generic drive modes: (1) Electric Vehicle (EV)
mode that draws solely on battery, (2) Combustion Engine
(CE) mode that relies solely on internal combustion engine,
(3) Charge Sustaining (CS) mode that utilizes internal com-
bustion engine to charge battery and propel the vehicle, and
(4) Aggregate Power (AP) mode that combines both electric
motor and internal combustion engine to propel the vehicle.

In Sec. 4, we formulate a general optimization problem of
drive mode selection when some of the generic drive modes
are considered. We remark that our model is sufficiently
general to capture a variety of existing PHEV models. We
will discuss the mapping from model-specific drive modes to
generic drive modes in Sec. 4.5. In Sec. 8, we particularly
validate our model for Chevrolet Volt empirically.

3. RELATED WORK
There is a body of work about optimizing energy manage-

ment systems for PHEVs. For example, [13] uses heuristic
control strategy to optimize energy consumption for given
torque and speed. A similar concept relying on rule-based
management policies has been presented in [5], in which the
strategy thresholds are determined using the parameters of
efficiency maps of the engines, motors and generators. [4]
considers continuous-time optimization control of hybrid en-
ergy sources. Some studies focus on sub-optimal solutions
that can be computed faster than dynamic programming.
Pontryagin’s minimum principle is one of sub-optimal ap-
proaches using local optimal trajectories [6, 10]. The equiv-
alence consumption minimization strategy provides a sub-
optimal solution to a given cost function of variables of
PHEV [14]. These prior results often assume complete con-
trols of internal energy management system in PHEVs, and

are mostly based on simulations. Our work considers lim-
ited control by only selecting the drive modes available in
the PHEVs, and evaluate the results on a real-world PHEV.

There are papers about online energy management strate-
gies for PHEVs. For example, [12] considers Lyapunov stochas-
tic optimization for a parallel PHEV. [7] utilizes nonlinear
optimization for parallel and serial HEVs. This paper con-
siders competitive online algorithms [2] that can provide
proven worst-case guarantees to offline optimal solutions.

Note that most prior papers in PHEV energy management
systems ignore several practical issues. For example, practi-
cal control system will normally set the rpm of combustion
engine related to the vehicle speed, even for series hybrids,
because of a safety hazard for the combustion engine operat-
ing in a high speed, when the vehicle is stationary. Moreover,
production PHEVs often use a variable number of electric
motors/generators conditional on the vehicle speed. These
practical issues are not considered in most prior papers.

Path planning problems considering various gas prices at
intermediate filling stations have been studied in [8]. On
the other hand, the problem of optimal routing for charg-
ing station and charging time has been studied in [16]. [21]
investigates multi-vehicle problem and determines the opti-
mal route with minimum charging time. However, this paper
considers a more general path planning problem combined
with energy management strategies for PHEVs.

4. MODEL AND PROBLEM FORMULATION
Our goal is to develop a systematic study for drive mode

selection optimization, based on a generic vehicle model with
general vehicle parameters obtainable by measurement or
standard vehicle information. We consider a semi-blackbox
model of PHEV that is abstracted away from the underly-
ing vehicle control systems. This model will be validated
empirically in Sec. 8 with a Chevrolet Volt.

This paper considers a discrete-time setting from time slot
t = 1 to t = T , where the inputs within one time slot are as-
sumed to be sufficiently quasi-static. For brevity, the power
and energy within a time slot are referred interchangeably.
Let Gt be the fuel tank level and Bt be the state-of-charge
of the PHEV at time t. G0 and B0 are the initial fuel tank
level and state-of-charge respectively.

Define (vt, αt)
T
t=1 be the driving profile, where vt is the ve-

hicle speed and αt is the gradient of road at time t. The driv-
ing profile can be obtained by prediction using historic data,
or crowd-sourced data collection [17–19,22]. Note that vt, αt
are non-negative for all t. We assume the energy consump-
tion of PHEV is solely characterized by the driving profile,
for example, under moderate weather and traffic conditions.

Let the acceleration be at , vt − vt-1. The load of drive-
train of a generic vehicle [9, 11,15] is given by

Pt =
ρakdAfv

3
t

2
+ mg sin(αt)vt + mgkrvt + mvtat + c0 (1)

where m is the vehicle weight, g is the gravitational constant,
ρa is the density of air, Af is the frontal area of the vehicle,
kd if aerodynamic drag coefficient of the vehicle, kr is the
rolling friction coefficient, and c0 is the default load (e.g.,
due to air-conditioning). These parameters can be obtained
from standard vehicle information or simple measurement.

Note that Pt can be positive or negative (possibly due to
negative at). Let P+

t = max{Pt, 0} and P−t = −min{Pt, 0}.
P−t represents the power captured by regenerative breaking.



Figure 3: System models of generic drive modes.

In the following subsections, we describe the four generic
drive modes (EV, CE, CS, AP modes), as illustrated in
Fig. 3. These generic drive modes provide abstract rep-
resentations of the model-specific drive modes in specific
PHEV models. We discuss the mapping of model-specific
drive modes to generic drive modes in Sec. 4.5. We present
an empirical validation study of Chevrolet Volt in Sec. 8.

