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Abstract—This paper studies the scheduling optimization prob-
lem of electric vehicle (EV) charging considering two salient
characteristics: (1) discrete charging rates with minimum power
requirements in common EV charging standards, and (2) nodal
voltage and line capacity constraints of alternating current (AC)
power flows in electricity distribution networks. We present ap-
proximation algorithms to solve scheduling optimization problem
of EV charging, which have a provably small parameterized ap-
proximation ratio. Simulations show our algorithms can produce
close-to-optimal solutions in practice.

I. INTRODUCTION

To satisfy the increasing number of electric vehicles, elec-
tricity distribution networks need to address the growing power
loads. However, recent studies show that most distribution
networks have legacy transformers and transmissions lines that
are unable to handle the loads of electric vehicle charging.
Therefore, the notion of “smart” charging has been introduced
to optimize the charging schedules and dispatching operations
of EVs considering the dynamic generation, transmission and
distribution capacities of electricity grid. Although there has
been extant research work about the scheduling optimization
of EV charging, there are several practical limitations in the
extent solutions. Thus, this paper provides a more comprehen-
sive solution by considering more holistic aspects.

The intermediary between a power source and the EV’s
charging port is called Electric Vehicle Service Equipment
(EVSE). Currently, there are three main categories of EVSE:
Level 1 charging with cord-set singe-phase connections to a
regular household outlet of 115V AC and 15A in America
(also, 230V AC and 6A in Europe), which requires a power
demand around 1.5kW. Level 2 wall-mount three-phase con-
nections with 230V AC and 30A two pole, which requires
a power demand around 7kW. Level 3 DC fast charger with
400-600V DC and up to 300A, which bypasses the on-board
EV charger and converting the power directly into the battery.
Level 3 chargers require up to 150kW.

It is worth noting that none of these current popular charging
standards allows continuously controllable charging power at
an arbitrary rate. To ensure reliable charging, there requires a
delicate control system for the supplied charging power. As a
consequence, the injected voltage and current to charge EV
battery packs ought to be compliant with certain standard
charging rates. Hence, the charging power normally varies
within a limited discrete set of nearly constant values [1]. The
extant studies assuming arbitrarily time-varying charging rate
are inapplicable to the current EV charging systems.

Therefore, this paper studies a more realistic setting of
EV charging systems, requiring a fixed charging rate in a

M. Khonji and K. Elbassioni are with Masdar Institute, Khalifa University
(e-mail: {majid.khonji, khaled.elbassioni}@ku.ac.ae). S. C.-K. Chau is with
Australian National University (e-mail: sid.chau@anu.edu.au).

discrete manner. An EV consumes a fixed power when it
is being charged. Essentially, an EV only selects the starting
time of charging, after which it has to be charged at a fixed
rate until its scheduled ending time. However, we can also
relax the restriction of a constant charging rate by a variable
rate with a minimum power requirement. Note that there are
software-controlled EV chargers (e.g., [2]) that allow possible
programmable switching among discrete charging modes if
different charging ports are plugged in.

A major factor affecting EV charging is the presence of
grid-wide characteristics. There are various power system
attributes that are important metrics for the reliability of the
electricity grid. Deviations from the prescribed ranges of these
attributes will be an indicator for an imminent serious issue
in electricity grid, if no immediate corrective action is taken.
It has been a primary concern for power system engineers to
ensure the electricity grid within its stable operating limits, in
particular, when facing large loads due to EV charging. The
optimization of electricity grid operations subject to a variety
of operating limits, such as power capacity, current thermal,
and voltage constraints, is formulated as the alternating current
(AC) optimal power flow (OPF) problem. OPF is hard to solve,
because of non-convex operating constraints of power systems
[3], not to mention the presence of discrete control variables
(e.g., discrete charging rates).

This paper studies the scheduling optimization of EV charg-
ing considering: (1) discrete charging rates with minimum
power requirements in common EV charging standards, and
(2) nodal voltage and line capacity constraints of AC power
flows in distribution networks. We present approximation
algorithms for scheduling optimization of EV charging, with
a provably small parameterized approximation ratio.

