
Data Extraction from Electric Vehicles through OBD and
Application of Carbon Footprint Evaluation

Chien-Ming Tseng†, Wenshen Zhou‡, Mohammad Al Hashmi†,
Chi-Kin Chau†, Soh Gim Song‡ and Erik Wilhelm‡

†Masdar Institute of Science and Technology, UAE
‡Singapore University of Technology and Design, Singapore

{ctseng,malhashmi,ckchau}@masdar.ac.ae,{wenshen zhou,sohgimsong,erikwilhelm}@sutd.edu.sg

ABSTRACT
While the data extraction through the On-Board Diagnos-
tics (OBD) port for internal combustion engine vehicles fol-
lows an industry standard, electric vehicles are not con-
strained by such a standard. In this paper, we demonstrate
how to extract data from the OBD port of electric vehicles.
We discuss the general techniques, and apply specifically to
Nissan Leaf and Chevrolet Volt. We continue to present an
application of carbon footprint evaluation by analyzing the
data extracted from the OBD port to obtain parameters of
interest. Furthermore, the methodology that can be used
in various ways to evaluate the carbon footprint of electric
vehicles by building synthetic driving cycles is presented.

Keywords
Electric Vehicles, Data Extraction, OBD, Carbon Footprint

1. INTRODUCTION
Over one million electric vehicles (EVs) and Plug-in Hy-

brid Electric Vehicles (PHEVs) have been sold worldwide,
and the study of the impact vehicles with electrified power
trains are making is of increasing interest to researchers. To
drivers, an accurate understanding of the vehicle status (e.g
tire pressure, oil temperature and braking etc...) is a neces-
sary indicator for safe and comfortable driving. In addition
to these basic signals, EV drivers are often provided with ad-
ditional information relating to battery level, battery tem-
perature, distance-to-empty, and expected charging time.
For researchers requiring insight into the details of the power
train operation, a wealth of information is available from the
On-Board Diagnostics (OBD) port [13], a mandatory com-
munication interface for vehicle inspection and maintenance.
OBD systems can provide status of the various vehicle sub-
systems for the vehicle owner or repair technician, but are
also a rich source of data for researchers as we will proceed
to describe in this paper.

The OBD protocol in modern vehicles is based on the
Controller Area Network (CAN bus) architecture [3], a ve-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EV-Sys, June 21-24 2016, Waterloo, ON, Canada
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4420-3/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2939953.2939954

hicle communication bus standard designed to allow con-
trollers, sensors, and actuators to communicate with each
other without a host computer. For example, the engine pa-
rameters like engine speed, mass-air flow and engine load are
exchanged in CAN and used by the engine ignition timing
system. Such information is available on CAN but of course
is not shown on the vehicle dashboard. On an EV’s CAN
bus, the battery and motor information can be obtained via
the OBD port, as well as many other valuable parameters
for research applications. Unlike the mature combustion ve-
hicle market, however, which has standard OBD protocol,
getting data from EVs can be more difficult since car man-
ufacturers have not yet reached agreement on the standard
messages to be transmitted. For example, the message pro-
tocol for getting battery information may be very different
from one manufacture to another. Against this backdrop,
the contributions which we present in this paper are:

1. An encyclopedic reference for accessing useful informa-
tion on the CAN bus via OBD port of electric vehicles.

2. A method for the synthesis of artificial driving cycles from
CAN data that approximate real-world driving along prin-
ciple dimensions for the study of carbon footprint.

This paper is organized as follows. In Section 2 we discuss
previous work in this area, and in Section 3 we describe the
CAN bus via OBD port in general terms. The best prac-
tice in extracting meaningful information from vehicles is
described in Section 4, with particular emphasis on electri-
cal vehicles, and the use of an OBD interpreter for the same
purpose is described in detail in Section 5. An application of
these data extraction technique to populated models used to
generate synthetic drive cycles which help characterize en-
ergy and emissions from EV’s are described in Section 6. We
conclude in Section 7.

