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Abstract—While scheduling the nodes in a wireless network to
sleep periodically can save energy, it also incurs higher latency
and lower throughput. We consider the problem of designing
optimal sleep schedules in wireless networks, and show the NP-
hardness for finding the sleep schedules that can minimize the
latency over a given subset of source-destination pairs. We also
derive a latency lower bound as d+O(1/p) for any sleep schedules
that satisfy the required active rate p (i.e. the fraction of active
slots of each node), and d as the shortest path length. Nonetheless,
we provide positive results, by a novel solution of optimal sleep
scheduling using green-wave sleep scheduling (GWSS), inspired
by coordinated traffic lights, which is shown to meet our latency
lower bound (hence is latency-optimal) for topologies such as the
line, grid, ring, torus and tree networks, under low traffic loads.
For high traffic loads, we present a non-interfering GWSS, which
can achieve the maximum throughput scaling law as T (n, p) =
Ω(p/

√
n) bits/sec on a grid network of size n, with a latency

scaling law as D(n, p) = O(
√
n) + O(1/p). Finally, we extend

GWSS to a random network with n Poisson-distributed nodes, for
which we show an achievable throughput scaling law as T (n, p) =
Ω(p/

√
n logn) bits/sec and a corresponding latency scaling law

as D(n, p) = O(
√

n/ logn) + O(1/p); hence meeting the well-
known Gupta-Kumar achievable throughput law Ω(1/

√
n logn)

when p → 1. 1

I. INTRODUCTION

A primary concern in the design of wireless networks
is to ensure acceptably long operational lifetime with the
battery-powered wireless nodes. It is well-known that idle
listening at radio receivers is a major cause of the wasteful
energy consumption, since the power consumption in listening
mode is comparable to that of receive mode. The extant
literature has proposed “sleep scheduling” (or duty cycling) of
radio transceivers to conserve battery energy, by occasionally
turning the transceivers on and off in a controlled fashion [2],
[3]. While sleep scheduling attains energy conservation, it is
achieved by incurring higher latency and lower throughput.
The goal of this work is to investigate the fundamental limits of
latency and throughput of sleep scheduling. We aim to address
such vital question as: For a given level of energy consumption
rate of nodes in a wireless network, how to schedule the
activity of the transceivers to achieve the minimum average
end-to-end latency, while meeting certain minimum throughput
per source-to-destination (S-D) pair?

1Full version of this paper appears in [1].

Recently, there has been various progress in the design and
analysis of sleep scheduling in wireless networks. The latency
performance of stateless opportunistic forwarding on finite
networks with random and pseudo-random sleep scheduling
has been studied in our prior work [4], [5], [6]. These uncoor-
dinated sleep scheduling approaches, while being simple and
robust without relying on the centralized coordination, gener-
ally suffers from high latency. On the other hand, coordinated
sleep scheduling approaches can potentially achieve better
performance, when provided with the centralized coordination
on sleep schedules. Particularly, [7] considers the problem
of finding the optimal sleep schedules for minimizing the
latency diameter. They showed the problem to be NP-hard
(though the proof was later reported as incorrect [8]), and
proposed efficient coordinated sleep scheduling schemes for
certain specialized topologies.

Despite the progress in prior work, there remain a number of
outstanding issues of optimal sleep scheduling in wireless net-
works. First, how hard is to find the optimal sleep scheduling
that, for instance, can minimize the incurred latency? Second,
is there a general framework to design sleep scheduling that
is optimal in useful common situations? Third, how to ensure
these sleep schedules work well in the presence of wireless
interference?

This paper addresses the problem of optimal sleep schedul-
ing in a broad and extensive perspective. We provide compre-
hensive insights on this problem, ranging from the computa-
tional complexity, to the limit of latency, and the achievable
latency and capacity. Our contributions are outlined as follows.

(§ II) Considering a slightly harder optimal sleep scheduling
problem of [7], but which is more relevant to practical
wireless networks, and proving its NP-hardness.

(§ III) Deriving a tight lower bound on the mean latency for
any sleep schedules on arbitrary graphs.

(§ IV) Proposing a new approach to sleep scheduling inspired
by coordinated traffic lights (called green-wave sleep
scheduling (GWSS)), which is shown to attain our
latency lower bound, and hence latency-optimal under
low traffic loads for topologies such as line, grid, ring,
torus, and tree networks.

(§ V) Presenting a non-interfering GWSS for high traffic
loads, which can achieve the maximum throughput scal-
ing law as T (n, p) = Ω(p/

√
n) bits/sec, with a latency



scaling law as D(n, p) = O(
√
n) + O(1/p), on a grid

network with the number of nodes n, active rate p, and
n/2 S-D pairs.

(§ VI) Extension of non-interfering GWSS to a random net-
work with n Poisson-distributed nodes, for which we
show an achievable throughput scaling law as T (n, p) =
Ω(p/

√
n log n) bits/sec and a corresponding latency

scaling law as D(n, p) = O(
√
n/ log n) + O(1/p);

hence meeting the well-known Gupta-Kumar achievable
throughput law Ω(1/

√
n log n) when p→ 1.

II. DELAY EFFICIENT SLEEP SCHEDULING

A. Problem Setup

An efficient sleep schedule not only seeks to minimize idle
listening, but also to optimize the performance of wireless
networks (e.g. latency, capacity) subject to a certain constraint
of energy consumption level. This work considers receiver-
based sleep scheduling (i.e., the active state of a node refers
to the receiver being active and listening for incoming trans-
missions), and full topology knowledge at each node.

Let G , (V,E) be an arbitrary graph. Let p ∈ (0, 1] be the
required active rate. Suppose that time is divided into finite
slots, and numbered by Z+ , {1, 2, 3, . . .}. Let a scheduling
function f : V → P(Z+) be a slot assignment function that
assigns a sequence of active slots2 to every node. Scheduling
function f needs to satisfy the constraint that the fraction of
active slots must be equal or smaller than p.