II. PROBLEM DEFINITION AND NOTATIONS

A. EV Charging

We consider a constant number of discrete timeslots, de-
noted by the set T , with a fixed interval ∆T . There are a
set of EVs, denoted by A. Each a ∈ A has its charging
requirement characterized by (T a, loca, usga), where T a ⊆ T
is a subset of timeslots that a is allowed to be recharged at
charging station loca, requiring a total amount of energy usga

to charge the EV battery for later usage.
There are a set of charging options available to each

charging station loca, denoted by Ca. For each c ∈ Ca, the
charging option c is characterized by a tuple

(
ratec, costc(t)

)
,

where ratec is the charging rate and costc(t) is the time-
varying charging cost per unit time. Note that ratec draws
electricity power for Alternating Current (AC) electric power
grid, and hence, is represented by a complex number in the



standard power systems literature. costc(t) may depend on the
availability of renewable energy generation.

We consider software-controlled EV chargers (e.g., [2]) such
that it can be programmed to switch among charging modes.
Define binary decision variable xac (t) ∈ {0, 1}, such that
xac (t) = 1, if a recharges at time t ∈ T a using charging option
c ∈ Ca, otherwise xac (t) = 0. Denote xa ,

(
xac (t)

)
c∈C,t∈T a .

Define binary variable ya ∈ {0, 1} to indicate whether a’s
charging requirement is satisfied:

ya ,

{
1, if usga ≤

∑
t∈T a

∑
c∈Ca ∆T · ratec · xac (t)

0, otherwise.
(1)

Define the gain for a with respect to charging decision xa by

Ga(xa, ya) , uaya −
∑
t∈T a

∑
c∈Ca

costc(t)x
a
c (t), (2)

where ua is the utility if a’s charging requirement is satisfied.
It is natural to assume that ua is sufficiently large so that
Ga(xa, ya) is non-negative, for all xac (t), ya ∈ [0, 1].

B. AC Power Flow

As in the previous work [4], [5], this paper considers a radial
(tree) electric distribution network, represented by a graph G =
(V, E). The set of nodes V = {0, ...,m} denotes the electric
buses, and the set of edges E denotes the distribution lines.
For edge (i, j) ∈ E , denote its impedance by zi,j . Let V+ ,
V \{0}. A substation feeder is attached to the root of the tree,
denoted by node 0. Assume root 0 is only connected to node
1 via a single edge (0,1). Since G is a tree, |V+| = |E| = m.
Let Gi = (Vi, Ei) be the subtree rooted at node i. We denote
the unique path from node j to the root 0 by Pj . Suppose
the EV charging stations are connected to the set of nodes
V , namely, loca ∈ V . Let Uj , {a ∈ A : loca = j} and
Aj ,

⋃
i∈Vj Ui. For a ∈ A, let Pa denote th path from the

root to node j ∈ V+ such that a ∈ Uj .
For a given time t, let vj(t) and `i,j(t) be the voltage

and current magnitude square at node j and edge (i, j),
respectively. Let Si,j(t) be the power flowing from node i
towards node j. Note that Si,j(t) is not symmetric, namely,
Si,j(t) 6= Sj,i(t). At each node j, there is a net power demand,
denoted by sj(t). The power supply at root 0 is denoted by
s0. For a complex number ν ∈ C, we denote the magnitude
of ν by |ν|, the phase angle (or argument) that ν makes with
the real axis by ∠ν, and the complex conjugate of ν by ν∗.

The AC power flows in the electricity grid can be described
by the branch flow model (BFM) 1 representation:

`i,j(t) =
|Si,j(t)|2

vi(t)
,∀(i, j) ∈ E , (3)

Si,j(t) = sj(t)+
∑

l:(j,l)∈E

Sj,l(t)+zi,j`i,j(t),∀(i, j) ∈ E , (4)

S0,1(t) = −s0(t), (5)

vj(t) = vi(t)+|zi,j |2`i,j(t)-2Re(z∗i,jSi,j(t)),∀(i, j) ∈ E , (6)

1To be precise, this model is called branch flow model with angle relaxation
[3], as it omits the phase angles of voltages and currents. But it is always
possible to recover the phase angles in a radial network. This paper adopts
the convention to denote a power supply by a complex number with negative
real part and a power demand by a complex number with positive real part
(i.e., Re(s0(t)) ≤ 0 and Re(sj(t)) ≥ 0 for all j ∈ V).

For each j ∈ V , let dj(t) ∈ C be the background power
demand from other residential and commercial loads. We
assume Re(dj(t)) ≥ 0 (but Im(dj(t)) may be negative) for
all j ∈ V .

