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ABSTRACT
�is paper studies the problem of utilizing heterogeneous energy

storage systems, including electric vehicles and residential ba�er-

ies, to perform demand-response in microgrids. �e objective is to

minimize the operational cost while ful�lling the demand-response

requirement. �e design space is to select and schedule a subset

of available storage devices that are heterogeneous in operating

cost, capacity, and availability in time. Designing a performance-

optimized solution, however, is challenging due to the combina-

torial nature of the problem with mixed packing and covering

constraints, and the essential need for online solution design in

practical scenarios where both demand-response requirement and

the pro�le of user-owned storage systems arrive online. We tackle

these challenges and design several online algorithms, by leverag-

ing a recent theoretical computer science technique which uses

a problem-speci�c exponential potential function to solve online

mixed packing and covering problems. We show that the fractional

version of the algorithm achieves a logarithmic bi-criteria compet-

itive ratio. Empirical trace-driven experiments demonstrate that

our algorithms perform much be�er than the theoretical bounds

and achieve close-to-optimal performance.
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1 INTRODUCTION
Microgrid is a small-scale power system that, by leveraging renew-

able sources, operates autonomously to match the demand and

the supply of a local community [20]. It represents a promising

paradigm to address the economic, reliability, and environmental

concerns encountered by today’s power grids [12, 23]. As reported

in [15], the global capacity of microgrids will expand by more than

5 times in 2015-2024, from 1.4GW to nearly 7.6GW.

Demand-response in smart (micro) grid [31] is regarded as a po-

tential solution for real-time balancing between supply and demand

to boost the reliability of the grid and reduce the operational costs.

In the literature, at least three di�erent approaches towards demand

response in smart grid have been proposed: (i) demand reduction

through shi�ing the �exible demand, e.g., in data centers, in tem-

poral domain [22]; (ii) reducing the net grid demand by intelligent

scheduling of local generation units [10, 28]; (iii) reducing the net

demand by active participation of user-owned crowd-sourced en-

ergy storage systems and reducing their charging demand or even

discharging them and releasing energy back to the microgrid [31].

In this paper, we focus on the third approach of “crowd-sourced

storage-assisted demand-response” in microgrid. In this approach,

hundreds of ba�eries of electric vehicles and smart homes equipped

with residential storages [6], residing in the microgrid, with huge

aggregated capacity can actively participate in microgrid demand

response through reducing their charging demand or even discharg-

ing and selling back the electricity to the microgrid, e.g., through

vehicle-to-grid scheme [16] for EVs. �ese storage devices can be

charged during o�-peak periods, and be discharged during on-peak

periods. In this way, not only the microgrid can reduce its electricity

bill
1
, but also, the customers can earn money through participating

in this scheme.

In this paper, we consider a scenario in which microgrid opera-

tor orchard heterogeneous energy storage sources, such as EVs

(through V2G technology [16]) and residential ba�eries, to es-

tablish demand response through storage crowd-sourcing para-

digm. We assume the microgrid has a MicroGrid Central Controller

(MGCC) [24], through which the microgrid operator can coordinate

among the distributed resources.
2

1
Since the residual demand of microgrid, i.e., total demand subtracted by local supply,

must be ful�lled by the main grid, hence, the microgrid get charged by the main grid.

2
Typically in microgrid, there are two main strategies for demand response: distributed

demand response, which is distributed by using a PI controller at each distributed gener-

ators, or centralized demand response, which is manually mastered by the MGCC [24].
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A�er receiving all the information of the available sources, MGCC

selects a subset of energy storage systems and sets their output

levels, by either reducing their charging rate or even discharging,

so as to (i) ful�ll the supply shortage of microgrid, for reliable op-

eration of microgrid, and (ii) minimize total cost of involving the

chosen energy storage systems, for economical operation of the

microgrid.

Challenges. It turns out that achieving the above objectives is a
formidable task since it requires to solve a joint Source Selection and

Scheduling Problem (S3P herea�er), which is uniquely challenging

to solve because of two critical challenges:

�e �rst challenge originates from the heterogeneity of energy

storage systems, in terms of cost, capacity, and availability in time.