4.1 Electric Vehicle (EV) Mode
In EV mode, the PHEV is only powered by battery, which

is also charged by regenerative braking when the vehicle is
decelerating or stopping. Let [B,B] be the allowable range
of state-of-charge to operate in EV mode. Let st be the
power from battery to electric motor (when P+

t ≥ 0), and
rt be the power from generator to battery (when P−t ≥ 0).

If B ≤ Bt-1 ≤ B, then the state-of-charge is given by

Bt = Bt-1 + ηrtrt − ηdt st (2)

subject to B ≤ Bt ≤ B, rt ≤ P−t and st = P+
t .

Parameters ηrt ≤ 1 and ηdt ≥ 1 denote the charging and
discharging efficiency coefficients. Note that ηrt and ηdt may
not be constants (which are often assumed to be constants in
previous work [5,7,13]). Here, we allow a variable number of
generators/motors to be utilized in the PHEV conditional on
the driving profile (e.g., observed in production PHEVs like
Chevrolet Volt), which induce variable efficiency coefficients.

Note that regenerative braking incurs no fuel cost. Hence,
Eqn. (2) and the constraints are equivalent to setting

rt = min{P−t ,
B −Bt-1

ηrt
} (3)

4.2 Combustion Engine (CE) Mode
In CE mode, the PHEV is only powered by internal com-

bustion engine. Let the output power from combustion en-
gine at time t be Qt. The fuel tank level is given by

Gt = Gt-1 − F (Qt), where Qt = P+
t (4)

subject to Gt ≥ 0. F (·) is an increasing convex function
that maps the output power to the required amount of fuel.

We also allow the battery to be charged by regenerative
braking, if possible. The state-of-charge is given by

Bt = Bt-1 + ηrtrt (5)

subject toBt ≤ B and rt ≤ P−t . Namely, rt = min{P−t ,
B−Bt-1

ηr
t
}.

4.3 Charge Sustaining (CS) Mode
In CS mode, the internal combustion engine is used to

propel the vehicle and charge battery simultaneously. Let
ut be the power from engine to charge battery at time t.
The fuel tank level is given by

Gt = Gt-1 − F (Qt), where Qt = P+
t + ut (6)

subject to Gt ≥ 0. The state-of-charge is given by

Bt = Bt-1 + ηrtrt + ηetut (7)

subject to Bt ≤ B, rt ≤ P−t , and ut ≤ Ct.
ηet ≤ 1 denotes the charging efficiency coefficient by com-

bustion engine. Here, we allow possibly different generators
used by regenerative braking and combustion engine (e.g.,
observed in Chevrolet Volt). Ct is the maximum available
power to charge battery from combustion engine at time t.

Note that practical control systems in PHEVs (e.g., Chevro-
let Volt) may set the rpm of combustion engine related to the
vehicle speed. Thus, Ct captures the limitation of available
power from combustion engine depending on vehicle speed
at time t.

We assume that the energy management system in PHEV
attempts to charge battery up to Ct whenever possible, then
Eqns. (6)-(7) and the constraints are equivalent to setting

rt = min{P−t ,
B −Bt-1

ηrt
}, ut = min{Ct,

B −Bt-1 − ηrtrt
ηet

}

(8)

4.4 Aggregate Power (AP) Mode
In AP mode, the PHEV is propelled by internal combus-

tion engine and electric motor (that is powered by battery)
together. The state-of-charge is given by

Bt = Bt-1 + ηrtrt − ηdt st (9)

subject to B ≤ Bt ≤ B, rt ≤ P−t and st ≤ βtP
+
t . βt ≤ 1

is the maximum portion of power contributed by electric
motor to drivetrain.

Note that we allow a variable number of generators/motors
to be utilized in the PHEV, conditional on the driving pro-
file, which can induce a variable portion of power split by
electric motor and combustion engine over time.

The fuel tank level is given by

Gt = Gt-1 − F (Qt), where Qt = P+
t − st (10)

subject to Gt ≥ 0. We assume that the energy management
system in PHEV attempts to use electric motor to power the
drivetrain by βtP

+
t whenever possible, then Eqns. (9)-(10)

and the constraints are equivalent to setting

st = min{βtP+
t ,

Bt-1 −B
ηdt

}, rt = min{P−t ,
B −Bt-1

ηrt
}

(11)
Remark: Our model is abstracted away from the un-

derlying mechanics, like automatic transmission, powertrain
control, etc. But the parameters ηrt , η

d
t , η

e
t , Ct, βt are suf-

ficiently general to capture the impacts of the underlying
mechanics.

4.5 Mapping to Generic Drive Modes
We next discuss the mapping of model-specific drive modes

to generic drive modes.



• Chevrolet Volt has four drive modes: Normal, Sport,
Mountain and Hold. We consider the mapping to EV
and CS modes. To trigger EV mode, one can enter
Normal mode when the state-of-charge is above 22%.
To trigger CS mode, one can enter Mountain mode
when the state-of-charge is below 45%.

• Toyota Prius Plug-in provides four drive modes: ECO,
Normal, Power and EV. EV mode is present. Normal
mode is a combination of CS and CE modes, whereas
Power mode is a combination of AP and CE modes.

• Ford Fusion Energi offers three drive modes: EV Now,
EV Auto and EV Later. EV mode is present. EV
Auto mode is similar to AP mode, whereas EV later
mode is similar to CS mode.