Given the charging decisions (xa)a∈A, the total power
demand at each node j is given by

sj(t) = dj(t) +
∑

a∈Uj :t∈T a

∑
c∈Ca

ratecx
a
c (t)

The operating constraints of power systems are represented by

(Voltage Constraints): vj ≤ vj(t) ≤ vj ,∀j ∈ V+, (7)

(Capacity Constraints): |Si,j(t)| ≤ Si,j ,∀(i, j) ∈ E , (8)

(Current Thermal Constraints): `i,j(t) ≤ `i,j ,∀(i, j) ∈ E , (9)

vj , vj ∈ R+ denote the minimum and maximum allowable
voltage magnitude square at j, and Si,j , `i,j ∈ R+ denote the
maximum allowable apparent power and current on (i, j). In
the following, a subscript is omitted from a variable to denote
a vector.

C. Scheduling Optimization Problem

The goal of scheduling of EV charging is to find an
assignment for the charging decision vectors x, y and supply
s0 that maximizes a non-negative concave utility function f :

f(s0, x, y) ,
T∑
t=1

f0

(
Re(−s0(t))

)
+
∑
a∈A

Ga(xa, ya), (10)

where f0 is non-negative and non-increasing utility function
of the total active power supply Re(−s0(t))2.

Integrating the aforementioned constraints and objectives,
the EV Charging Scheduling Problem is given by the mixed
integer programming problem (EVSP).

(EVSP) max
s0,s,S,v,`,x,y

f(s0, x, y)

subject to ∀t ∈ T , (3)− (9)

sj(t) = dj(t) +
∑

a∈Uj :t∈T a

∑
c∈Ca

ratec · xac (t),∀j ∈ V+, (11)

yausga ≤
∑
t∈T a

∑
c∈Ca

∆T · ratec · xac (t),∀a ∈ A, (12)∑
c∈Ca

xac (t) ≤ 1,∀t ∈ T a,∀a ∈ A, (13)

vj(t) ∈ R+, j ∈ V+, `i,j(t) ∈ R+, Si,j(t) ∈ C,∀(i, j), (14)
xac (t) ∈ {0, 1},∀c ∈ Ca, t ∈ T a, ya ∈ {0, 1},∀a ∈ A. (15)

D. Approximation Solutions

This paper provides an efficient approximation algorithm
to solve EVSP. We define some standard terminology for
approximation algorithms. Consider a maximization problem
A with non-negative objective function f(·), let F be a feasible
solution to A and F ? be an optimal solution to A. f(F )
denotes the objective value of F . Let OPT = f(F ?) be
the optimal objective value of F ?. A common definition of
approximation solution is α-approximation, where α char-
acterizes the approximation ratio between the approximation
solution and an optimal solution.

2Note that the negative sign is to indicate s0 is supply rather than demand.
Thus, the less generated power, the higher the utility, which follows the
convention of power system engineering.



Definition 1. For α ∈ (0, 1), an α-approximation to max-
imization problem A is a feasible solution F such that
f(F ) ≥ α · OPT.

In particular, a polynomial-time approximation scheme
(PTAS) is a (1−ε)-approximation algorithm to a maximization
problem, for any ε > 0. The running time of a PTAS is
polynomial in the input size for every fixed ε, but the exponent
of the polynomial might depend on 1/ε. Namely, a PTAS
allows a parametrized approximation ratio as the running time.

E. Alternate Reformulation

To derive PTAS, we need to show that the convex relaxation
has an (near) optimal solution with the property that the
number of fractional components is small. Unfortunately, that
is not the case for the relaxation of (EVSP). To resolve this
issue, we consider an alternative formulation below.

For each EV a ∈ A, let Γa be a set of feasible choices for
a. Each choice γa ∈ Γa is described by an assignment of all
the variables xac (t), satisfying (13) and (15):

Γa ,
{(
xac (t) ∈ {0, 1}

)
c∈Ca,t∈Ta :

∑
c∈Ca

xac (t) ≤ 1, ∀t ∈ T a
}

The number of choices for each a is |Γa| ≤ (|Ca|+ 1)|T
a|,

which is polynomial for constant |T a|. For each choice γa ∈
Γa, we can define a gain function Ga(γa) by (1) and (2) and a
demand function da(γa, t) ,

∑
c∈Ca ratecx

a
c (t), for t ∈ T a.

Define also a binary variable Xa(γa) that takes value 1 if and
only if choice γa is selected for EV a. Let

f(s0, X) ,
T∑
t=1

f0

(
Re(−s0(t))

)
+
∑
a∈A

∑
γa∈Γa

Ga(γa)Xa(γa),

Then we can rewrite (EVSP) as follows.