Suppose that node u wants to transmit to an adjacent node
v at slot t0. If t0 ∈ f(v), then delay is 0. Otherwise, u has to
wait for the earliest slot t1 > t0, such that t1 ∈ f(v), and the
delay becomes t1 − t0. Let ∆t0(u, v) be the latency along
the minimum-latency path3 from u to v, given scheduling
function f , when the transmission begins at slot t0. Let us
define ∆(u, v) , E[∆t0(u, v)] to be the mean latency from
u to v under scheduling function f where the expectation is
taken over a uniformly distributed t0 ∈ Z+.

Given a subset of source-destination (S-D) pairs X ⊆
V × V , define the latency diameter Df (X) as the maximum
expected end-to-end latency among the S-D pairs in X using
the minimum-latency path in G, under scheduling function
f . Here, we seek to find the optimal sleep schedules that
minimize the latency diameter.

B. Hardness of Delay Efficient Sleep Scheduling

The delay efficient sleep scheduling problem (DESS) was
proposed in [7] as an abstraction to study the design of optimal
sleep schedules for a given wireless network. Although [7]
claimed that DESS is NP-hard, it was reported in [8] that the
proof of NP-hardness in [7] contains an error. In summary,
[8] made an incorrect reduction from 3SAT problem to DESS,

2P(S) is the power set or the set of all subsets of the set S.
3The minimum-latency path between two nodes in a sleep-scheduled

network may not necessarily be identical to, and will in general be only
lower bounded by, the shortest path between the nodes, i.e., ∆t0 (u, v) ≥
duv , ∀u, v ∈ V, and ∀t0 ∈ Z+, where duv is the length (in number of
edges) of the shortest path connecting u and v, with equality holding in the
absence of sleep schedules (p = 1).

such that a satisfiable instance of DESS does not correspond
to a satisfiable instance of 3SAT in the reduction. Hence, the
NP-hardness of DESS is still an open question.

In this paper, we study a slightly harder version of DESS,
called delay efficient sleep scheduling by selections problem
(DESS-S), which is more relevant to practical design of sleep
schedules of wireless networks, because it considers a given
subset of S-D pairs, instead of any S-D pair as DESS. We
show that DESS-S is NP-hard. This presents the evidence of
hardness of designing the optimal sleep schedules for arbitrary
wireless networks, and motivates the following studies of the
optimal sleep schedules in more specific settings.

We consider a specific class of periodic scheduling function
f̃ : V 7→ {0, ..., T − 1}, which assigns a single slot for
each node to be active in an interval T . We show that even
considering only periodic scheduling functions, finding the
optimal periodic scheduling function is still hard.

Suppose that each node u starts to transmit at its respective
active slot. Given periodic scheduling function f̃ , the delay
from u to v, for a pair of adjacent nodes (u, v) ∈ E, becomes:

∆(u, v) ,

{
T, if f̃(u) = f̃(v)

f̃(v)− f̃(u) mod T, otherwise

We define the problems of delay efficient sleep scheduling:
1) (Delay Efficient Sleep Scheduling Optimization Prob-

lem (DESS) [7]) Given a tuple (G,T ), find a periodic
scheduling function f̃ that minimizes the diameter for
all S-D pairs V × V :

f̃ = arg min
f̃ ′

{
Df̃ ′(V × V )

}
2) (Delay Efficient Sleep Scheduling Decision Problem

(DESS) [7]) Given a tuple (G,T, ε), decide if there exists
a periodic scheduling function f̃ such that for all S-D
pairs V × V :

Df̃ (V × V ) ≤ ε

3) (Delay Efficient Sleep Scheduling by Selections Opti-
mization Problem (DESS-S)) Given a tuple (G,T,X ⊆
V × V ), find a periodic scheduling function f̃ that
minimizes the diameter for the S-D pairs in X:

f̃ = arg min
f̃ ′

{
Df ′(X)

}
4) (Delay Efficient Sleep Scheduling by Selections Decision

Problem (DESS-S)) Given a tuple (G,T,X, ε), decide if
there exists a periodic scheduling function f̃ such that
for the S-D pairs in X:

Df̃ (X) ≤ ε

DESS-S is regarded as a slightly harder version of
DESS, though DESS-S is more relevant to practical wireless
networks, where the S-D pairs are arbitrarily selected, instead
of all possible S-D pairs. The proof of the following theorem
is given in Appendix.
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Theorem 1: Delay efficient sleep scheduling by selections
decision problem (DESS-S) (G,T,X, ε) is NP-complete.
Hence, delay efficient sleep scheduling by selections optimiza-
tion problem is NP-hard.

III. LATENCY LOWER BOUND

As Sec. II showed that designing optimal sleep schedules
on a given network is hard, we next derive a general lower
bound on latency for all sleep schedules, which provides us
guidance to design optimal sleep schedules for specific cases.

Theorem 2: Let G , (V,E) be an arbitrary connected
graph. Given any scheduling function f : V → P(Z+), a
constant active rate p ∈ (0, 1] for every node in V , assuming
node degree dv = O(1),∀v ∈ V and any S-D pair v and w,
the mean latency:

∆(v, w) ≥ dvw +O(1/p),∀v, w ∈ V, (1)

where dvw is the length of the shortest path connecting v and
w. To prove the theorem, we consider the following lemma.

Lemma 1: Given a node v ∈ V , an active rate p, and an
arbitrary start time t ≥ 1, and a scheduling function f , let Wf

denote the average number of time slots before v becomes
active next. The minimum wait time over all sleep schedules,
minf Wf = (1− p)/2p.