�eoretically speaking, heterogeneity in the S3P results in a combi-

natorial problem with both packing constraints, i.e., capacity con-

straint of the sources, and covering constraints, i.e., supply shortage

of the microgrid. �e 0/1 decision space in source selection part

and continues variable in scheduling part, together with mixed

linear packing and covering constraints make the problem as one

of the mixed packing and covering combinatorial problems which

is di�cult to tackle in general. A careful investigation shows that a

simpli�ed version of the S3P can be re-expressed as the spli�able

version of Capacitated Facility Location Problem [21] (CFLP here-

a�er), which is known to be as a fundamental theoretical computer

science problem [27]. �e S3P is more challenging to solve than the

CFLP, as it not only inherits all the di�culty of the CFLP as a mixed

packing and covering combinatorial problem, but also involves a

non-trivial “topological” constraint caused by the heterogeneous

availability in time of storage systems.

�e second challenge lies in the essential need for online solution

design. For power demand response, the supply shortage as well as

the availability of energy storage systems are revealed in a slot-by-

slot fashion. �e decision in the current slot depends on input of

future slots and it is challenging to make optimal online scheduling

decisions without knowing future input. It turns out that without

knowing future input, even �nding a feasible online solution for S3P
is non-trivial, and violation of either packing or covering constraints

is inevitable. In this paper, we follow a competitive online algorithm

design to jointly minimize both cost and capacity violation. �en,

we aim to analyze the performance of the algorithm using bi-criteria

(α , β )-competitive ratio analysis. In context of our problem, a bi-

criteria (α , β )-competitive online algorithm produces a solution of

cost at most α times of the o�ine optimum, while violating the

capacity constraints by no more that a β factor.

We note that demand response with energy storage management

has been studied in literature using other technical approach such

as Lyapunov optimization [13] and Markov decision process [29].

�ese approaches relies on the underlying stochastic process of the

input parameters. In competitive design approach, however, there

is no assumptions on the underlying stochastic processes of the

unknown input parameters.

Contribution. In this paper, we tackle S3P in online scenario

and make the following contributions.

Although the centralized demand response requires additional communication infras-

tructure, it allows the microgrid owners to economically schedule di�erent resources

to participate in the program and thus minimize the operational cost.

B We �rst focus on designing an online fractional algorithm

for the linear-relaxed version of the S3P. Recall that even linear

version of the problem is still di�cult in online scenario, because

the input to the time-coupled linear problem are not known in

advance. By adapting the recently proposed framework for online

mixed packing and covering problems [2], we propose an online

fractional algorithm called OnFrc. In the OnFrc at each slot, we

obtain a fractional solution for the S3P by constructing a potential

function that is linear in cost and exponential in violating the ca-

pacity constraint of the storage sources. We demonstrate that the

OnFrc is a bi-criteriaO (n logn, logn)-competitive online algorithm,

where n is the number of sources.

B�en, by a randomized rounding algorithm called OnInt, we
obtain an integral solution for the S3P. In addition, we provide sev-

eral other heuristics to improve the performance of our algorithms

mainly to minimize violating the capacity constraint of the sources.

B By extensive experiments using real-world data traces, we

investigate the performance of both online fractional and integral

algorithms. Note that although the proposed algorithms are log-

arithmic competitive, this is a worst-case bound and our results

signify that they perform much be�er under practical se�ings. In

particular, for a set of representative scenarios (in which the num-

ber of sources varies from 50 to 150), the average empirical online

cost ratios, i.e., the cost obtained by our online algorithms over the

o�ine optimum is 1.7.

�e rest of the paper is organized as follows. In Sec. 2, we in-

troduce the system model and formulate the problem. �e online

solution is explained in Sec. 3. �e results of trace-driven experi-

ments are given in Sec. 4. We review the literature in Sec. 5. Finally,

the paper is concluded in Sec. 6.