(A-EVSP) max
s0,s,S,v,`,X

f(s0, X)

subject to ∀t ∈ T , (3)− (9), (14),

sj(t) = dj(t) +
∑
a∈Uj

∑
γa∈Γa

da(γa, t)Xa(γa),∀j ∈ V+, (16)

∑
γa∈Γa

Xa(γa) ≤ 1,∀a ∈ A, (17)

Xa(γa) ∈ {0, 1}, ∀γa ∈ Γa,∀a ∈ A. (18)

Remark 1. In the above formulation, it is (implicitly) assumed
that the assignment Xa(γa) = 0, for all γa ∈ Γa, corresponds
to setting xac (t) = 0 for all c ∈ Ca and all t ∈ T a.

F. Assumptions

We make some assumptions to facilitate our algorithms:
A0: f0(−sR

0 ) is non-increasing in −sR
0 ∈ R+.

A1: ze ≥ 0,∀e ∈ E , which naturally hold in distribution
networks.

A2: v0(t) < vj ,∀j ∈ V+, t ∈ T , which is also assumed in
[4]. Typically in a distribution network, v0(t) = 1 (per
unit), vj = (.95)2 and vj = (1.05)2; in other words, 5%
deviation from the nominal voltage is allowed.

A3: Re(z∗edj(t)) ≥ 0,∀j ∈ V+, t ∈ T , e ∈ E . Intuitively,
A3 requires that the phase angle difference between any

ze and dj(t) is at most π
2 . This assumption holds, if the

background demands have small negative reactive power.
A4:

∣∣∠dj(t) − ∠dj′(t)
∣∣ ≤ π

2 for any j, j′ ∈ V+, t ∈ T .
Intuitively, A4 requires that the background demands
have “similar” power factors. A4 can also be stated as
Re(d∗j (t)dj′(t

′)) ≥ 0.
Assumptions A3 and A4 are motivated, from a theoretical

point of view, by the inapproximability results in [6] (if
either assumption does not hold, then the problem cannot
be approximated within any polynomial factor unless P=NP;
see [6] for details). Assumption A3 also holds in reasonable
practical settings [4]. In the next subsection, by performing
an axis rotation, we may assume by A4 that dj(t) ≥ 0.
Clearly, under this and assumption A1, the reverse power
constraint in (8) is implied by the forward power constraint
(|Se(t)| ≤ Se). It will also be seen that under assumptions A1,
A2 and A3, the voltage upper bounds in (7) can be dropped.

III. PRELIMINARIES OF OPF

In this section, we present key preliminary results needed
for our algorithm presented in Sec. IV. For a more detailed
treatment, we refer the reader to [7].
A. Rotational Invariance of EVSP

We note that if we rotate all complex quantities in the
EVSP problem (namely, ze, dk(t)) by a fixed angle φ, then
the problem structure remains the same. Therefore, we chose
φ such that, after the rotation, all complex quantities have
positive real and imaginary components (i.e., lie in the first
quadrant). This property is necessary in the analysis of our
algorithm in Sec. IV. The rotation allows us to replace
assumptions A0 and A4 by the following assumptions:
A0′: f0(−sR

0 cosφ− sI
0 sinφ) is non-decreasing in −sR

0 ,−sI
0.

A4′: dj(t) ≥ 0 for all j ∈ V+
, t ∈ T . This is because all

demand sets satisfying A4 are now in the first quadrant
after the rotation by φ.

Note that assumption A1 continues to hold, assuming the
original A-EVSP problem satisfies A3: zeeiφ ≥ 0,∀e ∈ E .
This is because of A3, namely, Re(z∗edj(t)) ≥ 0,∀j ∈
V+, t ∈ T , e ∈ E , such that the phase angle difference
between ze and dj(t) is at most π2 . Note also that A1 and A4′

already imply A3.
B. Convex Relaxation

A Second Order Cone Programming (SOCP) relaxation of
A-EVSP is obtained by replacing Cons. (3) by `i,j(t) ≥
|Si,j(t)|2
vi(t)

, and replacing the discrete constraints in (18) by
Xa(γa) ∈ [0, 1] for all γa ∈ Γa, a ∈ A:

(CA-EVSP) max
s0,s,S,v,`,X

f(s0, X)

subject to,∀t ∈ T , (4)− (9), (14), (16), (17)

`i,j(t) ≥
|Si,j(t)|2

vi(t)
,∀(i, j) ∈ E , (19)

Xa(γa) ∈ [0, 1], ∀γa ∈ Γa,∀a ∈ A. (20)

We will denote the set of all binary assignments satisfying
(17) and (20) by X . For a given X̂ ∈ X , we denote by A-
EVSP[X̂] (resp., CA-EVSP[X̂]) the restriction of A-EVSP
(resp., CA-EVSP) where we set X = X̂ .