2. RELATED WORK
OBD II system has been a mandatory equipment for mon-

itoring emission performance and vehicle maintenance, the
standard procedures have been defined to obtain the OBD
data [9] for combustion vehicles. There is a body of propri-
etary about vehicle diagnostic applications of smartphones
[16], drivers can use the applications with OBD dongles to
check the status of their vehicles. A hands-on project that
uses a CAN bus equipment to obtain the battery and motor
information for a Nissan Leaf is presented in [1]. A detail
look at extracting CAN bus data for the Toyota Prius and
Ford Escape has been presented in [15], where the authors

demonstrate analysis and injections of CAN packets to con-
trol vehicle via a laptop and CAN bus tools.

Several interesting applications have been built by re-
search teams based on OBD data. Using OBD data from
combustion vehicles to build a eco-routing system has been
shown [7], as has using OBD data to create personalized
energy consumption prediction models for different types of
vehicles [2, 11,12].

3. OVERVIEW OF OBD AND CAN BUS
In this section, we provide an overview of CAN bus, and

introduce the systems which may be used to obtain data for
electrified vehicle power trains.

3.1 Introduction to Vehicle CAN Bus
Controller Area Network (CAN) protocol was introduced

in the early 1980s by Robert Bosch GmbH. It was origi-
nally developed for automotive systems and applications,
but has found widespread use in other industrial and au-
tomation domains. Modern automobiles typically have more
than 50 electronic control units (ECU) serving various roles
in various subsystems. CAN is a serial bus that allows
fast (up to 1MB/s) and robust (built-in error detection, re-
transmission, node isolation etc.) exchange of data between
the different electronic modules in vehicles. Although the
original OBD standard was protocol agnostic, CAN has be-
come commonly applied to serve the data required by OBD
in most vehicles.

At the data link layer (layer 2), CAN packets are com-
posed of an identifier and data payload. The identifier usu-
ally comprises 11 bits or 29 bits, though 11 bit identifiers
are most common. The identifier (CAN ID) also denotes
the priority of the message, the lower the value, the higher
the priority. Each controller on the bus broadcasts mes-
sages to all others, and the CAN ‘arbitration ID’ concept is
therefore important for relevant control units on the bus to
decide whether the packet should be processed and rebroad-
cast or not. After the identifier, there are from 0 to 8 bytes
of data. Sometimes the data contains check-sum or other
mechanisms to insure data integrity. Readers interested in
more details concerning the CAN protocol’s bit timing, syn-
chronization, and data frame definitions, are encouraged to
refer to [4, 6].

3.2 Overview of CAN Bus Equipment
There are two popular methods to extract the data from a

vehicle’s CAN bus which we will discuss. The first is to use a
CAN bus ‘sniffing tool’ to observe the CAN message traffic
at Layer 2 on the vehicles’ CAN bus. This approach re-
quires some background knowledge of CAN protocols. The
second, and easier way is to use an ‘OBD dongle’, which
interprets the Layer 2 message traffic and parses them to re-
turn human-readable parameters based on OBD conversion
rules.

1. Data link layer monitoring tools

CAN bus ‘sniffing tools’ can read the CAN packet and
inject the CAN packet to the network. A commonly-used
simple variant is a CAN-BUS shield designed to interface
with an Arduino board. Such shields typically shield uses
Microchip MCP2515 CAN controller with an MCP2551
CAN transceiver, and require users to program their own
interpretation firmware. A more versatile and simple to

use CAN sniffing tool, the neoVI Fire, allows users to
record and extract CAN packets easily via commercial
software. Data link layer monitoring tools typically serve
data to portable computers for visualization and analysis
due to the volume of serial data which must be read from
the bus.

2. OBD interpreters

A more direct and user-friendly approach to obtaining
CAN data is to use a chip set which is designed in an
application specific way to interpret CAN traffic into pa-
rameters which are then re-broadcast as serial messages.
The most common OBD dongles use ELM327 hardware,
but more recent products also employ STN1110 chip sets
[10]. Both products are OBD to RS323 interpreters which
function as a bridge that connect the OBD port to a
standard RS232 serial port. The ELM327 hardware has
the ability to work with nine different CAN protocols
in addition to automatically detecting the used protocol.
ELM327 is fully configurable using AT commands which
is defined by the manufacturer [5]. It operates in two
modes which are high speed mode and sleep mode. This
chip is widely used in diagnostic trouble code readers and
automotive scan tools. The dongles are usually equipped
with Bluetooth or Wifi wireless function, which allows
users to remotely connect to the dongles. Popular OBD
interpreters are able to utilize Bluetooth or TCP/IP in-
terfaces to smart phones or computers to communicate
because of the relatively parsimonious way of extracting
data.