The detailed mapping of model-specific drive modes to generic
drive modes should be validated by empirical studies. In this
paper, we validate on Chevrolet Volt in Sec. 8.

4.6 Drive Mode Optimization Problem
Considering the generic drive modes, given a driving pro-

file (vt, αt)
T
t=1, initial state-of-charge B0 and fuel tank level

G0, we formulate a fuel minimization problem of PHEV op-
timizing drive mode optimization as an integer programming
problem (DMOP). Let xevt , xcet , xcst , xapt be the binary de-
cision variables if EV, CE, CS, and AP modes are enabled
respectively. We define the objective function of DMOP by
Cost(t) , G0 −Gt. Let xt = (xevt , x

ce
t , x

cs
t , x

ap
t ).

(DMOP) min
(xt)

T
t=1

Cost(T ) = G0 −GT

subject to for all t ∈ [1, T ],

Gt = Gt-1 − F (Qt), (12)

Gt ≥ 0, (13)

Qt = (1− xevt )P+
t + xcst ut − xapt st, (14)

Bt = Bt-1 + ηrtrt + ηetut − ηdt st, (15)

B ≤ Bt ≤ B, (16)

rt = min{P−t ,
B −Bt-1

ηrt
} (17)

st = xevt P
+
t + xapt min{βtP+

t ,
Bt-1 −B

ηdt
} (18)

ut = min{xcst Ct,
B −Bt-1 − ηrtrt

ηet
} (19)

xevt + xcet + xcst + xapt = 1, (20)

xevt , x
ce
t , x

cs
t , x

ap
t ∈ {0, 1} (21)

Remark: DMOP does not always contain a feasible so-
lution, for example, when there is insufficient fuel. If a drive
mode is not present, we can disable a certain drive mode in
the optimization problem by adding a zero constraint to the
respective drive mode. For example, to disable AP mode, we
set xapt = 0 for all t. In particular, we denote by DMOPev

cs

that has only EV and CS modes, without CE and AP modes.
We apply DMOPev

cs specifically to Chevrolet Volt in Sec. 8.
DMOP is a non-convex problem, even if we relax the in-

tegrality constraints (21), because of Cons. (18)-(19). We
define a convexified problem (cDMOP) with factional so-
lution xt, which is a close approximation to DMOP. By
rounding the fractional solutions to integral solutions, this
provides a fast approximation solution to solve DMOP.

(cDMOP) min
(xt,rt,st,ut)

T
t=1

Cost(T ) = G0 −GT

subject to for all t ∈ [1, T ],

Gt = Gt-1 − F (Qt), (22)

Gt ≥ 0, (23)

Qt = (1− xevt )P+
t + xcst ut − xapt st, (24)

Bt = Bt-1 + ηrtrt + ηetut − ηdt st, (25)

B ≤ Bt ≤ B, (26)

rt ≤ P−t , (27)

xevt P
+
t ≤ st ≤ xevt P+

t + xapt βtP
+
t , (28)

ut ≤ xcst Ct, (29)

rt, st, ut ≥ 0 (30)

xevt + xcet + xcst + xapt = 1, (31)

0 ≤ xevt , xcet , xcst , xapt ≤ 1 (32)

5. OFFLINE SOLUTION
We provide offline solutions of DMOP by dynamic pro-

gramming. Consider a sub-problem (DMOP[Bt-1, Bt, t]) at
time t, given the previous state-of-charge Bt-1 and current
state-of-charge Bt:

(DMOP[Bt, Bt-1, t]) min
xev
t ,xce

t ,x
cs
t ,x

ap
t

F (Qt)

subject to Cons. (14)-(21)

Note that when fixing a drive mode (xt), DMOP[Bt, Bt-1, t]
can be solved in polynomial-time as a linear problem. Let
Solve

[
DMOP[Bt, Bt-1, t]

]
be the minimum-cost solution among

the four drive modes. If there is no feasible solution, Solve[
DMOP[Bt, Bt-1, t]

]
returns infinite cost.

A dynamic programming approach to solve DMOP is pre-
sented in Algorithm DMOP.DP. A similar approach applies to
DMOPev

cs , when restricting to only CS and EV modes.

Algorithm 1 DMOP.DP
[
G0, B0]

1: F ∗T ←∞
2: for each B̂ such that B ≤ B̂ ≤ B do

3:
(
FT , (xτ )Tτ=1

)
← DP

[
B̂, T,B0

]
4: if F ∗T > FT then

5: F ∗T ← FT , (x∗τ )Tτ=1 ← (xτ )Tτ=1

6: end if

7: end for

8: if F ∗T ≤ G0 then

9: return
(
F ∗T , (x

∗
τ )Tτ=1

)
10: else

11: return INFEASIBLE
12: end if

Theorem 1. Algorithm DMOP.DP gives an optimal solu-
tion of DMOP in pseudo-polynomial time1.

1That is, the running time depends polynomially on the
unary representation of the input (such as M , N and T in
the proof of Theorem 1). Note that the running time of
a polynomial-time algorithm depends polynomially on the
binary representation of the input.