For convenience, we rewrite Cons. (6) based the
recursive “unfolding” of Eqns. (4)-(6) (at each t ∈ T ),
vj(t) = v0 − 2

∑
a∈ADj(γ

a, t) − 2
∑
h∈Tj

Dh(t) −(
2
∑

(h,u)∈Pj

Re
(
z∗h,u

∑
e∈Eu

ze`e
)

+
∑

(h,u)∈Pj

|zh,u|2`h,u
)

, where

Dj(t) , Re
(∑

k∈V
∑

(h,u)∈Pk∩Pj
z∗h,udk(t)

)
and

Dj(γ
a, t) , Re

(∑
(h,u)∈Pa∩Pj

z∗h,ud
a(γa, t)

)
.

Corollary 1 ( [8]). Let F ′ ,
(
s′0, s

′, S′, v′, `′, X ′
)

be a
feasible solution to CA-EVSP[X ′] and X̂ ∈ X be a given
vector such that, for some ε > 0,∑
a∈A

∑
γa∈Γa

Ga(γa)X̂a(γa) ≥
∑
a∈A

∑
γa∈Γa

Ga(γa)X ′a(γa)− εf(s′0, X
′),∑

a∈A

∑
γa∈Γa

Dj(γ
a, t)X̂a(γa) ≤

∑
a∈A

∑
γa∈Γa

Dj(γ
a, t)X ′a(γa),∀j,∑

a∈Aj

∑
γa∈Γa

da(γa, t)X̂a(γa) ≤
∑
a∈Aj

∑
γa∈Γa

da(γa, t)X ′a(γa),∀j.

Then under assumptions A0′, A1, A2, A3 and A4′ , we
can find in polynomial time a feasible solution F̂ =(
ŝ0, ŝ, Ŝ, v̂, ˆ̀, X̂

)
to A-EVSP[X̂] such that f(F̂ ) ≥ (1 −

ε)f(F ′).
IV. PTAS

This section presents a (1 − ε)-approximation algorithm
(PTAS) for A-EVSP. Note that we consider the number of
links in the distribution network (i.e., |V+| = |E| = m) and
the number of time slots T to be constants. We will need
here that assumptions A0, A1, A2, A3 and A4 hold. We may
assume after rotation with an appropriate angel φ that A0′,
A1, A2, A3 and A4′ hold instead. As mentioned earlier, we
will denote for convenience the rotated problem by A-EVSP.

After convex relaxation and rotation, we enumerate possible
partial guesses for configuring the control variables of a
small subset of EVs. For each guess, we solve the remaining
subproblem by relaxing the other discrete control variables
to be continuous control variables, and then rounding the
continuous control variables to obtain a feasible solution. This
algorithm can attain a parameterized approximation ratio by
carefully adjusting the number of partial guesses and rounding.

A formal description of the PTAS algorithm (called PTAS-
A-EVSP) is presented as follows.

1) First, define a partial guess by A1 ⊆ A and vector
γ̂ =

(
γ̂a
)
a∈A1

. For each guess, we set Xa(γ̂a) = 1,
and Xa(γa) = 0 for γa 6= γ̂a, for all a ∈ A1.

2) Define a variant of CA-EVSP with partially pre-
configured and partially relaxed discrete control vari-
ables, denoted by P1[A1, γ̂], as follows.

(P1[A1, γ̂]) max
s0,s,S,v,`,X

f(s0, X)

subject to, ∀t ∈ T ,
(4)− (9), (14), (16), (17) (21)
X(γ̂a) = 1, Xa(γa) = 0 for γa 6= γ̂a, ∀a ∈ A1, (22)

Xa(γa) = 0, ∀γa ∈ Γa\Γ̃a,∀a ∈ A′, (23)

Xa(γa) ∈ [0, 1], ∀γa ∈ Γ̃a,∀a ∈ A′, (24)

where
Γ̃a , Γa\

{
γa ∈ Γa : Ga(γa) ≥ min

a′∈A1

{Ga
′
(γ̂a

′
)}, (25)

for a ∈ A′ , A\A1. Note that P1[A1, γ̂] is an SOCP
(and hence is solvable in polynomial time). We then
solve this relaxation to obtain an optimal solution F ′ =(
s′0, s

′, S′, v′, `′, X ′
)
. Note that F ′ may not satisfy the

discrete demand constraints (18) in A-EVSP. Next, F ′

will be rounded to obtain a feasible solution to A-EVSP.
3) Define P2[F ′,A′] as follows.