We summarize the complete framework of utilizing the ve-
hicle CAN bus in Fig.1 which shows the two common path-
ways.

CAN bus sniffing tools OBD dongle

CAN bus
inspection

Monitoring

V
eh

ic
le

 C
A

N
 b

u
s

To
o

ls

A
p

p
lic

at
io

n
s

Figure 1: Illustration of using vehicle CAN bus.

4. EXTRACTING INFORMATION FROM THE
DATA LINK LAYER

In this section, we demonstrate the use of CAN bus sniff-
ing tool, neoVI Fire, to get the data from the CAN network
of Nissan Leaf and reverse-engineer the message of CAN
packet.

4.1 Equipment and Setup
Fig.2a illustrates the practical setup of the demonstration.

The neoVI Fire is connected to the laptop and its supported
software, Vehicle Spy, is used. Fig.2b displays the interface
of Vehicle Spy, we label two import information of the inter-
face, the first one is CAN IDs and its related CAN packets.

OBD port of
Leaf

(a) Practical setup and OBD port position in Leaf.

CAN IDs CAN Packets

(b) Vehicle Spy user interface.

Figure 2: Equipment and software interface.

4.2 Reverse Engineering CAN Packet of Leaf
Although we can read CAN packets from the data link

layer of the vehicle network, the meanings of the packet
are not published by the vehicle manufacturers. To extract
the meaningful information and manipulate the CAN bus to
control the vehicles, we have to reverse-engineer the CAN
packets. There are two popular methods for determining
specific CAN components:

1. Fuzzing

We can iteratively test random or partially random CAN
packets and see how the vehicle reacts. This can be per-
formed without much effort due to limited number of
CAN IDs in the network. We strongly suggest not to
use this dangerous approach, since the vehicle may act
irregularly and risk safety. In addition, the vehicles’ war-
ranty will be voided.

2. Visually correlate physical system interactions with
identifiable patterns

Most of sensors and actuators are connected to the ve-
hicle CAN bus and broadcast to each other, hence, we
can observe the CAN packets change when we physically
interact with the vehicle. For example, seat belt light is
turned off when the belt is fastened, which means there
is a CAN packet sent to the buzzer controller to stop the
warning sounds. In this paper, we use this method to
determine the CAN ID and CAN packet of gear position
sent to dashboard in Nissan Leaf.

4.2.1 Demonstration
To perform the second approach to CAN reverse engi-

neering, we stop the Leaf and change the gear position from
Parking to Neutral repeatedly. At the same time we observe
the changes of CAN IDs and their packets in the Vehicle Spy.
Luckily, two CAN ID actions correlate our gear changing ac-
tions, we list these two CAN data in Tab.1. Recording the

CAN ID Length Parking Neutral
216 2 42 64 42 60
421 3 08 00 00 18 00 00

Table 1: Part of CAN packets of Leaf

received CAN packets, we can use the software to inject the
mock CAN packets (e.g., packet of neutral position) in the
Leaf CAN bus. We first try to send the packet to CAN
ID 216 but the dashboard of Leaf does not changes, and
we receive I-Key System Fault in the dashboard when the

packet is sent for a while. Therefore, we can consider that
CAN ID 216 possibly relates to the key detection as well as
changes of gear position. Next, we try to send the packet to
CAN ID 421, and successfully change gear position shown in
dashboard. Therefore, we now know the CAN ID 421 con-
trols the display of gear position on the dashboard. Fig.3
shows the result of this reverse-engineer demonstration. We
would like to re-emphasize that experiments of this nature
should be performed under controlled conditions, and we
recommend lifting vehicle wheels off of the ground for any
injection of message data to the CAN bus.

 Gear position
is Parking

 Dashboard shows
Neutral

Figure 3: Changing the dashboard display of gear position.

5. EXTRACTING DATA FROM OBD INTER-
PRETERS

In this section, we demonstrate using ELM327 Bluetooth
OBD dongle and smartphone to query the information from
two vehicles, Nissan Leaf and Chevrolet Volt.