Algorithm 2 DP
[
B̂, t, B0

]
1: if t > 2 then

2: costmin
t ←∞

3: for each B′ such that B ≤ B′ < B̂ do

4: (Qt, xt)← Solve
[
DMOP[B̂, B′, t]

]
5:

(
Ft-1, (xτ )t−1

τ=1

)
← DP

[
B′, t− 1, B0

]
6: if costmin

t > F (Qt) + Ft-1 then

7: costmin
t ← F (Qt) + Ft-1

8: Ft ← F (Qt) + Ft-1
9: x←

(
(xτ )t−1

τ=1, xt
)

10: end if

11: end for

12: return
(
Ft, (xτ )tτ=1

)
13: else

14: return Solve
[
DMOP[B̂, B0, 1]

]
15: end if

Proof. All the steps in DMOP.DP are evidently polyno-
mial except those enumerating over the range of Bt. As-
sume B, B, B0, βt, η

r
t , η

d
t , ηet , Ct, P

+
t and P−t are given as

rational number numerator at most M ∈ Z+ and common
denominator N ∈ Z+. Then Eqns. (15)-(19) imply Bt ∈{
M′

N2 |M ′ ∈ {0, 1 . . . , TM2}
}

, which completes the proof.

6. ONLINE SOLUTION
We present an online algorithm (Online) for DMOP that

does not require detailed future driving profile, but only uses
general vehicle information and estimate of trip. For sim-
plicity, we consider DMOPev

cs with only EV and CS modes.
Let the inputs be (σt)

T
t=1 = (Pt, η

r
t , η

d
t , η

e
t , Ct, βt)

T
t=1. The

problem (DMOP) can be solved optimally, when all inputs σ
are given in advance. However, σ is revealed gradually over
time, which requires decisions to be made without future
information. An algorithm is called online, if the decision at
the current time only depends on the instantaneous informa-
tion before or at the current time slot tnow (i.e., (σt)t≤tnow ).

Given input σ, let Cost(Alg[σ]) be the cost of algorithm
Alg, and Opt(σ) be the cost of an offline optimal solution
(that may rely on an oracle to obtain all future inputs). In
competitive analysis for online algorithms [2], competitive
ratio is a common performance metric, defined as the worst-
case ratio between the cost of the online algorithm Alg and
that of an offline optimal solution, namely,

CR(Alg) , max
σ

Cost(Alg[σ])

Opt(σ)
(33)

To measure the cost-effectiveness in CS mode, define nor-

malized cost to be
F (P+

t +ut)

P+
t +ηe

tut
. Algorithm Online is a simple

threshold based algorithm that switches to CS mode, if the
normalized cost is lower than a threshold θ, or there is in-
sufficient state-of-charge for running EV mode. Otherwise,
it will run EV mode, whenever possible. We next determine
a proper θ with a good competitive ratio.

Define the per-unit cost by f(Q) , F (Q)
Q

. Note that F (·)
is a strictly increasing convex function and f(Q) is an in-
creasing function. Suppose fmin ≤ f(Q) ≤ fmax for some
constants fmin ≥ f(0) and fmax ≤ f(G). We assume that
fmin, fmax can be estimated in advance for a specific trip.
Let ηdmin , mint η

d
t , η

e
min , mint η

e
t , η

e
max , maxt η

e
t

Algorithm 3 Online
[
θ, t, (Pt, η

r
t , η

d
t , η

e
t , Ct)

]
1: xevt ← 0, xcst ← 0, ut ← 0, st ← 0, rt ← 0

. Charge battery from regenerative braking, if possible
2: if P−t > 0 then

3: rt ← min{P−t ,
B−B

t-1
ηe
t
}

4: end if

5: ũ← min{Ct,
B−B

t-1
−ηr

trt

ηr
t

}
. Switch to CS mode if below θ or insufficient SoC

6: if
F (P+

t +ũ)

P+
t +ηe

t ũ
≤ θ or P+

t >
B

t-1
−B

ηd
t

then

7: xcst ← 1, ut ← ũ
8: else

9: xevt ← 1, st ← P+
t

10: end if

11: return
(
xevt , x

cs
t , rt, st, ut

)

6.1 Without Regenerative Braking
For convenience of analysis, we assume the setting without

regenerative braking (i.e., P−t = 0 for all t).

Theorem 2. We consider the initial state-of-charge B0 =
B and we require the final state-of-charge to be BT+1 = B.

Assuming P−t = 0 for all t, let the threshold in Algorithm

Online be θ =
√

fmaxfmin

κηd
minη

e
max

, where κ , max{1, 1

ηe
maxη

d
min

},
then the competitive ratio of Online for solving DMOPev

cs is

CR(Online) =

√
κfmaxηemax

fminηdmin

1

ηemin

(34)

Proof. Since the initial state-of-charge B0 = B, P+
t at

any time t must be satisfied by running CS mode before or
at t. Also, since we require the final state-of-charge to be
BT+1 = B, always charging the battery up to B will not
incur unnecessary charging at the final time T .