(P2[F ′,A′]) max
Xa(γa)∈[0,1]

∑
a∈A′

∑
γa∈Γ̃a

Ga(γa)Xa(γa)

subject to∑
a∈A

∑
γa∈Γ̃a

Dj(γ
a, t)Xa(γa) ≤

∑
a∈A

∑
γa∈Γ̃a

Dj(γ
a, t)X ′a(γa), ∀j ∈ V+, t ∈ T (26)

∑
a∈Aj

∑
γa∈Γ̃a

da(γa, t)Xa(γa) ≤

∑
a∈Aj

∑
γa∈Γ̃a

da(γa, t)X ′a(γa), ∀j ∈ V+, t ∈ T (27)

∑
γa∈Γ̃a

Xa(γa) ≤ 1,∀a ∈ A′. (28)

Note that P2[F ′,A′] is an LP.
4) Suppose X ′′ = (X ′′a(γa))a∈A′,γa∈Γ̃a is an optimal

basic feasible solution (BFS) of P2[F ′,A′]. We define
an integral solution X̂ , as follows

X̂a(γa) = bX ′′a(γa)c, ∀a ∈ A, γa ∈ Γ̃a. (29)

5) Then, obtain the corresponding ŝ0, ŝ, Ŝ, ˆ̀, v̂ by invoking
Corollary 1 with X̂ defined as in (22), (23) and (29).

6) The output solution will be the one having the maximal
objective value among all guesses.

The pseudo-codes of PTAS-A-EVSP are given in Alg. 1.

Algorithm 1 PTAS-A-EVSP

Input: ε, v0, (vj , vj)j∈V+ , (Se, `e, ze)e∈E , (dj(t))j∈V+, t∈T
Output: Solution F̂ = (ŝ0, ŝ, Ŝ, v̂, ˆ̀, X̂) to A-EVSP
1: fmax ← −∞
2: for each set A1 ⊆ A and γ̂ =

(
γ̂a
)
a∈A1

such that |A1| ≤ 6m|T |
ε

do

3: Γ̃a , Γa\
{
γa ∈ Γa : Ga(γa) ≥ mina′∈A1

{Ga′ (γ̂a′ )}
}

4: A′ ← A\A1

5: if P1[A1, γ̂] is feasible then
6: F ′ ← Optimal solution of P1[A1, γ̂]
7: (X′′a(γa))

a∈A′,γa∈Γ̃a ← Optimal BFS of P2[F ′,A′]

8: (X̂a(γa))
a∈A′,γa∈Γ̃a ← rounded solution according to (29).

9: X̂(γ̂a) = 1, Xa(γa) = 0 for γa 6= γ̂a, ∀a ∈ A1

10: X̂a(γa) = 0, ∀γa ∈ Γa\Γ̃a,∀a ∈ A′

11:
12: (ŝ0, ŝ, Ŝ, v̂, ˆ̀, X̂)← solution returned by Corollary 1
13: if fmax < f(ŝ0, X̂) then
14: F̂ ← (ŝ0, ŝ, Ŝ, v̂, ˆ̀, X̂)
15: fmax ← f(ŝ0, X̂)
16: end if
17: end if
18: end for
19: return F̂



A. Analysis of Approximation Ratio

In this section, the approximation ratio of PTAS-A-EVSP
will be shown to be (1 − ε), if one sets the size of partial
guesses of satisfiable discrete demands as |A1| ≤ 6m|T |

ε ,
where m is the number of edges in distribution network.
Therefore, one can adjust the approximation ratio by limiting
the size of A1 in the partial guessing.
Remark 2. To (practically) speed up PTAS-A-EVSP, one
can apply brunch and bound approach to prune the search
space of A1.

We will use the following lemma in our derivation of the
approximation ratio of PTAS-A-EVSP.

Lemma 2 ( [9], [10], [11]). Let X be a BFS of P2[F ′,A′].
Then X has at most 6m|T | fractional components: |{(γa ∈
Γa, a ∈ A′) | Xa(γa) ∈ (0, 1)}| ≤ 6m|T |.

Theorem 3. With assumptions A0, A1’, A2, A3, A4’, A5,
for any fixed ε > 0, PTAS-A-EVSP provides a (1 − ε)-
approximate solution for A-EVSP, in time polynomial in
n = |V|+ |A|+

∑
a∈A |Ca|, assuming |T | = O(1).