An application exists for smart phone platforms called
‘Leaf Spy Pro’, provides measurement of Leaf information
using this kind of dongle, however, its sample rate is rela-
tively low (0.25 Hz).

5.1 Notations
The format of received information is very different from

one vehicle to another, therefore, parsing the information
to meaningful values is necessary. To explain the parsing
rule for received information, we define several notations for
string extraction and conversion:

1. Hex substring (Sj
i): We define Sj

i as the substring of
index i to j from the received hex string. Where i begins
from 0 and starts at the leftmost of the string.

2. Unsigned integer conversion (uInt): We use uInt(S) to
convert the hex string to unsigned integer value.

Command Response Parsing rule Unit Description and Result
022101 7BB10296101FFFFFBA4 — — —

7BB2102870000271BFF Int(S16
9)/1000 Amp. Battery current: 10A

7BB22FFFFFF03C62AF8 — — —
7BB2399C432A7038400 uInt(S8

5)/100 Vol. Battery voltage: 393.64V
7BB245C2098000B2ECC uInt(S18

11)/10000 SOC % SOC: 73.29%
7BB2500088D9F800005 uInt(S12

5)/10000 Ah Capacity: 56.05 Ah

Table 2: Commands and responses of Leaf

Command Response Parsing rule Unit Description and Result

222883 4183008D Int(S7
4)/20 Amp. Motor A current: 7.05A

222884 41840665 Int(S7
4)/20 Amp. Motor B current: 81.85A

222885 418586C4 uInt(S7
4)/100 Vol. Motor A voltage: 345V

222886 418686C5 uInt(S7
4)/100 Vol. Motor B voltage: 346V

222414 4141072C Int(S7
4)/20 Amp. Battery current: 91.8A

222429 41295101 Int(S7
4)/64 Vol. Battery voltage: 324.02V

Table 3: Commands and responses of Volt

3. Signed integer conversion (Int): We use Int(S) to convert
the hex string to signed integer value.

Example 1. Assume we receive the following hex string
S comprising 19 characters:

7BB10296101FFFFFBA4

The value of uInt(S18
15) = uInt(FBA4) = 64420.

5.2 Dongle Setup for the Vehicles
We use OBDLink Bluetooth dongle with Android app on

a smart phone to obtain the data from the vehicles. Before
starting sending the query commands to the dongles, we
have to initialize the dongle to match the CAN protocol of
the vehicles. This section provides the list of commands of
OBD dongle setup for Leaf and Volt. The commands are
verified for ELM327 and STN1110 dongles. Tab.4 shows
the AT setup commands for Nissan Leaf and Chevrolet Volt.

Leaf Setup Description
ATZ reset all
ATL0 line feed off
ATSP6 set protocol to mode 6 (ISO-15765-4 CAN)
ATH1 set headers on
ATS0 set space off
ATCAF0 set auto formatting off
ATSH797 set header to 797
ATFCSH797 set flow control and header to 797

ATFCSD300014 set flow control and data to 300014
ATFCSM1 set flow control to mode 1
ATSH79B set header to 79B
ATFCSH79B set flow control and header to 79B
Volt Setup

ATZ reset all
ATL0 line feed off
ATE0 set echo off
ATS0 set space off
ATSP0 set auto protocol

Table 4: AT setup commands for ELM327 dongles

5.3 Nissan Leaf (Model 2013)
The queried information from Leaf includes battery cur-

rent, battery voltage, state-of-charge (SOC) and battery ca-
pacity. The information is useful for the energy consumption
modeling and driving distance estimation. We notice that
the current of battery is a signed value. Positive value means
the battery is being charged by the plug-in cable or regen-
erative braking. On the other hand, negative value means
the battery is used for powertrain and auxiliary loading.

5.4 Chevrolet Volt (Model 2013)
Chevrolet Volt is an plugin-hybrid electric vehicle (PHEV),

which support both standard OBD Parameter IDs (PIDs)
for engine information and specific PIDs for battery and
electric motor information. Volt comprises two motors, the
motor with higher power is used as main propelling motor
(Motor B), on the other hand, the smaller one is used as
generator or auxiliary propelling (Motor A).

Tab.3 shows the query commands and responses for bat-
tery and motor information of Volt.