2 PROBLEM FORMULATION
2.1 System Model
We assume that the system is time-slo�ed, where each time slot

t ∈ T , (T , |T |) has a �xed length (e.g., 1 hour) that is set by

the MGCC. We assume that at each slot t , the microgrid has a

shortage dt ≥ 0 in supply. In the microgrid with high penetration

of renewable, it is highly di�cult to predict total net supply of

renewables in advance. �ereby, we assume that at the beginning

of each slot only the value of dt for the incoming slot is known.

Beyond that, we have no assumptions on the exact or stochastic

modeling of dt . By summarizing the key notations in Table 1, we

proceed to introduce the properties of energy storage systems.

2.1.1 Energy Storage Systems (ESS). Let I, (n , |I |), be the set
of ESS

3
in the microgrid that are available to contribute in demand

response scheme. By ESS we mean any type of devices like EVs,

residential ba�eries, on-site storages for data centers, etc., that can

be connected to the microgrid and participate in demand response

by either reducing their charging rate or discharging back to the

microgrid. �e sources are heterogeneous in terms of (1) availability

over time horizon, (2) demand-response energy capacity, and (3)

operating cost.

3
In this paper, we use ESS and source interchangeably, since ESS are the sources that

can cover the energy shortage in demand response scheme for the microgrid.
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Table 1: Summary of key notations

Notation Description

I
�e set of sources (energy storage systems),

(n , |I |)
T �e set of time slots, (T , |T |)
ci Total available energy of source i

ki Maximum discharge rate of source i at each slot

fi Fixed-cost of source i

ui Unit-cost of source i

Ti
Ti = [ai ,bi ], available interval of source i , where
ai ≤ bi ∈ [1,T ] are arrival and departure slots

dt Supply shortage at t

xi Opt. variable, 1: source i is selected, 0, otherwise

yi (t )
Opt. variable, amount of supply shortage that is

covered by source i at slot t

Available interval: Source i is available in interval Ti ⊆ T ,

which is Ti = [ai ,bi ], where ai is the arrival slot and bi is its
departure slot. �is captures the availability of sources, e.g., EVs

are available in di�erent intervals in the parking lots, or residential

ba�eries are available during the intervals that their own usage

is low. In our model, we also assume sources arrive online, i.e., at

the beginning of each slot, only the full information of available

sources is known, and we have no exact or stochastic information

of the sources that their arrival is in the future slots.

Capacity: We assume that without participating in demand

response scheme, each source i is charged at the maximum charging

rate κi during its available interval Ti . Hence, its total state of the
charge at departure time slot would be SoCa

i + κi |Ti |
4
, where SoCa

i
is the state of charge at arrival of source i .

By participating in demand response, the charging rate of the

sources could be decreased to meet the supply shortage of the mi-

crogrid. In addition, even discharging is allowed in some particular

slots in which the supply shortage is large.

�e total aggregate energy that is deducted from each source

during its available window is limited and is set by each source

separately, based on the total capacity of the ba�ery and user pref-

erences. More speci�cally, let SoCd
i be the minimum requirement

of the state of charge at departure for source i . Now, we get ci as
total available energy of source i to participate in demand response

as follows:

ci = SoCa
i + κi |Ti | − SoC

d
i , (1)

where we assume that SoCd
i < SoCa

i + κi |Ti |, hence ci > 0. �is

means that source i has a positive amount of energy to contribute

in demand response.