For each P+
t , let Cost[Online, P+

t ] and Cost[Opt, P+
t ] be

the incurred cost by Online and offline optimal solution
Opt, respectively. Each P+

t can be satisfied by two cases
in Online:

(C1) Running CS mode at time t: There are two sub-cases:

(C1.1) The battery has not been charged sufficiently by
combustion engine in CS mode before t by Online.
The incurred cost for P+

t of Online at time t is at
most fmaxP

+
t . But Opt may charge the battery

sufficiently by combustion engine in CS mode be-
fore t with a cost at least θηdt η

e
minP

+
t . Otherwise,

Online would also charge the battery sufficiently
before t. The ratio between cost of Online over
Opt is upper bounded by

Cost[Online, P+
t ]

Cost[Opt, P+
t ]

≤ fmax

θηdminη
e
min

(35)

(C1.2) The normalized cost is below θ at t, which incurs
a cost for P+

t at most θP+
t . But Opt incurs a cost

at least fminη
d
t η

e
minP

+
t . The ratio between cost of

Online over Opt is upper bounded by

Cost[Online, P+
t ]

Cost[Opt, P+
t ]

≤ θ

fminηdminη
e
min

(36)



(C2) Running EV mode at time t: The battery has been
charged by combustion engine in CS mode at some
time slot before t by Online, which incurs a cost for
P+
t at most θηdt η

e
maxP

+
t . But Opt incurs a cost at least

fminη
d
t η

e
minP

+
t . The ratio between cost of Online over

Opt is upper bounded by

Cost[Online, P+
t ]

Cost[Opt, P+
t ]

≤ θηemax

fminηemin

(37)

Let κ , max{1, 1

ηe
maxη

d
min

}. Therefore, the competitive

ratio of Online is upper bounded by

CR(Online) = max
σ

∑T
t=1 Cost[Online, P

+
t ]∑T

t=1 Cost[Opt, P
+
t ]

(38)

≤max
σ,t

Cost[Online, P+
t ]

Cost[Opt, P+
t ]

≤ max
{ fmax

θηdminη
e
min

,
θκηemax

fminηemin

}
An adversary will select the worst among the two cases. In
order to minimize the competitive ratio, we set

fmax

θηdminη
e
min

=
θκηemax

fminηemin

⇒ θ =

√
fmaxfmin

κηdminη
e
max

(39)

Thus, we obtain the competitive ratio as

CR(Online) =

√
κfmaxηemax

fminηdmin

1

ηemin

(40)

Remark: If fmin, fmax are not known in advance, Al-
gorithm Online can be adapted to estimate these parame-
ters dynamically. First, set fmin = fmax = f(Q1). Then
fmin, fmax are updated to be the maximum and minimum
f(Qt) observed so far at time slot t. If T is relatively large,
the estimated fmin, fmax will converge to the true values.

7. PATH PLANNING WITH DRIVE MODE
OPTIMIZATION

We consider an integrated optimization problem that in-
corporates both path planning and drive mode optimization
for a PHEV, with the following features:

• Multiple paths between the source and destination.

• Possible intermediate nodes in each path to provide
fuel refilling or battery charging.

We first define several notations as follows. A road net-
work is represented by a connected directed graph G =
(N , E) that connects from the source vs to the destination
vd. For each edge e = (u, v) ∈ E , u may be a stop, such that
the PHEV can receive refilling of fuel at price gu per unit, or
battery charging at most Eu unit at price hu per unit. Let P
be the set of paths connecting vs and vd. We label the edges
in each P ∈ P by (e1, e2, ..., en(P )) and write ei = (ui, vi).
Let T (e) be the number of time slots required for traveling
e. Let Ge,t be the initial fuel tank level at time t traveling
e. Let the fuel tank capacity be G. Let the initial fuel level
and state-of-charge be Ge0,T (e0) = G0 and Be0,T (e0) = B0.

The path planning problem with drive mode optimization
(PPDM) is formulated as follows.

(PPDM) min
(xe,t)

T (e)
t=1,e∈P ,P∈P

n(P )∑
i=1

gui(Gei,0 −Gei-1,T (ei-1))

+ hui(Bei,0 −Bei-1,T (ei-1))

subject to for all i ∈ [1, n(P )], t ∈ [1, T (ei)]

Gei,0 ≤ G, (41)

Gei,t = Gei,t-1 − F (Qei,t), (42)

Gei,t ≥ 0, (43)

Qei,t = (1− xevei,t)P
+
ei,t + xcsei,tuei,t − x

ap
ei,t

sei,t, (44)

Bei,t = Bei,t-1 + ηrei,trei,t + ηeei,tuei,t − η
d
ei,tsei,t, (45)

Bei-1,T (ei-1) −Bei,0 ≤ Eui (46)

rei,t = min{P−ei,t,
B −Bei,t-1

ηrei,t
} (47)

sei,t = xevei,tP
+
ei,t + xapei,t min{βei,tP

+
ei,t,

Bei,t-1 −B
ηdei,t

} (48)

uei,t = min{xcsei,tCei,t,
B −Bei,t-1 − ηrei,trei,t

ηeei,t
} (49)

xevei,t + xceei,t + xcsei,t + xapei,t = 1, (50)

xevei,t, x
ce
ei,t, x

cs
ei,t, x

ap
ei,t
∈ {0, 1} (51)

7.1 Dynamic Programming
We next employ dynamic programming to solve PPDM.

7.1.1 Uniform Cost Case
We first consider the uniform case with identical fuel price

(gu = 1 and hu = 0 for all u). Consider a path P =
(e1, . . . , en(P )) ∈ P. By Eqn. (42), we obtain