Proof. It is easy to see that the running time of PTAS-A-
EVSP is polynomial in n, for any fixed ε > 0 and |T | =
O(1). Next, we show that the output solution F̂ is (1 − ε)-
approximation for A-EVSP. Let F ? = (s?0, s

?, S?, v?, `?, X?)
be an optimal solution of A-EVSP. Define

A?1 , {a ∈ A | ∃γ?a ∈ Γa : X?a(γ?a) = 1}. (30)

There are two cases:
1) If |A?1| ≤

6m|T |
ε , then there exists a partial guess

(A1, γ̂), such that A1 = A?1 and γ̂a = γ?a for a ∈ A?1.
Thus, PTAS-A-EVSP can find an optimal solution F ?

of A-EVSP by enumerating all possible A1 and γ̂ such
that |A1| ≤ 6m|T |

ε .
2) Otherwise, |A?1| >

6m|T |
ε ; then PTAS-A-EVSP can still

find some A1 (and a corresponding assignment γ̂ =(
γ?a
)
a∈A1

), which is a subset of EVs in A?1 with a

number of b 6m|T |
ε c highest Ga(γ?a):

A1 ⊆ A?1, |A1| = b 6m|T |
ε c, (31)

min
a′∈A1

{Ga
′
(γ̂a

′
)} > max

a′∈A?\A1

{Ga
′
(γ?a

′
)}. (32)

Next, we assume A1 and γ̂ satisfying (31) and (32).
Then, we focus on case 2. Let us consider an optimal

solution F ′ = (s′0, s
′, S′, v′, `′, X ′) of P1[A1, γ̂], where A1

satisfies (31) and γ̂a = γ?a for a ∈ A1. Since F ? is feasible
for P1[A1, γ̂], it follows that

f(s′0, X
′) ≥ f(s?0, X

?). (33)

Next, let us consider an optimal BFS (X ′′a(γa))a∈A′,γa∈Γ̃a

of P2[F ′,A′]. Note that X ′ is a feasible solution to P2[F ′,A′]
(where Cons. (26) and (27) are tight) . It follows that∑

a∈A′

∑
γa∈Γ̃a

Ga(γa)X ′′a(γa) ≥
∑
a∈A′

∑
γa∈Γ̃a

Ga(γa)X ′a(γa). (34)

For each a ∈ A′ and γa ∈ Γ̃a, one has by (25)

Ga(γa) ≤ min
a′∈A1

Ga
′
(γ̂a

′
) ≤ 1

|A1|
∑
a′∈A1

Ga
′
(γ̂a

′
). (35)

By Lemma 2, at most 6m|T | components in
(X ′′a(γa))a∈A′,γa∈Γ̃a are fractional. Therefore, by our
rounding Step (29), we set

∑
γa∈Γ̃a X

′′a(γa) to 0 for at
most 6m|T | EVs a ∈ A′. Thus, by (34), (35) and the
non-negativity of f0(·), we have∑

a∈A′

∑
γa∈Γ̃a

Ga(γa)X̂a(γa)

≥
∑
a∈A′

∑
γa∈Γ̃a

Ga(γa)X ′′a(γa)− 6m|T |
|A1|

∑
a′∈A1

Ga
′
(γ̂a

′
)

>
∑
a∈A′

∑
γa∈Γ̃a

Ga(γa)X ′′a(γa) + ε
∑
a′∈A1

Ga
′
(γ̂a

′
)

≥
∑
a∈A′

∑
γa∈Γ̃a

Ga(γa)X ′′a(γa) + εf(s′0, X
′). (36)

Finally, by (36) and Corollary 1, one obtains that the
solution returned in Step 12 satisfies

f(ŝ0, X̂) ≥ (1− ε)f(s′0, X
′) ≥ (1− ε)f(s?0, X

?),

which completes the proof.
V. EVALUATION STUDIES

In this section, the performance of PTAS-A-EVSP is eval-
uated by simulations in terms of optimality and running time.
For simplicity, we assume EV charging is not interrupted. This
could be a desired property in a solution since intermittency
in charging shortens the lifespan of an EV battery [1]. We
assume a single charging option during charging interval T a.

A. Simulation Settings

1) Distribution network setting: We consider a 38-node
system adopted from [12] (the settings of line impedance and
maximum capacity are provided in [12]). The capacity of the
substation is 1MVA. We choose the average household load
profile in the service area of South California Edison from
00:00, January 3, 2011, to 23:59, January 4, 2011 [13], shown
in Fig. 1a (gray line). We consider different penetration levels
of EVs in 650 households (distributed at random locations
in V+). For simplicity, we assume all loads have unity power
factor. Each EV is assigned with at most three charging options
with power rates of 1.5kW, 7kW, and 50kW, respectively.