Each source i has a single-slot capacity ki that is the aggregation
of the charging and discharging rates of source i . �e parameter

ki captures the maximum amount of the energy that source i can
contribute at each slot. Herea�er, for brevity and with a phrase

abuse, we call ki as the maximum discharge rate of source i , while

4
We assume that the storage capacity of source i is large enough such that

SoCa
i + κi |Ti | is less than the storage capacity.

available interval
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3 units covered 
by source 3

c4 = 18, f4 = 5c4 = 18, f4 = 5

c3 = 18, f3 = 10c3 = 18, f3 = 10

c2 = 20, f2 = 50c2 = 20, f2 = 50

c1 = 8, f1 = 5c1 = 8, f1 = 5

Figure 1: An illustration of the system model and source
selection and scheduling problem. A simple example with
T = 10 and 4 di�erent sources with di�erent costs, capaci-
ties, and availabilities. For simplicity, we assume equal unit
costs for all sources. �e problem is to select and schedule
the deduction amount of selected sources such that the sup-
ply shortage is ful�lled at each slot. In this example, the op-
timal solution is to select sources 1, 3, and 4. A feasible sched-
uling is also depicted by color-coded shading of the shortage
bars. Source 2 is not selected since it is too expensive and
by proper scheduling all shortages could be covered by the
other sources. See Sec. 5 for the importance of scheduling in
this problem.

in fact it is the aggregation of the charging and discharging rates

of the source.

Cost: Cost model of source i consists of two parts: (i) a �xed

(start-up) cost fi , which is �xed value regardless of the amount

of energy that is solicited, and (ii) a unit cost ui which must be

multiplied by the volume of energy that is contributed by source i
during its available interval to compute the volume cost. We assume

that the sources always declare their true cost values. Extension of

the framework into a truthful mechanism, in which truth-telling is

the dominant strategy of the sources is part of the future study.

Illustrative example: In Fig. 1, we use a simple example with

four heterogeneous sources to clarify the design space of the prob-

lem. �e properties of the sources are mentioned in the �gure. We

note that the available interval of the sources are di�erent. On the

other hand, at each slot, the microgrid encounters di�erent amount

in supply shortage, as shown in the bar plot of Fig. 1. By using

each source, the microgrid is charged a �xed cost regardless of how

much energy is covered by the source. Hence, the �rst design space

in the cost minimization problem is to select minimum number

of sources. Furthermore, since the supply shortages and the avail-

ability of sources are di�erent at di�erent slots, the second design

space is to schedule the sources, i.e., set the amount of deduction

in their charging, so as to compensate for the supply shortage. In

Fig. 1, an optimal solution (in which sources 1, 3, and 4 with total
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cost of 20 are selected) along with the feasible scheduling (which is

color-coded in the bar plot) is shown.

We �nally note that joint consideration of source selection and

scheduling makes the problem di�cult. �ere are some studies in

the literature [30, 31] which assume that the scheduling is �xed,

i.e., in the context of our problem the deduction amount is constant

and �xed at each slot, and solve the source selection problem (also

known as winner determination problem in the context of auction

design [31]) in online manner. However, this simpli�cation leads

to sub-optimal solution and reduces the feasibility region of the

problem. For detailed discussion, we refer to Sec. 5.

2.2 Problem Formulation
Given the set of heterogeneous sources, the objective of MGCC is

to use the potentials of the available sources by selecting a subset

of them such that by a proper scheduling, (i) its supply shortage

during time horizon is covered, and (ii) at the same time total cost is

minimized. Hence, the underlying optimization problem is a joint

source selection and scheduling problem (S3P) that is formulated as

S3P : min

∑
i ∈I

(
fixi + ui

∑
t ∈Ti

yi (t )
)

s.t.

∑
t ∈Ti

yi (t ) ≤ cixi , ∀i ∈ I, (2a)

yi (t ) ≤ kixi , ∀i ∈ I, t ∈ Ti , (2b)∑
i ∈I:t ∈Ti

yi (t ) ≥ dt , ∀t ∈ T , (2c)

vars. xi ∈ {0, 1}, ∀i ∈ I,

yi (t ) ≥ 0, ∀i ∈ I, t ∈ Ti ,

where optimization variables are xi and yi (t ). xi = 1, if source

i is selected, 0, otherwise. In addition, yi (t ) denotes the amount

of energy that is covered by source i at time t , by decreasing its

charging or discharging. Constraint (2a) is the long-term capacity

(packing) constraint of the sources. Constraint (2b) is about single-

slot capacity of sources that says provided that source i is selected,
the maximum amount of decrease in demand at each slot is limited

to ki . Constraint (2c) is the covering constraint that guarantees that
total acquired energy by the chosen sources covers the shortage

at each slot. Finally, note that the S3P is a mixed-integer linear

programwhich is di�cult to solve, in general, even in o�ine se�ing.