Proof: (lemma) A sleep schedule f is T -periodic if
for every node, f assigns sleep and wakeup slots with a
periodically recurring pattern with period T . More formally,
the sequence f(v) mod (T ) is a periodic sequence. We will
first prove the lemma for periodic sleep schedules, and then
take the limit T → ∞, so that the proof holds for arbitrary
sleep schedules. Let (v1, ..., vT ) be a T bit binary sequence,
with vl = 1 if v is active at l-th time slot under schedule f
(i.e., if l ∈ f(v)), and vl = 0 otherwise. By definition p =∑T
l=1 vl/T . Let ~x , (x1, ..., xK) be a sequence containing the

number of consecutive 0’s in between two 1’s in (v1, ..., vT )4,
where K ≥ Tp+ 1 is the upper bound on the largest possible
number of distinct blocks of consecutive 0’s in (v1, ..., vT ).
Hence, the total number of 0’s,

∑K
k=1 xk = T (1 − p). The

average number of time slots to wait before v comes active
for a T -periodic sleep schedule f is given by W (T )

f (~x):

W
(T )
f (~x) =

1

T

K∑
k=1

xk(xk + 1)

2
. (2)

The minimum wait time is thus given by

min
f
Wf = lim

T→∞

[
min
~x

1

T

K∑
k=1

xk(xk + 1)

2

]
, (3)

subject to
∑K
k=1 xi = T (1−p). The above can be solved using

Lagrange multipliers, and the solution is given by minf Wf =
(1− p)/2p. The values of xk that minimize the wait time are

4Note that some vk’s will be zero, when there are consecutive 1’s. The
total number of 1’s is Tp.

all constant, xk = (1 − p)T/(Tp + 1). Thus, all sleep times
must be equitably distributed for the minimum average wait
time.

Proof: (theorem) Let us say for a given arrival time
slot t, the minimum delay path from v to w under f is
Pf (v, w, t). If the minimum delay path is identical to the
shortest path PSP (v, w) for all t (this will be true when p
is close to 1), then the lemma readily implies ∆(v, w) ≥
dvw + (1 − p)/2p , dvw + O(1/p), because the first hop
from v to the next node in the path PSP (v, w) will at least
take (1−p)/2p slots if we average over a uniformly distributed
arrival slot t. If Pf (v, w, t) is not identical to PSP (v, w), it
must be longer (in number of edges) that dvw for all t. It
is straightforward to show using the arguments above that
the minimum value of the mean number of slots before the
first nearest neighbor of v comes active, under all choices of
schedules f , is given by (1−p)/(2pdv) where dv is the degree
of node v. Assuming the node degrees to be O(1) (which is
a reasonable assumption for many practical network designs),
we again obtain ∆(v, w) ≥ dvw + O(1/p). The following
corollary follows readily.

Corollary 3: Let Df (p) be the latency diameter, for a
scheduling function f subject to active rate p. Then, Df (p) =
D(G) +O(1/p), where D(G) is the diameter of G.

In the following sections, we will show that an efficient
sleep schedule, called green-wave sleep scheduling (GWSS),
can attain the end-to-end latency upper bounded by ∆(i, j) ≤
dij + O(1/p) in certain topologies, and hence prove GWSS
to be latency-optimal for those topologies. We remark that the
latency lower bound holds for an arbitrary pair of nodes in a
sleep-scheduled wireless network, and the difference between
the shortest path and the latency of the optimal sleep schedule
is only an additive term O(1/p), which does not scale with
the size of the network.

IV. GREEN-WAVE SLEEP SCHEDULING (GWSS)

This section introduces the green-wave sleep scheduling
(GWSS), which is based on an intuitive concept. If you have
ever driven along one of the major avenues of Manhattan
at reasonable high speed, you must notice that you never
catch a red light. Sequences of green lights move along the
avenues at the speed limit, and if you can “ride” on one
of those green waves, you can drive along with little delay.
Green waves have been studied extensively in the context of
optimizing traffic lights [9], and telephone routing in a square
grid [10]. Our sleep schedule is inspired by green wave traffic-
light scheduling. Each intersection on the one-way Manhattan
avenue is analogous to a sleep-scheduled node, where green
and red lights correspond to the active and asleep states.

A green wave is defined to be a moving sequence of
consecutive active states, moving along a connected path in
a graph. A green wave moves at the rate of one hop (i.e., the
next consecutive node along the path) in each successive time
slot. A (g, r) periodic green wave is a periodic sequences of
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g-node active states followed by r-node asleep states moving
along a path one hop per time slot. We define g to be the
“wake length” and r to be the “sleep length” of the (g, r)
periodic green wave. Thus the periodicity of such a periodic
green wave is T = g + r. See Fig. 1 for an illustration.

Active transmitter node

Active receiver

node

Path P1 Path P1

(a) At slot t (b) At slot t+1

Sleep node

Fig. 1. An illustration of (1, 3) green wave moving along the path P1.

The notion of green wave provides a general framework to
construct efficient sleep schedules. Given a graph G, we pick
a subset of paths in G, such that every node lies on at least one
path. Then for any path, we can schedule two green waves:
(1) a (g, r) left-moving periodic green wave (LGW), and (2) a
(g, r) right-moving periodic green waves (RGW) that travels
in the reverse direction as LGW on the path5. Hence, a packet
can ride on either green wave depending on the direction,
and can be forwarded with minimal latency. This forms the
green-wave sleep scheduling (GWSS) schemes. Although [7]
proposes similar specific schemes for specialized topologies,
GWSS is a general framework that can be applied to arbitrary
network topologies.

Particularly, we describe GWSS for the following topolo-
gies, and present the respective latency analysis under low
traffic load (without the contentions for the same receiver),
which is shown to meet our latency lower bound.