Gei,0−Gei,T (ei) =

T (ei)∑
t=1

F (Qei , t), for i = 2, . . . , n(P ) (52)

By Eqn. (41) and Eqn. (43), we obtain

T (ei)∑
t=1

F (Qei , t) ≤ G (53)

Thus, we can rewrite PPDM as follows:

(uPPDM) min
(xe,t)

T (e)
t=1,e∈P ,P∈P

n(P )∑
i=1

T (ei)∑
t=1

F (Qei,t)

subject to Eqns. (53) and (44)-(51)

To solve uPPDM, we construct a weighted directed graph

G̃ = (Ñ , Ẽ , w) as follows. Let Fe(B,B′) be the optimal
solution of DMOP for edge e ∈ E , when the Be,0 = B
and Be,T (e) = B′. For each edge e ∈ E, this value can be
obtained by dynamic programming as explained in Section 5.
For every node v ∈ N and every B in the range [B,B], we
create a node vB ∈ N ′. If e = (u, v) ∈ E then we have an

edge (uB , vB′′) ∈ Ẽ with weight w(uB , vB′′) = Fe(B,B′), for
every2 B,B′, B′′ in the range [B,B] such that Fe(B,B′) ≤
G and B′ ≤ B′′ ≤ B′ + Eu. In addition, we create a source

2Note that, since battery charging at each node is for free,
it is enough to construct only one edge corresponding to



C[uB , 1, g] =

 min
B≤B′≤min{B+Eu,B}

(
(w(uB′ , t)− g)gu + hu(B

′ −B)
)
, if g ≤ w(uB′ , t) ≤ G

∞, otherwise
(54)

C[uB , q, g] = min
B≤B′≤min{B+Eu,B},vB′′ :

w(uB′ ,vB′′ )≤G


C[vB′′ , q-1, 0] + (w(uB′ , vB′′)− g)gu + hu(B

′-B), if gv ≤ gu and g ≤ w(uB′ , vB′′)

C
[
vB′′ , q-1, G-w(uB′ , vB′′)

]
+ (G-g)gu + hu(B

′-B), if gv > gu

(55)

node s ∈ Ñ with edges (s, (vs)B′′), for each B′′ in the range
[B0,min{B0+Evs , B}], having weightG−G0 and cost gs = 0;

and a destination node t ∈ Ñ with edges ((vd)B , t) having
weight 0, for all B in the range [B,B].

Then the optimal solution to uPPDM can be obtained

by finding an (s, t)-shortest path in the graph G̃, with the
(non-negative) weights w(·, ·) interpreted as distances.

7.1.2 General Case
Next, we consider the more general case when the fuel cost

per unit gu may not be equal at all nodes u ∈ N , and with
the additional restriction that the PHEV can make at most
∆ stops between vs and vd. We assume that battery charg-
ing (at the stop) is allowed only when the vehicle stops for
fuel refill3. Additionally, we assume that battery charging
at node u costs hu per unit, and the objective is to minimize
the combined fuel cost and battery charging cost. The ba-
sic idea is to adopt the dynamic program for the so-called

Gas Station Problem in [8], and apply it to the graph G̃ con-
structed above. We define the graph G0 as the subgraph of

G̃ such that Ee = 0 for all e.
Following [8], for any node vB ∈ Ñ we define:

G (vB) ,
{
G− w(uB , vB′) | vB′ ∈ Ñ , gu < gv

and w(uB , vB′) < G
}
∪ {0}; (56)

Namely, G (vB) are the set of fuel levels that are sufficient
to consider at node vB .

Let C[uB , q, g] be the minimum cost of going (in the graph

G̃) from uB to t using q stops (including uB), when the fuel
level at uB is g. Then we can write the recurrence equations
(54)-(55) for C[uB , q, g] for any g ∈ G (vB) and 2 ≤ q ≤
∆. w(uB′ , vB′′) is the shortest distance (with respect to d)
between (not necessarily adjacent nodes) uB′ and vB′′ in the
graph G0 (note that we use G0 as the PHEV does not make
any stop between uB′ and vB′′). The algorithm is described
in PPDM.DP.

Theorem 3. Algorithm PPDM.DP computes an optimal so-
lution for PPDM in pseudo-polynomial time.

Proof. All the steps in PPDM.DP are evidently polynomial
except that the dynamic program has to enumerate over
the range of Bt. By the same argument in the proof of
Theorem 1, this range is polynomial in the unary size of the
input, and hence PPDM.DP is pseudo-polynomial.

B′′ = min{B′ + Eu, B}; however, defining the graph in this
general form allows to extend the dynamic program for the
case when there is a cost for charging each unit of battery
at node u.
3This assumption can be removed if we assume battery
charging cost is 0 at all nodes.

To see that PPDM.DP is correct, we use Lemma 2.1 in [8]
which states that in an optimal path, if uB′ and vB′′ are two
consecutive nodes at which the vehicle stops for a fuel-refill,
then the fuel level upon reaching vB′′ must be either 0, if
gv ≤ gu, or G − w(uB′ , vB′′), if gv > gu. (Otherwise, the
overall fuel cost can be reduced by an exchange argument.)