Theorem 2.1. Problem S3P is NP-complete.

Proof. By se�ing T = 1, ui = 0, i ∈ I, the problem is the well-

known minimum knapsack problem [3] which is one of the original

NP-complete problems [17]. �

Wehighlight that a simpli�ed version of the S3P can be translated
to the capacitated facility location problem (CFLP) [27]. In the

CFLP two sets of facilities and clients are given. Each facility has an

opening cost and capacity. �ere is an assignment cost of assigning
each client to each facility. �e problem asks us to open a subset of

facilities and assign the clients to these facilities, while ensuring that

the capacity constraint of all facilities is respected. �e objective

is then to minimize the aggregated �xed and assignment costs. In

particular, by contemplating sources as the facilities and time slots

as the clients, and neglecting the short-term capacity constraint (2b),

i.e., ki = ci ,∀i ∈ I, and assuming complete availability of sources,

i.e., Ti = T ,∀i ∈ I, the S3P is the spli�able version of the CFLP
where a client can be partially assigned to multiple facilities.

By this mapping, the simpli�ed version S3P inherits all the dif-

�culties of the spli�able CFLP, i.e., combinatorial nature due to

0/1 selection variable, and mixed packing and covering constraints

in a single problem. In addition, the general S3P comes with two

additional unique challenges: (i) single-slot capacity constraint (2b),

which could be translated into the maximum assignment of each

facility to clients in the CFLP context, and (ii) interval availability

that could be translated into a “topological” constraint that each

facility can be served just for a subset of clients. Pu�ing together

these issues, most of the previous results for the CFLP [1, 18, 21]

cannot be directly applied to solve the S3P problem.

On the other hand, the S3P requires online solution design. �e

online inputs in our problem are two-fold. First, supply shortage dt
is revealed in slot-by-slot fashion, which is natural in microgrid due

to high uncertainty in the renewable output. Second, the sources

arrive online. Recall that each source i has interval availability
Ti = [ai ,bi ], where ai is the arrival time slot, hence, its data is

revealed at t = ai . In this way, all the characteristics (cost, capacity,

and departure time) of available sources are given to the MGCC at

the beginning of each time slot. In terms of underlying optimization

problem, both packing and covering constraints arrive online. Now,

we proceed to design an online solution for the S3P.

3 ONLINE SOLUTION
Since the S3P encounters mixed packing and covering constraints,

in online scenario it is inevitable that either packing or covering

constraint is violated. In demand response, however, it is critical

that the shortage is ful�lled by the chosen sources. Hence, in our

online algorithm design, we force the covering constraint to be

respected, and as a result, violation of capacity constraints of the

sources is permi�ed. As such, MGCC aims to minimize the capacity

violation of selected sources, in addition to total cost minimization.

As characterized in Eq. (1), the capacity of each source i is related

to the desired state of the charge SoCd
i at departure. Capacity

violation in this context means the state of the charge is lower than

the desired value. One can imagine several ways to compensate

for this violation. �e �rst solution is to make additional higher

payment to the sources beyond their capacity. Another solution

is to acquire the energy beyond the capacity from the main grid,

or on-site back-up generator owned by the microgrid, which are

usually muchmore expensive than using the crowd-sourced storage

systems. Finally, note that in Sec. 3.3, we propose heuristics to

minimize the capacity violation as much as possible.