1) (Line Network): There is one path; we can schedule
LGW and RGW travelling in opposite directions. From
the analysis in the technical report [11], we can show
that the latency for a pair nodes i, j is

∆(i, j) = dij +
(1− p) +

√
1− p

2p
= dij +O(1/p) (4)

And the expected latency averaged over all node pairs
is given by

E[∆(i, j)] =
n+ 1

3
+

(1− p) +
√

1− p
2p

=
n+ 1

3
+O(1/p) (5)

2) (Grid Network): We label a 2D grid network with m×m
nodes from (1, 1) to (m,m) where n = m ×m where
n is the total number of nodes. For each horizontal
path between (t, 1) and (t,m), we schedule LGW and
RGW travelling in opposite directions. For each vertical

5The notions of left and right are mainly for distinguishing the two green
waves, which may not reflect the physical orientation.

path between (1, s) and (m, s), we schedule an up-
moving periodic green wave (UGW) and a down-moving
periodic green wave (DGW) travelling in opposite direc-
tions. See Fig. 2 for an illustration.

……

At slot t At slot t+1 At slot t+m

DGW

UGW

LGWRGW

Fig. 2. An illustration of green waves moving on a grid.

From the analysis in the technical report [11], we can
show that the latency for a pair nodes i, j is

∆(i, j) =
r(2r + 1)

6(r + 1)
+
r

2
+ dij

= dij +
r(5r + 4)

6(r + 1)
. (6)

where

p =
(2r2 + 2r + 1)(2r + 1)

(1 + r)4
(7)

Hence, this implies

∆(i, j) = dij +O(1/p), (8)

And the expected latency averaged over all node pairs
is given by

E[∆(i, j)] =
2(m+ 1)

3
+
r(5r + 4)

6(r + 1)

=
2(m+ 1)

3
+O(1/p). (9)

3) (Tree Network): Pick a root in a tree network called c0.
There is only one path from the root to any leaf node.
Hence, we can schedule LGW and RGW travelling in
opposite directions for each path between the root and a
leaf node. The latency analysis of tree network follows
similarly from line network, and can be shown to be
meeting our latency lower bound. See the full technical
report for the detailed calculation [11].

The cases for ring and torus networks follow similarly from
the ones of line and grid networks.

By the latency lower bound in Theorem 2, GWSS is
latency-optimal on these network topologies. Therefore, for
an arbitrary pair of nodes in these sleep-scheduled networks,
the difference between the shortest path and the latency using
the GWSS scheme is just an additive O(1/p), and does not
scale with the size of the network.

4



V. LATENCY AND CAPACITY SCALING LAWS FOR GRID

We have shown that on several lightly-loaded specialized
network topologies such as line, grid, ring, torus and tree
networks, by careful scheduling of green waves, the mean
latency for any S-D pair (i, j) averaged over all routing start
times t0 is given by ∆(i, j) = dij + O(1/p). In this section,
we consider the more realistic case with high traffic loads, in
which the presence of wireless interference will affect both
latency and throughput of sleep-scheduled wireless networks.
We show that, despite wireless interference, GWSS can be
carefully designed to support the well-known Gupta-Kumar
capacity scaling law, without incurring extra latency.

A. Interference Models

Let us consider a square grid network with n = m × m
equal-sized square cells on a square plane with one node
located at the center of each square cell (see Fig. 3). We denote
the length of one side of the square cell as c. Let us randomly
choose a set X of n/2 S-D pairs whose coordinates are given
by (ti, ri), i ∈ X . We denote S ⊆ X as the set of simultaneous
links. There are two common interference models to formulate
S in the literature [12]:

1) Pairwise (or protocol) interference model: for i, j ∈ S,

|tj − ri| ≥ (1 + δ)|ti − ri|

2) Aggregate (or physical) interference model: for all i ∈ S,

Ptx|ti − ri|−α

N0 +
∑

j∈S\{i}
Ptx|tj − ri|−α

≥ β

Lemma 2: It is well-known [12], [13] that if each transmis-
sion is limited to communication between adjacent cells on the
grid network, then there exists a constant κ (independent of
n), such that simultaneous transmissions can take place among
links that are κ cells away, without violating both pairwise and
aggregate interference models, and can achieve a throughput
of Ω(1) on each simultaneous transmission. The value of κ
only depends on the parameters in the interference model (e.g.
δ,N0,Ptx, α, β).

We define the per-node throughput T (n, p) as the number
of bits per second that with high probability (w.h.p.) all
random n/2 S-D pairs can communicate at simultaneously.
The latency D(n, p) is the number of hops needed for a given
packet starting at a source node to reach the destination node,
averaged over all S-D pairs. If full topology information is
available and in the absence of sleep schedules, the optimal
route between any S-D pair is one of the (potentially several)
“L”-shaped minimum-distance Manhattan routes. But in the
presence of sleep schedules, a minimum-distance Manhattan
route may or may not be the minimum-latency path, depending
upon the underlying sleep scheduling scheme and the active
rate p. Below we consider two different sleep scheduling
schemes and calculate their capacity and latency scaling laws.

B. Receiver-based Round-Robin Sleep Scheduling

The (sender-based) round-robin scheduling has been com-
monly used in [12], [13] for showing the achievable capacity
law. Here, we modify such scheduling to be receiver-based,
which can be compatible with receiver-based sleep scheduling.

Assume that each S-D pair routes the packets on the
respective minimum-distance Manhattan routes. We group a
block of k2 cells into a macro-cell as shown in Fig. 3 with
k > κ, and use round-robin scheduling on all Θ(n) macro-
cells simultaneously, such that simultaneously transmitting
cells are k cells away. Each receiver node in a macro-cell will
be active in every k2 slots (while all other cells in the macro-
cell remain asleep in that slot), and accepts transmissions from
four neighboring cells as shown in Fig. 3 sequentially in four
sub-slots. So, each receiver’s active slots has a periodicity
of k2 slots, and the overall active rate p = 1/k2. The
conditions for Lemma 2 apply here because in each sub-slot,
the simultaneously transmitting cells will transmit to their
respective 1-hop neighbors and they will be tiled the exact
same way as the receiving cells are.