On the contrary, the negative value of battery current
means the battery is being charged and positive value means
the battery is discharging.

6. CARBON FOOTPRINT EVALUATION
Although EVs do not produce tailpipe emissions, the elec-

tricity grid to charge their battery may produce emissions.
Carbon dioxide (CO2) is the primary greenhouse gas emit-
ted through human activities. In this section, we calculate
the CO2 emission of EVs and compare it to that of com-
bustion vehicle in the same trip, which can be seen as net
emission saving of EVs. We first collect vehicle data us-
ing the approach described in Section 5, then the data is
utilized to create energy consumption models which can be
translated into CO2 emissions using the emission factors in
Table 6. Furthermore, to determine the speed profiles for
energy consumption models, we use high-level attributes in-
formation to generate the closer real-world driving profiles.

6.1 Construct Energy Consumption Model
According to the vehicle powertrain model, the vehicle

power can be expressed as following equation:

PB
t = η·(ρakdAfv

3
t

2
+mg sin(αt)vt+mgkrvt+mvtat+c0) (1)

where PB
t is the power from battery of EVs, m is the vehicle

weight, g is the gravitational constant, αt is the road grade
(e.g., inclination of route), ρa is the density of air, Af is the
frontal area of the vehicle, kd if aerodynamic drag coefficient
of the vehicle, kr is the rolling friction coefficient, and c0 is
the default load (e.g., due to air-conditioning). These pa-
rameters can be obtained from standard vehicle information
or OBD measurement.

Where η is the total efficiency includes battery efficiency,

transmission efficiency and motor efficiency, which is non-
linear and difficult to get. For simplicity, we use quadratic
regression model to map the efficiency according to vehicle
speed.

η = α1v
2 + α2v + α3 (2)

where the coefficients α1,2,3 can be determined using least
squares method.

6.2 Construct Custom Driving Cycle
A driving cycle is a time-series of data points representing

the speed of a vehicle. In this section we use high-level
attributes (e.g. road types, traffic conditions, and driver’s
aggressiveness) to build custom driving cycles reflecting real-
world driving patterns, which is the required input to the
energy consumption model.

6.2.1 Methodology
The method for generating custom driving cycle mainly

includes two parts: Multivariate regression model construc-
tion and driving cycle generation using dynamic program-
ming. The relation between high-level attributes and driving
pattern can be mapped by regression models.

6.2.2 Driving Pattern Regression Model
Considering the large number of factors affecting driving

and the complexity of involving all factors in a physical-
based model, we use a multivariate regression method to de-
scribe the relation between high-level attributes and driving
pattern. This model outputs six target parameters to repre-
sent driving patterns, which includes: Average velocity vave,
average absolute value of acceleration |a|ave, percentage of
time in acceleration Pa, percentage of time in deceleration
Pd, percentage of time in cruise Pc and percentage of time
in idling Pi. We take the parameter vave as an example:

v̂ave(i) = β0 + β1χi1 + β2χi2 + · · ·+ βmχnm (3)

Where βi is a set of unknown coefficients determined from
the historical data. χ is a set of variables that influence
driving pattern, and must be measurable and predictable.
Solving β in Equ.(3) from the historical data:

β = (χTχ)−1χTvave (4)

Similarly, the other five target parameters can be determined
and used to describe a driving cycle.

Considering the limit of vehicle types and minuscule pre-
cipitation in test sites and the constraints that few of high-
level attributes can be directly measured, we choose the fol-
lowing three parameters to form χ.

(1) Traffic conditions: Traffic conditions influence driving
pattern significantly. The percentage of time spent at v < 10
km/h will be used to represent traffic conditions:

χTC = Ptv<10 (5)

(2) Driving aggressiveness: Driving aggressiveness is af-
fected by many factors. Acceleration could reflect how ag-
gressive a period of driving is. Here we use the mean of
absolute acceleration to represent driving aggressiveness.

χDA = |a|ave (6)

(3) Road types: Four categories of roads, highway, main
street, city road and campus road are represented by number
1 to 4, where type 1 denotes the highest speed level (e.g.,
highway) and type 4 denotes the lowest speed level (e.g.,

campus road). A trip may consist of different portions of
road types, therefore, we define the weighted average for a
trip by χRT .