In this section, we devise three algorithms in order. First, at
each slot, we obtain a fractional algorithm called OnFrc for the S3P
without single-slot capacity constraint (2b) (Sec. 3.1). �e OnFrc is
built upon a recently proposed framework for online mixed packing

and covering problems [2]. Second, through a randomized rounding

algorithm called OnInt we obtain an integer solution (Sec. 3.2). In

Sec. 3.3, we propose several heuristics to improve the performance

of both OnFrc and OnInt. Finally in Sec. 3.4, we extend the OnInt
to the case that respects the single-slot capacity constraint (2b), as

well.
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3.1 Online Competitive Fractional Algorithm
First, in Sec. 3.1.1 we reformulate the relaxed linear problem and

perform some scaling procedures such that the new problem is

equivalent to the (relaxed) original S3P (without single-slot ca-

pacity constraint (2b)) and is more convenient for our analysis.

Second, in Sec. 3.1.2, we propose the fractional algorithm OnFrc
that fractionally chooses and schedules the available sources at

the beginning of each time slot. We also analyze the bi-criteria

competitive ratio of the proposed algorithm and �nd bounds for

both the cost ratio and packing constraint violation.

3.1.1 Linear Relaxation Problem Formulation. We assume that

the number of time horizon (T ) is known to the MGCC in advance

and also the optimal o�ine cost Opt is given.
5
Without loss of

generality, we assume that fi ≤ Opt,∀i ∈ I, otherwise, we exclude

the sources with �xed cost greater than Opt. Now, we introduce
ˆfi

as the scaled �xed-cost of source i as

ˆfi = max

{
fin

Opt

, 1

}
, (3)

and ûi (t ) as the time-dependent normalized unit cost of the source

i at time t as

ûi (t ) =
uidtn

Opt

.

Finally, we de�ne di (t ) = dt /ci . Note that by multiplying �xed and

unit cost parameters by n/Opt, the optimal value of the problem

changes to n. In addition se�ing the minimum �xed cost of the

sources to 1 will increase the optimal cost to at most 2n. �e goal

of these scaling procedures is to facilitate our competitive analysis.

Now, for the optimization variables, let xi ≥ 0 be the relaxed

integer source selection variable. Moreover, zi (t ) ∈ [0, 1] is the por-
tion of supply shortage dt that is ful�lled by source i , provided that
t ∈ Ti . Indeed, yi (t ) = dtzi (t ), where yi (t ) is the scheduling vari-

able in the S3P in Sec. 2. With these modi�cations and de�nitions,

we formulate the following linear-relaxed problem:

S3P-LP : min

∑
i ∈I

ˆfixi +
∑
i ∈I

∑
t ∈Ti

ûi (t )zi (t )

s.t.

∑
t ∈Ti

di (t )zi (t ) ≤ xi , ∀i ∈ I, (4a)

∑
i ∈I:t ∈Ti

zi (t ) ≥ 1, ∀t ∈ T , (4b)

vars. xi ≥ 0, ∀i ∈ I,

zi (t ) ≥ 0 ∀i ∈ I, t ∈ Ti .

We note that in the S3P-LP in addition to linear relaxation, the

single-slot capacity constrain (2b) is also neglected. In Sec. 3.4, we

explain how to modify the algorithms to consider this constraint.

3.1.2 Online Fractional Algorithm. Virtual cost of sources.
Our online competitive algorithm accomplishes source selection

and scheduling by providing an ascending ordering among the

available sources at each slot. In this way, the main aim is to con-

struct a metric to be used for sorting of the sources. �e sorting

5
�ese assumptions are reasonable since T is �xed usually. �e optimal o�ine cost

also can be estimated based on historical data. Nevertheless, the algorithm can be

extended to the case that the optimal o�ine cost is not known at the expense of adding

a multiplicative logarithmic order in competitive ratio [2].