The maximum latency from one macro-cell to the next
macro-cell is k2 slots. It can be shown that the number of
macro-cells in the end-to-end S-D path is Θ(

√
n) w.h.p.

when n → ∞ [12]. Hence the end-to-end latency of a
packet scales as D(n, p) = O(

√
n/p). Notice that, the poor

latency performance of this scheme is due to the fact that a
packet has to wait for O(1/p) slots on an average at each
macro cell.6 At each slot, there are Ω(np) transmissions,
and the hop count between a S-D pair is Θ(

√
n) w.h.p.

when n → ∞. Hence, the throughput per S-D pair is
T (n, p) = Ω( np

n·
√
n

) = Ω(p/
√
n). Therefore, we have:

Theorem 4: Using receiver-based round-robin sleep
scheduling, the end-to-end latency of a packet scales as
D(n, p) = O(

√
n/p), while the throughput per source-

destination scales as T (n, p) = Ω(p/
√
n).

C. Non-Interfering Green-Wave Sleep Scheduling

To overcome the latency problem of round-robin sleep
scheduling, we propose non-interfering green-wave sleep
scheduling (NiGWSS) – different than the simple GWSS in
Sec. IV. Each individual S-D pair still routes data on the
shortest-path Manhattan route. Consider a right-moving tiled
green wave front as shown in Fig. 4(a), such that the receivers
of the nodes in blue cells remain active simultaneously and the
active states move forward to the orange cells in the next slot,
and so on. Notice that each horizontal line of the grid sees a
periodic green wave with active states occurring after every k2

slots. As is evident from Fig. 4(a), for k > κ, the conditions
of Lemma 2 hold because each simultaneous transmission
effected by the green wave is one cell to the right. Now let us
divide each slot into four sub-slots as shown in Fig. 4(c), and

6In fact, with light load, a latency scaling of O(
√
n/p) can be obtained

by a simple pseudo-random duty cycling approach as described in [4] with
opportunistic forwarding along the shortest path.
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sub-slot 4

Round robin scheduling among macro-cells

sub-slot 3sub-slot 2sub-slot 1

Each slot consists 

of 4 sub-slots

Simultaneous receiver 

cells (and simultaneous 

receiver cells are at 

least k cells apart

m

a macro-cell

1 2 ……

c

Round robin scheduling among macro-cells

Fig. 3. An illustration of receiver-based round-robin sleep scheduling with
k = 5, and n = 100. The red dots at the center of each square cell are the
nodes.

This green wave travels from left to 

right continuously

The spatial assignment at slot t: Four green waves 

travel in four orthogonal directions

Active transmitter cell Active receiver cell

(a) (b)

Slot t Slot t+1 Slot t+2

Time

Four sub-slots, each activates 

one green wave in each direction

(c)

Fig. 4. An illustration of non-interfering green-wave sleep scheduling
(NiGWSS) on square grid (with k = 4) with optimized latency and throughput
performance.

consider four tiled green-wave fronts traversing the network
continuously from the four orthogonal directions, as shown in
Fig. 4(b). Each successive sub-slot activates one out of the
four green waves. Hence in each sub-slot the no-interference
condition of Lemma 2, k > κ, prevails.

The latency of a packet along an end-to-end S-D path,
whose length is Θ(

√
n) w.h.p. when n → ∞, is given

by four components: (i) The average number of time-slots
a packet has to wait at the source node in order to hop
on to the green wave moving along the horizontal arm of
the Manhattan route, (ii) the length of the horizontal arm
of the Manhattan route, (iii) waiting at the corner of the
Manhattan route for the next green wave moving along the
vertical arm of the Manhattan route to arrive, and finally
(iv) the length of the vertical arm of the Manhattan route.
Therefore D(n, p) = O(1/p) + Θ(

√
n) + O(1/p) + Θ(

√
n),

or D(n, p) = O(
√
n) + O(1/p). This proves that the lower

bound to the optimal latency scaling in the presence of sleep
schedules (by Theorem 2) is achievable. Hence, NiGWSS
achieves the optimal latency performance for the square grid
network – even in the presence of multiple simultaneous flows.

Let us concentrate on a single S-D pair, and the
corresponding transmission of data along a Manhattan route
under NiGWSS. The source chunks up the data into small-
sized packets that can be reliably transmitted to a one-hop
neighbor. The source sends out each packet sequentially
on a green wave, which reaches its final destination in
O(
√
n) + O(1/p) slots. But in between transmitting each

successive packet, the transmitter has to wait k2 slots. Hence
the effective per S-D pair throughput attained is given
by T (n, p) = Ω(p/

√
n) bits/s. Therefore, we obtain the

following theorem.

Theorem 5: Using non-interfering green-wave sleep
scheduling (NiGWSS), the end-to-end latency of a packet
scales as D(n, p) = O(

√
n) + O(1/p), while the throughput

per S-D pair scales as T (n, p) = Ω(p/
√
n).

Note that we choose k given the requirement on the active
rate p, such that k2 ≈ 1/p. One obvious variation to the
above scheme is to choose the separation between active nodes
in the horizontal and vertical directions to be different, say
k1 and k2 respectively. This results in p = 1/(k1k2). In
order to realize an arbitrary active rate over time, one can
switch between using two sets of green-wave sets described
by the tuples {k1, k2} and

{
k′1, k2

′}, such that each of the
factors k1, k2, k′1 and k′2 are chosen be be larger than the
critical radius κ. The interference model does not permit using
the aforementioned GWSS with an active rate p > 1/κ2

because of excessive interference. But as p→ 1, we approach
the Gupta-Kumar scaling laws [12], T (n) = Ω(1/

√
n), and

D(n) = O(
√
n), which can be achieved by the TDMA scheme

recently proposed by Franceschetti, et. al. [13].