χRT = γ1 + 2γ2 + 3γ3 + 4γ4 (7)

where γi is the portion of road type i in the trip.
Provide high-level attribute tuples χ = [1 χTC χDA χRT]

as well as the collected driving data, the coefficiencts β can
be determined and thus regression model is completed.

6.2.3 Driving Cycle Generation with DP
Construction of driving cycles is based on microtrips. Mi-

crotrip is an excursion between two successive time points
at which the vehicle starts to move, consisting of a period
of motion starting from zero speed, followed by a period of
stopping. Existing standard driving cycles are used to gen-
erate microtrips by being divided at every starting point.

A driving cycle is constructed by connecting different mi-
crotrips sequentially. The goal of the driving cycle gener-
ation procedure is to build a cycle that best satisfies the
criteria estimated from regression model. The error E is in-
troduced to describe the difference between generated cycle
and criteria outputted from regression model:

E = δ1(vdave − vcave)2 + δ2(|a|dave − |a|cave)2

+δ3(P d
a − P c

a)2 + δ4(P d
d − P c

d)2

+δ5(P d
c − P c

c)2 + δ6(P d
i − P c

i)2

(8)

where δ1, · · · , δ6 are weighted coefficients, vdave, |a|dave, P d
a ,

P d
d , P

d
c , P

d
i are the target parameters of driving cycle, and

vcave, |a|cave, P c
a , P

c
d , P

c
c , P

c
i are corresponding parameters in

the criteria.

Figure 4: The network for the driving cycle generation prob-
lem, exemplified for the case of five steps.

The optimal driving cycle will be that of minimal error.
Here a “subproblem” of step k is defined as finding the opti-
mal cycle from the first step to the kth step, and a“subcycle”
is the solution to “subproblem”. The whole problem can be
solved by solving “subproblem” sequentially: solve (k+ 1)th
subproblem with kth subcycle adding a new microtrip from
feasible set. The new cycle with a minimal E will be chosen
as (k + 1)th subcycle. Figure 4 illustrates the procedure of
finding solution of step 4 subproblem with step 3 solution.
Here only microtrips whose speed and acceleration does not
exceed the bounds in real driving profiles can be used to form
cycles. Therefore, there would be a feasible set S with NS

microtrips for the cycle generation. This leads to the follow-
ing algorithm to solve the whole problem, where ERR(A,B)

means calculating E between profiles A and B according to
Eq.(8).

noend 1 Cycle.DP

1: for each microtrip Mj ∈ S do
2: EMj ← ERR(Mj , Criteria)

3: E(1)← min
j

EMj,Subsycle← [Mj],Index(1)← j

4: for k 2 to NS do
5: for j 1 to NS do
6: OptCyclej ← [Subcycle,Mj]

7: E(k)← min
j

ERR(OptCyclej , Criteria)

8: Subcycle← OptCyclej,Index(k)← j
9: if E(k) < ε then
10: break

11: return Cycle(MIndex(1),MIndex(2), · · · ,MIndex(k))

6.2.4 Driving Cycle Generation Results
Parameters of driving pattern regression model are trained

and validated with EV OBD data obtained. Then model
outputs criteria corresponding to driving conditions inputted,
for dynamic programming algorithm to approach. Errors of
all six target parameters between generated cycle and crite-
ria are computed to evaluate this algorithm’s performance.
Figure 5 shows the result with a specific set of driving condi-
tions of χ1 =

[
1 χTC χDA χRT

]
=

[
1 0.1 0.8 2

]
.

Six target parameters of criteria and the generated cycle are
shown in Table 5: All errors of six parameters are less than
10%, meaning the generated cycle can be a good representa-
tion of driving patterns under this specific driving condition.
Tests with other driving conditions show similar results.

(a) Generated driving cycle. (b) Change of error E with
adding new microtrips.

Figure 5: Generated Cycle and Change of E with a Specific
Driving Condition χ1.

vave |a|ave

Parameters (km/h) (m/s2) Pa(%) Pd(%) Pc(%) Pi(%)
Criteria 48.859 0.8000 40.11 41.69 8.20 10.00
Cycle 48.655 0.8188 40.69 41.84 7.59 9.89

Error(%) 0.42 2.35 1.44 0.36 7.47 1.15

Table 5: Comparison between target parameters of criteria
and generated cycle with χ1.