To see Eqn. (54), note that if the vehicle has to reach t
form u in one hop, when the fuel level at u is g and the
state-of-charge is B, then it has the option of recharging
the battery up to B′ ∈ [B,min{B + Eu, B}], for a cost of
hu(B

′ − B) and refill the tank just enough to reach t, for a
cost of (w(uB′ , t)−g)gu. Note that we use w(uB′ , t) which is
the distance between uB′ and t in G0, and hence without any
further recharging; also w(uB′ , t) ≤ G must hold, otherwise,
it is impossible to drive from uB′ to t without refilling.

To see Eqn. (55), note that if the vehicle has to reach
t form u in q hops, when the fuel level at u is g and the
state-of-charge is B, then according to the above mentioned
lemma, it has the following options: (1) recharge the battery
up to B′ ∈ [B,min{B + Eu, B}], for a cost of hu(B

′ − B),
and refill the tank just enough to reach the next stop v at a
state-of-charge B′′, for a fuel cost of (w(uB′ , vB′′)− g)gu; in
this case we must have gv ≤ gu, or (2) recharge the battery
upto B′ ∈ [B,min{B + Eu, B}], for a cost of hu(B

′ − B),
and fill up the tank, then reach the next stop v, at state-of-
charge B′′ and fuel level G− w(uB′ , vB′′), for a fuel cost of
(G− g)gu; in this case we must have gv > gu. In both cases,
the vehicle has to go from vB′′ to t in q − 1 hops.

Remark: One can obtain an approximation solution for
PPDM by considering cDMOP with flow constraints. We
skip the details due to the paucity of space.

8. EVALUATION
We implement our system (as a smartphone app) and eval-

uate it empirically on a Chevrolet Volt (Model 2013). Vali-
dated by real-world data measured on Volt, we observe our
system enables a significant improvement in fuel efficiency.

8.1 Vehicle Model Validation
We first estimate the efficiency coefficients ηrt , η

d
t , η

e
t . Our

approach utilizes the On-board Diagnostics (OBD) dongle
[20] to query the relevant data from Chevrolet Volt (e.g.,
battery voltage, battery current, motor voltage, motor cur-
rent, fuel rate and vehicle speed). We then use regression
models to compute ηrt , η

d
t , η

e
t according to driving profile.

Our testing environment is mostly flat, and hence, we set
gradient of road αt = 0.

Let the measured power of battery be P B
t , which is related

to the load of drivetrain as follows:

P B+
t = P+

t η
d
t , P B−

t = P−t η
r
t (57)
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Figure 4: Estimation of efficiency coefficients and comparisons to the measurements.

Algorithm 4 PPDM.DP
[
G0, B0]

1: Construct graph G̃ = (Ñ , Ẽ, d) and extract subgraph G0

2: Find all-pairs shortest-distances {w(uB , vB′ )}uB,v
B′

in G0

3: Let B be the discretized range between B and B
4: for each B ∈ B, v ∈ N do
5: Let G (vB) be as given by Eqn. (56)
6: end for
7: for each B ∈ B, u ∈ N, q ∈ {1, ...,∆} and g ∈ G (uB) do
8: C[uB , q, g]←∞
9: end for

. Compute the base case (Eqn. (54))
10: for each B ∈ B, u ∈ N, and g ∈ G (uB) do

11: for B′ ∈ B such that B ≤ B′ ≤ min{B + Eu, B} do

12: if g ≤ w(uB′ , t) ≤ G and
13: (w(uB′ , t)− g)gu + hu(B

′ − B) < C[uB , 1, g] then

14: C[uB , 1, g]← (w(uB′ , t)− g)gu + hu(B
′ − B)

15: end if
16: end for
17: end for

. Compute the general case (Eqn. (55))
18: for each B ∈ B, u ∈ N, q ∈ {1, . . . ,∆}, and g ∈ G (uB) do

19: for B′ ∈ B such that B ≤ B′ ≤ min{B + Eu, B} do

20: for B′′ ∈ B and v ∈ N such that w(uB′ , vB′′ ) ≤ G do
21: if gv ≤ gu, g ≤ w(uB′ , vB′′ ) and C[vB′′ , q-1, 0]
22: +(w(uB′ , vB′′ )-g)gu + hu(B

′-B) < C[uB , q, g] then

23: C[uB , q, g]← C[vB′′ , q-1, 0] + (w(uB′ , vB′′ )-g)gu
+hu(B

′-B)
24: else

25: if gv > gu and C
[
vB′′ , q-1, G-w(uB′ , vB′′ )

]
26: +(G-g)gu + hu(B

′-B) < C[uB , q, g] then

27: C[uB , q, g]← C
[
vB′′ , q-1, G-w(uB′ , vB′′ )

]
+(G-g)gu + hu(B

′-B)
28: end if
29: end if
30: end for
31: end for
32: end for
33: return min1≤q≤∆ C[s, q, 0]

We estimate ηrt , η
d
t by the following regression model:

ηr,dt = λ1v
2
t +λ2vt+λ3a

+2
2 +λ4a

+
t +λ5a

−2
t +λ6a

−
t +λ7 (58)

where a+t , max{vt − vt−1, 0} and a−t , max{vt−1 − vt, 0}.
Note that if a+t > 0, then a−t = 0.