VI. LATENCY AND CAPACITY SCALING LAWS FOR
RANDOM NETWORK

A random extended network is obtained by placing nodes
with a unit-intensity Poisson point process over the square
region Bn , [0,

√
n] × [0,

√
n]. The questions we ask in

this section are; in a random extended network, for a sub-
unity active rate p < 1, (i) What are the ultimate limits and
tradeoffs between throughput and latency scaling laws? and,
(ii) are there achievable sleep scheduling schemes that can
achieve those ultimate limits of throughput and latency for a
sleep-scheduled network? Even though we do not answer the
above questions completely in this paper, we examine a few
constructive sleep scheduling schemes for random extended
networks and the corresponding scaling-law operating points.

A. The Gupta-Kumar Regime

Consider the
√
n ×
√
n square area Bn with n nodes and

divide it up into a grid with square cells of side-length
√

log n.
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Then, there will be at least one node in each cell w.h.p., which
can act as the representative relay node for the rest of the
nodes in that cell, and following the constructive proof of
Gupta and Kumar [12], the per hop capacity can be shown
to be T (n) = Ω(1/

√
n log n), as n → ∞. The per S-D

pair latency (in hops) scales as the number of cells along
one side of Bn, i.e. D(n) = O(

√
n/ log n). Using the non-

interfering green-wave sleep scheduling (NiGWSS) developed
in Sec. V, it is straightforward to extend this to a constructive
sleep scheduling scheme for a sub-unity active rate p. The
per node throughput and per S-D pair latency are given by
T (n, p) = Ω(p/

√
n log n), and D(n) = O(

√
n/ log n) +

O(1/p) respectively.

B. The FDTT Regime

Consider again the
√
n×
√
n square area Bn with n nodes.

Recently, Franceschetti et. al. [13] closed an important gap
in the capacity of wireless networks [12], by showing that
for random extended networks of n randomly located nodes,
a T (n) = Ω(1/

√
n) bit rate per S-D pair can always be

achieved, with an average number of hops D(n) = O(
√
n).

The FDTT scheme is a constructive protocol that divides up
Bn into a square grid with cells of a constant side-length c,
such that the probability of a given cell not containing any
node is less than e−c

2

. In [13], a percolation theory based
argument is used to embed in the network an approximate
multi-hop grid topology composed of a set of almost equally
spaced out, wavy but non-intersecting horizontal and vertical
percolation highways, followed by pairwise coding-decoding
at each hop on these highways coupled with an embedded
TDMA slotted transmission schedule to suppress interference
from simultaneous transmissions.

There are two possible ways to extend the FDTT scheme
to incorporate sleep scheduling, or node active rates p < 1:

1) Transmitter-based Round Robin Sleep Scheduling: The
figure on the right in Fig. 5 shows the cells that transmit
on the same time slot. This TDMA transmitter-based round
robin approach controls interference, and is key to deriving
the throughput scaling laws in [13]. What the authors do
not explicit note is that with this round-robin schedule, each
receiver node does not need to stay active in every time slot.
With the underlying percolation highway grid, each node can
expect to receive data only from a maximum of four possible
neighboring nodes on an intersecting pair of vertical and
horizontal highways. So, with a k = 4 schedule (as shown
in Fig. 5), a mean node active rate of p = 4/k2 = 0.25
is embedded in the scheme. It is straightforward to use the
techniques we developed in Sec. V, to generalize the FDTT
routing scheme for the random extended network to lower
values of p, by increasing the side-length k of the transmit
macro-cells, but holding d = 1 hop transmissions on the
highways in each time slot to be constant. It is straightforward
to show that throughput and latency scaling laws given by
T (n, p) = Ω(p/

√
n) and D(n, p) = O(

√
n/p) are readily

attained. As noted in Sec. V-B, under light load conditions,
this latency scaling can be trivially obtained with no topology

Fig. 5. This figure from [13] on the left shows computer-generated horizontal
highways or connecting paths in a 40× 40 bond percolation grid. The small
square cells are of side-length c, and cells that are open are ones with no
nodes (P (no node) < e−c2 ). The cells that are marked with a horizontal
or a vertical line have at least one node in them that act as a relay node on
the highway. The figure on the right shows the same cells (of side c – now
drawn 45 degrees rotated) with the gray-shaded ones allowed to transmit on
the same time slot.

Fig. 6. Horizontal and vertical percolation “highways” criss-crossing the
network area Bn containing n Poisson-distributed nodes.

knowledge just by using opportunistic forwarding along the
shortest paths.

2) Green Wave Sleep Scheduling: Now the natural question
to ask is, whether GWSS or a variation thereof (such as
NiGWSS) can lead to better latency performance on a random
extended network, like it does for the grid network as we
found in Sec.V-C. Let us take a closer look at the percolation
highways criss-crossing the square region Bn, as shown in
Fig. 6. There are Ω(

√
n) non-intersecting highways crossing

the network area in each direction (i.e., two horizontal or two
vertical highways never pass through the same cell). Also, the
average number of hops on each highway scales as O(