6.3 CO2 Emission Calculation
Given the constructed driving cycles and energy consump-

tion model, we can calculate the energy consumption for
EVs with different driving conditions. According to global
carbon intensity in electricity generation data [8], the cor-
responding CO2 emissions of the power grid are variant in
different countries. Table 6 compares the average energy
consumption of Chevrolet Volt with different driving condi-
tions (high-level attributes) and the equivalent CO2 emission

in different countries, in which Column 2 shows the energy
consumed per kilometer (in kWh/km), and Column 3 to 5
are equivalent CO2 emission in three countries respectively
(in g CO2/km). Compared to the average CO2 emission of
ICE light duty vehicles in US (255 g CO2/km) [14], replac-
ing ICE vehicles with EVs may help to reduce CO2 emission.
Besides, grid carbon intensity shows a much bigger impact
on CO2 emission than high-level attributes in real driving.

High-level
attributes χ

Energy
consumption

US China France

[1 0.15 0.4 1] 0.1497 82.63 114.67 11.83
[1 0.1 0.6 1.5] 0.1665 91.91 127.54 13.15
[1 0.15 0.8 3] 0.1801 99.41 137.96 14.23

Table 6: Average energy consumption (in kWh/km) and
equivalent CO2 emission (in g CO2/km) in three countries.

7. CONCLUSIONS
We have described two methods for obtaining data from a

vehicle’s OBD port which are useful for building models of
velocity inputs which can then further be extended to char-
acterize energy and emissions of electric vehicles. Various
useful techniques which researchers may employ during their
efforts in CAN bus information extraction were detailed, for
example the approach to reverse-engineering CAN bus at
the data link layer to determine important parameters. We
have explored one application of the data gathered using the
techniques described, in this case the synthesis of driving cy-
cles from real-world driving, and their application in order
to determine the influence of various parameters on electric
vehicle energy consumption and therefore emissions.

8. REFERENCES
[1] J. Allande, P. Tyler, and E. Woodruff. Nissan Leaf

On-BoardDiagnostic Bluetooth Utility. Technical report, Cal
Polytechnic State University, 2012.

[2] C.-K. Chau, K. Elbassioni, and C.-M. Tseng. Fuel minimization
of plug-in hybrid electric vehicles by optimizing drive mode
selection. In ACM eEnergy, 2016.

[3] S. Corrigan. Introduction to the Controller Area Network
(CAN). Technical report, Texas Instruments, 2008.

[4] M. Di Natale. Understanding and using the controller area
network. 2008.

[5] E. Electronics. ELM327 OBD to RS232 Interpreter, 2015.

[6] L.-B. Fredriksson. Controller area networks and the protocol
can for machine control systems. Mechatronics, 4(2):159–172,
1994.

[7] R. K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. F.
Abdelzaher. GreenGPS: a participatory sensing fuel-efficient
maps application. In ACM MobiSys, 2010.

[8] IEA. CO2 emissions from fuel combustion highlights 2012, 2012.

[9] S. International. E/e diagnostic test modes, 2012.

[10] OBDSolution. STN1110 vs ELM327 Comparison, 2010.

[11] C.-M. Tseng, C.-K. Chau, S. Dsouza, and E. Wilhelm. A
participatory sensing approach for personalized
distance-to-empty prediction and green telematics. In ACM
eEnergy, 2015.

[12] C.-M. Tseng, S. Dsouza, and C.-K. Chau. A social approach for
predicting distance-to-empty in vehicles. In ACM eEnergy,
2014.

[13] US EPA. Basic information | on-board diagnostics(OBD), 2015.

[14] US EPA. Greenhouse gas emissions from a typical passenger
vehicle, 2015.

[15] C. Valasek and C. Miller. Adventures in Automotive Networks
and Control Units. Technical report, IOActive, 2014.

[16] E. Wilhelm, J. Siegel, S. Mayer, L. Sadamori, S. Dsouza, C.-K.
Chau, and S. Sarma. CloudThink: A scalable secure platform
for mirroring transportation systems in the cloud. Transport,
30(3), 2015.