Algorithm 1: OnFrc- Online Fractional Algorithm, at time t

1 Initialization
2 It ← an ordering of sources that are available in t in

ascending order of vi (t ) in Eq. (5)

3 Pt ← the maximal subset of It such that

∑
i ∈Pt xi < 1

4 lt ← the �rst source in It that is not in Pt

5 while
∑
i ∈Pt∪{lt }:t ∈Ti zi (t ) < 1 do

6 foreach i ∈ Pt ∪ {lt } do
7 if i ∈ Pt OR (i = lt AND xi < 1) then
8 xi ← min

{
xi + xi/ ˆfiT , 1

}

9 zi (t ) ← min

{
2xi ,

xi−1/n
di (t )+ûi (t )/ ˆfi

}
10 end
11 if i = lt AND xi = 1 then
12 zi (t ) ← zi (t ) + 1/vi (t )T

13 end
14 end
15 end

metric vi (t ) which we refer to it as virtual cost of source i at time t
is de�ned as follows.

De�nition 3.1. �e virtual cost of source i at time t is de�ned as:

vi (t ) =



ˆfiθ
γi (t )−1di (t ) + ûi (t ), if xi = 1,

ˆfidi (t ) + ûi (t ), otherwise,
(5)

where θ > 1 is a constant factor and γi (t ) =
∑
τ ∈Ti :τ ≤t di (τ )zi (τ )

is the current congestion level of source i .

By this de�nition, when source i is not fully chosen (xi < 1), the

cost is linear in both normalized �xed and unit cost. On the other

hand, if source i is already fully chosen (xi = 1) in the fractional

solution due to the scheduling in the previous time slots, the virtual

cost is linear in �xed cost, however exponential in the congestion

level γi (t ). In this way, there is an exponential penalty in capac-

ity violation of the sources, i.e., respecting capacity constraint is

more important than cost minimization. Parameter θ > 1 can be

interpreted as the design parameter to provide trade-o� between

total cost against capacity violation, i.e., the larger the value of θ ,
the higher the importance of congestion level in virtual cost. In

Sec. 4, we investigate the impact of θ on the performance of online

algorithms using experiments.

Online fractional algorithm. We now propose OnFrc that

runs at the beginning of each slot and its goal is to cover the shortage

dt . Note that at t = 1 we initialize xi = 1/n, so we get

∑
i ∈I xi = 1

at initialization.

�e detailed description of the proposed online algorithm OnFrc
that summarized in Alg. 1 is as follows. First, we sort the available

sources at slot t in non-decreasing order of their virtual cost (Line 2).
�en, by picking the most cost e�ective ones with aggregated selec-

tion variable less than 1, we construct set Pt (Line 3). Additionally,

let lt be the �rst source that is not in Pt , but in It . Note that since
by initialization we get

∑
i ∈I xi = 1, lt is always non-empty. In last

step, we cover demand dt in an iterative procedure (Lines 5-15) by

a scheduling among the sources in Pt ∪ {lt }. �e scheduling is as
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follows. If the current source is not fully chosen (either in previous

time slots or in the previous iterations of the current time slots),

it sets its zi (t ) according to Line 9. Otherwise, it increases zi (t ) by
1/vi (t )T (Line 12). �is scheduling procedure continues until dt is
covered. �e following theorem characterizes the competitive ratio

of the OnFrc.

Theorem 3.2. Given 1 < θ < 1.5, OnFrc generates a fractional
schedule that is O (n logn, logn)-competitive, where n is the number
of sources.

See Appendix A for the proof. �is means that the cost of OnFrc
is at most O (n logn) times than the o�ine optimum, while the

packing violation is no more than O (logn).

3.2 Randomized Rounding Algorithm
In this section, we devise an online randomized rounding algo-

rithm calledOnInt to obtain an integral solution from the fractional

algorithm OnFrc to the original problem.

�e proposed randomized rounding algorithm OnInt is summa-

rized in Alg. 2. Our randomized rounding algorithm must produce

integral values for xi s at any time slot t . First, we notice that due to
executing the rounding algorithm in the previous slots, some values

of xi are already set to 1, i.e., the corresponding sources are chosen.