Let the measured power from combustion engine to charge
the battery be uB

t = ηetut, where ηet is estimated by:

ηet = µ1v
2
t +µvt +µ3a

+2
2 +µ4a

+
t +µ5a

−2
t +µ6a

−
t +µ7 (59)

Figure 5: A Chevrolet Volt for experiment and
smartphone app implementation.

We also estimate fuel consumption function F (·) by:

F̂ (Qt) = γ1Q
2
t + γ2Qt + γ3 (60)

Once the parameters of regression models are determined
using the collected data from OBD, we compare the esti-
mated accumulative power consumption, generation, and
fuel consumption (integrated over time) and the actual mea-
surements in Fig.4. We observe good accuracy of our model.
We also observe that Ct is linearly proportional to P+

t .

8.2 Drive Mode Optimization
After obtaining the estimated parameters for the vehicle

model from experiments, we apply our drive mode selection
algorithms to Chevrolet Volt. We only consider DMOPev

cs

with two drive modes: EV mode and CS mode.
We compare the optimal solutions by dynamic program-

ming, approximation solutions and online solutions. We con-
sider two driving profiles for case studies:

1. FTP-75 (Federal Test Procedure [1]) has been used
for light-duty vehicles in emission certification and fuel
economy testing in the US. 20 cycles of FTP-75 are
repeated to form a longer driving profile.

2. We collected driving profile from Chevrolet Volt for a
driver commuting between home and office.

The initial state-of-charge and route information is summa-
rized in Table 1. Note that though the battery capacity
is 16.5 kWh, Chevrolet Volt will use battery from state-of-
charge 85% to 22%, which means that the maximum usable
battery capacity is 10.4 kWh when it is fully charged. In
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Figure 6: Fuel consumption and the driving mode selection outcomes of different methods for a single trip.

0

2

4

C
on

su
m

ed
fu

el
 (

lit
er

)

 

 

Opt

Mode

0 20 40 60 80
0

50

100

Distance (km)

S
pe

ed
(k

m
/h

)

 

 

Route 2

(b) Case I

0

3

6

 

 

Opt

0 20 40 60 80 100
0

50

100

Distance (km)

 

 

Route 1 Route 3

(d) Case II

Figure 7: Fuel consumption and the driving mode selection outcomes of different methods for path planning.

these driving profiles, the amount of energy captured by re-
generative braking is small.

Trip Length(km) Average Speed(km/h) Initial SoC(kWh)
I 353 34.1 10
II 82 57.2 2

Table 1: Simulation setting for mode optimization

Figs.6(a)-6(b) depict the solutions of driving mode selec-
tion for Trips I and II with different methods: Opt using
dynamic programming, Apx using approximation solutions,
and Online. We observe that Apx has a very similar fuel
consumption with Opt, whereas Online has slightly more
fuel consumption than Opt. We also show the driving mode
selection outcomes by each method in the blue-green colored
charts below the fuel consumption plots. We observe that
the outcomes of Apx resemble those of Opt, whereas Online

tends to run CS modes less often.

8.3 Integrated Path Planning
In this section, we evaluate our solutions on path plan-

ning with drive mode selection for Chevrolet Volt. We only
consider PPDMev

cs with two drive modes: EV mode and CS
mode. We conduct a case study on a real-world road network
with collected driving profiles on each route. Fig.8 depicts

the road network with four major stops, with the respec-
tive average speed and length of each route. Route(1) is a
highway, whereas other routes are regional roads. Node A is
the source, whereas node B is the destination. We consider
two particular cases with different initial state-of-charge, as
summarized in Table 2.

A D

C

B

93 km, 101 km/h
Route(1)

92km, 59km/h
Route(2)

35 km/h
Route(3)

17km, 36 km/h
Route(5)

Source

Dest. 11km, 

Figure 8: Road network for case study of path plan-
ning.

Case Initial SoC(kWh) Optimal Path Consumed Fuel(liter)
I 5 2 3.16
II 2 1→3 4.73

Table 2: Two cases with different initial state-of-
charge.

In this case study, we observe that different optimal path



will be selected as a result of different initial state-of-charge.
For Case I, the battery is initially half-full. Hence, route(2)
is the most energy-efficient, because there are more stop-
and-go events for EV mode. The result is depicted in Fig. 7(a).
On the other hand, Case II selects a different path, the bat-
tery is initially low. Hence, it is most energy-efficient to
take the highway (i.e., route(1)) which can use CS mode to
charge battery for running EV mode later on route(3) in the
city. The result is depicted in Fig. 7(c).

9. CONCLUSION
This paper investigated a driver-centric approach that en-

ables the drivers to select the appropriate drive modes for
minimizing fuel consumption. Optimization algorithms are
presented to optimize drive mode selection based on trip in-
formation, and integrated with path planning to consider
intermediate filling and charging stations. An online com-
petitive algorithm is provided that requires minimal a-priori
trip information. We implement our system and evaluate
the results empirically on a Chevrolet Volt. We observe a
significant improvement in fuel efficiency by our system. In
the extended paper [3], we generalize the online algorithm
to consider four generic drive modes.
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