√
n)

as n → ∞. Moreover, the highways can be divided into
disjoint sets of dε log

√
ne paths, contained in a

√
n×b log

√
n

rectangular slice of Bn, for all b > 0 and ε sufficiently
small. In Fig. 6, The red nodes are where a horizontal and
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a vertical highway intersect. The blue and the red nodes are
“backbone” relay nodes along the highways. Notice that each
cell that a highway crosses has exactly one backbone node
and no two highways cross the same cell. Consider a ‘tiled’
right-moving green wave front as described earlier in Fig. 4,
but hinged only on the red backbone nodes. Also consider
four similar tiled green waves moving in four directions,
traversing the network with no inter-green-wave interference
due to TDMA-transmission in four sub-slots of each time slot
(see Fig. 4). The latency scaling achieved using this scheme
can be D(n, p) = O(

√
n) + O(1/p). The capacity scaling

law analysis runs into interference problems because of a
lack of (to our knowledge) a lower bound on the Euclidean
distance between two adjacent percolation highways in this
framework. Using a variant of this non-interfering GWSS
scheme, similar to the square-grid network, it is likely that a
per node capacity and latency scalings of T (n, p) = Ω(p/

√
n)

and D(n, p) = O(
√
n) + O(1/p) respectively can be obtained

for the random extended network, though a loose lower bound
to throughput scaling, T (n, p) = Ω(p/n) can be shown easily.

VII. RELATED WORK

This paper provided several analytical insights on the limita-
tion and achievable settings of energy-saving sleep scheduling
in wireless networks. We note that there are multitude of
approaches of energy management in wireless networks, in-
cluding topology management and network layer optimization
[14], [15]. Particularly relevant to our work are those based on
duty cycled MAC protocols, which aim to reduce redundant
radio operations in MAC protocols, such as 1) idle listening
(keeping radio on even when no reception), 2) overhearing
(reception of a message not intended for the receiver), and 3)
protocol overhead (redundant headers or signalling messages).
Examples include S-MAC, SEEDEX, O-MAC, RI-MAC, DW-
MAC [2], [16], [17], [18], [19]. Also, our prior work [4],
[5], [6] study the approach of reducing idle listening and
overhearing by duty cycles based on pseudo-random sequence
[3]. As compared to these studies, this paper mainly presents
the analytical fundamental results of optimal sleep scheduling
problem considering both latency and capacity.

VIII. DISCUSSION AND CONCLUSION

Sleep scheduling wireless transceivers has been established
to be a crucial means to improve upon their operational
lifetimes, and hence the usefulness of wireless networks. By
carefully designing the sleep schedules, this paper shows how
the latency and capacity of sleep-scheduled wireless networks
can be achieved up to certain scaling laws. Although the
general problem of designing delay efficient sleep schedules
is NP-hard, we propose to use green-wave sleep scheduling
(GWSS) as a general framework for sleep scheduling in
wireless networks, which we show to be latency-efficient and
capacity-efficient on grid networks, and to be able to maintain
good balance between latency and capacity over Poisson-
distributed random extended networks.

Especially, we have shown that on large networks with
various specialized topologies, GWSS affords almost the
same end-to-end latency performance as non-sleep-scheduled
networks for moderate values of p, and that the latency is
primarily governed by the shortest path distance from source to
destination. Also, if only a small number of packets are being
sent around a large network (say with a square grid topology),
the same d+O(1/p) latency can be more or less maintained for
each packet, without increasing p. So, under low traffic loads,
increasing the load initially will not result in an increase in
energy consumption. Moreover in the low load scenario, if the
network is large (i.e. the shortest path lengths d for all S-D
pairs are large), then sleep scheduling can save a substantial
of energy with only an additional O(1/p)� d delay for each
transmission. In Sec. V we show that in highly loaded dense
networks, throughput decays linearly with p. Hence, as we
go from low load to high load, the throughput scaling (with
p) transitions (multiplicatively) from O(1) to O(p). In future
work, we will investigate the various regimes in this transition
space.
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IX. APPENDIX

Proof: (Theorem 1) It is easy to show that DESS-S is
in NP, by running polynomial-time Dijkstra’s algorithm to
determine the minimum-latency path and end-to-end latency
of all nodes in G for a given periodic scheduling function f .

To show DESS-S is NP-hard, we rely on a polynomial time
reduction from 3SAT problem.

Consider a 3-CNF formula F consisting m clauses and h
variables, i.e. F = c1 ∧ c2 ∧ · · · ∧ cm, where each ci = yj1 ∨
yj2 ∨ yj3 and yj1 , yj2 , yj3 ∈ {x1, x̄1, ..., xh, x̄h}. F is said to
be satisfiable, if there exists a truth assignment to F , such that
every clause has at least one true literal. 3SAT is well-known
to be NP-complete. Given a 3-CNF formula F , we assume
each clause does not contain a literal and its complement (as
this is trivially satisfiable).

We next construct a corresponding DESS-S (G,T,X, ε),
such that F is satisfiable, if and only if (G,T,X, ε) is
satisfiable. First, we set T = 2. So, for (u, v) ∈ E, if
f̃(u) = f̃(v), then ∆(u, v) = 2. Otherwise, if f̃(u) 6= f̃(v),
then ∆(u, v) = 1.

We construct G as follows:
1) For each variable xj , x̄j , we add two nodes xj,1, xj,2 ∈

V , and an edge (xj,1, xj,2) ∈ E.
2) For each clause ci, we add two nodes ci,1, ci,2 ∈ V , and

add two edges for each variable in ci:
a) (xj,1, ci,1), (xj,1, ci,1) ∈ E, if xj is present in ci.
b) (xj,2, ci,1), (xj,1, ci,2) ∈ E, if x̄j is present in ci.

3) For each pair of clauses ci and ci+1, we add
three nodes zi,1, zi,2, zi,3 ∈ V , and four edges
(ci,1, zi,3), (ci,2, zi,3), (zi,3, zi,2), (zi,2, zi,1) ∈ E.

See Fig. 7 for an illustration of G for a given F .
We next construct the subset of S-D pairs X as:
1) For each clause ci, we add (ci,1, ci,2) ∈ X .
2) For each pair of clauses ci and ci+1, we add

(zi,1, ci,1), (zi,1, ci+1,1) ∈ X .