2) Scheduling horizon: We consider a 48-hour scheduling
horizon, divided into 192 slots of 15 minutes. Typically, most
EV users start charging when returned home at 18:00, and
more than 90% of EVs charging start at between 13:00 and
23:00. Therefore, and according to [14], the start time can be
modeled as a normal distribution with a mean µ of 18:00
and a standard deviation σ of 5 hours. For each charging
option c, we set its start time at random (following a normal
distribution) and its length to the minimum time needed to
satisfy the energy requirement usga using charging option c.

3) EV Battery size and initial SOC: The initial state-of-
charge (SOC) of an EV battery is modeled as a truncated
normal distribution that takes values between 20% to 80%
with µ = 50% and σ = 30% [15]. The battery size Ba is also
modeled as a truncated normal distribution with values within
24kW and 100kW, µ = 30kW, and σ = 10kW. We set the
energy requirement for each EV a by usga = (1− SOC

100 ) ·Ba.
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Fig. 1: (a) The total power delivered over time; the gray line shows the base load profile of 650 households, and the remaining
lines indicate the total power after applying the respective algorithms. (b) The median of objective values for PTAS-A-EVSP,
Gurobi numerical solver fractional solution (as the upper bounds to the true optimal values) using linear and quadratic utility
settings, against the number of EVs. (c) The empirical approximation ratio and running time of PTAS-A-EVSP for linear and
quadratic utility, against the number of EVs.

4) Objective function: The cost of energy is based on
South California Edison TOU rate plans [13]. We consider two
settings for utility values: i) Linear utility: ua = 0.36 ·usga, ii)
Quadratic utility: ua = (0.36 · usga)2, where 0.36 is the peak
energy price. The utility value in this context can be interpreted
as the maximum amount a customer is willing to pay to
fulfill the charging requirement, and the gain Ga(xa, ya) as
the amount the customer saves.

In order to evaluate the performance of our algorithms,
Gurobi numerical solver is used as a benchmark to obtain
numerical solutions. Note that there is no guarantee that
Gurobi will terminate in a reasonable time; therefore, we
use solutions obtained from solving the relaxed problem CA-
EVSP, which is a SOCP (and always terminates using Gurobi
optimizer). Notice that the objective value of optimal solutions
for CA-EVSP upper bounds that of A-EVSP. Therefore, we
use it instead of that of A-EVSP to benchmark the solution
quality of our algorithms.

The simulations were evaluated using Intel i7-3770 CPU
3.40GHz processor with 32GB of RAM. The algorithms were
implemented using Python 2.7 programming language with
Scipy library for scientific computation.
B. Evaluation Results

We first observed that our algorithm successfully shifts EV
demands to time periods with lower cost [13] (see Fig. 1a).

1) Optimality: Fig 1b presents the objective values obtained
by PTAS-A-EVSP, and the upper bounds to the true optimal
values by fractional solutions with relaxed discrete constraints
(and the convex relaxation CA-EVSP) for up to 1000 EVs.
Each run was evaluated with over 40 random instances. PTAS-
A-EVSP will terminate when its objective value is close to
the lower bound. The objective values of PTAS-A-EVSP are
often close to the optimal values of the relaxed problem (which
upper bounds the true optimal values). This is because the
number of fractional components in the relaxed problem CA-
EVSP is often small. The empirical approximation ratios are
plotted in Fig. 1c against the number of EVs. We observe that
the empirical approximation ratio is close to 1 for linear and
quadratic utility settings.

2) Running Time: The computation time of PTAS-A-
EVSP is plotted in Fig. 1c under the two utility settings. Com-
putation time is significantly important when implemented
in a controller in practice, and this will have implications
to the overall resilience of power grid. Although the current
implementations are not fully optimized, the running time is

quite reasonable. However, the running time of Gurobi with
discrete variables is much higher, and in many cases, it does
not provide any guarantee on the termination of execution.

VI. CONCLUSION

This paper presents a polynomial-time approximation algo-
rithm (PTAS) to solve the scheduling optimization problem of
EV charging in realistic settings, in the presence of (1) discrete
charging options with minimum power requirements in various
charging modes, and (2) practical operating constraints of
alternating current (AC) power flows. Earlier fundamental
hardness results for OPF show that our PTAS is among the best
achievable in theory. Further simulations show our algorithms
can produce close-to-optimal solutions in practice.
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