It is easy to see that the construction of G and X is of
polynomial time, given F in 3-CNF formula representation.

There are two immediate observations:
1) For all S-D pairs in X , the shortest paths in G take at

least 3 hops.
2) For a 3-hop path (u0, u1, u2, u3), we write the minimum

end-to-end latency as ∆(u0, u3). ∆(u0, u3) = 3 can
only be achieved by:

a) f̃(u0) = 0, f̃(u1) = 1, f̃(u2) = 0, f̃(u3) = 1, or
b) f̃(u0) = 1, f̃(u1) = 0, f̃(u2) = 1, f̃(u3) = 0

Therefore, we set ε = 3.
(If-Part): We show that if F is satisfiable, then DESS-S

(G,T = 2, X, ε = 3) is satisfiable. First, we set f̃(ci,1) = 0
and f̃(ci,2) = 1, f̃(zi,1) = 1, f̃(zi,2) = 0 and f̃(zi,3) = 1 for
i. Then, ∆(zi,1, ci,1) = ∆(zi,1, ci+1,1) = 3.

Next, if xj is true, then we set f̃(xj,1) = 0 and f̃(xj,2) = 1.
Otherwise, we set f̃(xj,1) = 1 and f̃(xj,2) = 0. From the
construction of G, we know that if ci is satisfiable, then there
exists at least one setting of f̃(xj,1) and f̃(xj,2), such that
∆(ci,1, ci,2) = 3, in the 3-hop path (ci,1, xj,1, xj,2, ci,2) when
xj is true, or (ci,1, xj,2, xj,1, ci,2) when x̄j is true.

(Only-If-Part): We show that if DESS-S (G,T = 2, X, ε =
3) is satisfiable, then F is satisfiable. First, we know that
∆(zi,1, ci,1) = ∆(zi,1, ci+1,1) = 3. This implies that f̃(ci,1) 6=
f̃(zi,1) and f̃(ci,1) 6= f̃(zi+1,1). Since T = 2, we have
f̃(zi,1) = f̃(zi+1,1) for all i. Without loss of generality, we
assume f̃(ci,1) = 0 for all i.

Then, we also know that ∆(ci,1, ci,2) = 3. From the
construction of G, this is only possible when there exists a
3-hop path:

(1) (ci,1, xj,1, xj,2, ci,2), such that for some j, and f̃(ci,2) =
1, f̃(xi,2) = 0, f̃(xj,1) = 1; or

(2) (ci,1, xj,2, xj,1, ci,2), such that for some j, and f̃(ci,2) =
1, f̃(xi,1) = 0, f̃(xj,2) = 1.

Since the two cases are exclusive with each other, there is a
consistent assignment of xj , if we set xj as true for Case (1),
and xj as false for Case (2), which can satisfy each clause ci.

Therefore, we show that DESS-S is NP-hard, because 3SAT
problem is NP-complete.

X. APPENDIX II
In this appendix, we analyze the latency of GWSS on the

line topology. Latency analyses of other topologies can be
found in full technical report [11].

A. Latency of Line Network
Consider a (g, r) left-moving periodic green wave (LGW)

and a (g, r) right-moving periodic green wave (RGW) on a line
network. Assuming that a packet knows the network topology,
it knows knows which green waves (LGW or RGW) to choose.
In either case, the mean number of time slots Tw the packet
needs to wait before it can ride on a green wave is given by

E[Tw] =
1

(g + r)

r∑
l=1

l =
r(r + 1)

2(g + r)

=
r

2
, for g = 1. (10)
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Fig. 7. An illustration of construction of DESS-S (G,T = 2, X, ε) for a
given F = (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∨ (x1 ∨ x2 ∨ x3). The truth
assignment is x1 = 0, x2 = 0, x3 = 1. The value in each node indicates the
value of the corresponding periodic scheduling function f̃ .

Once the packet rides one green wave, in the absence of any
other traffic, it needs dij = |j − i| additional time slots to
reach the destination node j, without having to wait at any
node in the path. Here dij is the length of the shortest path
from i to j. Hence, the total end-to-end latency is given by

∆(i, j) = E[Tw] + dij = dij +
r

2
. (11)

Let us calculate the mean active rate p for each node. Define
η , g/(g+ r) as the fraction of time slots that a node is kept
active by one (g, r) periodic green wave. A receiver node may
be kept active either (i) by the LGW alone, (ii) the RGW alone,
or (iii) by both LGW and RGW when they are overlapping at
that node. Assuming the LGW and the RGW to be statistically
independent, the probability that a node is active in a given
time slot p is given by the sum of the probabilities of events
(i) and (ii) minus the probability of event (iii), i.e.,

p = η + η − η2 =
g(g + 2r)

(g + r)2

=
2r + 1

(r + 1)2
, for g = 1. (12)

Hence for g = 1, r = ((1−p)+
√

1− p)/p. Hence, the latency
∆(i, j) is given by

∆(i, j) = dij +
(1− p) +

√
1− p

2p
= dij +O(1/p), (13)

which is identical to the delay bound obtained by Lu et. al.
[7] for tree and grid topologies using complicated multi sleep
scheduling schemes. Therefore, the expected latency over all
node pairs [6] is given by

E[∆(i, j)] =
n+ 1

3
+

(1− p) +
√

1− p
2p

=
n+ 1

3
+O(1/p). (14)

Fig. 8. Latency in line network with n = 100 nodes as a function of active
rate p, averaged over a uniform selection of source-destination node pair.

Fig. 8 shows that the coordinated green wave scheme
(Eq. (14)) outperforms random and pseudo-random duty cy-
cling schemes at low values of p.
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