Hence, our algorithm �rst construct the chosen available sources

Iselt at the previous time slots (Line 5). �en, in the main body of

the algorithm (Lines 7-15), among the set of sources that are frac-

tionally chosen (xi < 1), and actively participate in the current time

slot (xi (t ) > xi (t − 1)), it randomly set them to 1 with probability

xi (t ). Due to rounding, some sources that already contribute in the

OnFrc to cover a portion of supply shortage might be rounded to

0. We accumulate the covering amount of those sources in Line 12

and then in Lines 16-18, equally schedule this amount between all

the fully chosen sources.

We note that the OnInt comes with an additional performance

loss (for both integral cost and capacity violation) due to rounding

fractional solution to integral solution. Our experiments shows

that this performance gap is not signi�cant. We refer to Sec. 4 for

details. Analytical study of the worst-case bound due to randomized

rounding is part of the future work.

Finally, we remark that the algorithms OnFrc and OnInt are
obtained by neglecting the single-slot capacity constraint (2b). We

extend the OnInt in Sec. 3.4 and propose another algorithm to

respect this constraint. �e overall idea is to restrict yi (t ) to at

most the maximum discharge rate ki for all selected sources. By

doing so, we encounter an additional shortage in the covering

constraint due to respecting the maximum discharge rate limit. We

compensate for this shortage by adding more sources to the set of

selected sources.

3.3 Heuristics to Improve the Algorithms
In this section, we propose several other heuristics to improve the

performance of both fractional algorithm OnFrc and integral algo-

rithm OnInt in practice. Our focus in this section is to mainly tailor

the algorithms to be more conservative in violating the capacity

constraint. �e heuristic in Sec. 3.3.1 modi�es the OnFrc, and the

heuristics in Sec.3.3.2 modi�es the OnInt.

Algorithm2:OnInt- Online Randomized Rounding Algorithm,

at time t

1 Initialization
2 pi ← RAND(0, 1),∀i ∈ I // A random number picked

uniformly from [0, 1]

3 xi (t ) ← the value of xi by executing the OnFrc at t
4 xi (t − 1) ← the value of xi by executing the OnFrc at t − 1
5 Iselt ← {i ∈ I : xi = 1, t ∈ Ti } // The set of available

sources that are used in the previous time
slots.

6 ync ← 0// the uncovered demand by rounding to 0

7 foreach i ∈ I do
8 if xi < 1 AND xi (t ) > pi AND xi (t ) > xi (t − 1) then
9 xi ← 1

10 Iselt ← Iselt ∪ {i}

11 else
12 ync ← ync + dtzi (t )

13 zi (t ) ← 0

14 end
15 end

// scheduling the uncovered shortage due to

rounding

16 foreach i ∈ Iselt do
17 yi (t ) ← yi (t ) + y

nc/|Iselt |

18 end

3.3.1 Heuristics Applied to the OnFrc . In this heuristic, we

change the update equation for zi (t ) in Line 9 of the OnFrc to

zi (t ) = min



2xi ,

xi − 1/n

di (t ) + ûi (t )/ ˆfi
,



ci −
∑t−1
τ=ai d (τ )zi (τ )

d (t )



+

.

As compared to the update equation in Line 9 of the OnFrc, the
update equation above has an additional third term to enforce re-

specting capacity constraint of each source. Similarly, we update

the update equation in Line 12 of the OnFrc. In addition, by the end

of running theOnFrc at slot t , we set xi = 1, for sources that their to-

tal congestion exceeds the capacity, i.e., {xi = 1 : ci ≤
∑t
τ=ai yi (t )}.

In this way, for the forthcoming slots, we calculate the virtual cost

of these sources according to the �rst line in Eq. (5), in which there

is an exponential penalty for further usage of these sources. Last

but not the least, we break the update equations in the body of

for loop in Lines 6-14 of the OnFrc immediately a�er ful�lling the

supply shortage, without going over the remaining sources. In this

way, we prevent over-coverage of the supply shortage.

3.3.2 Heuristics Applied to the OnInt . In this section, we pro-

pose three additional heuristics for the OnInt.
(1) Time-aware Randomized Rounding. �e main intuition

behind this heuristic is to select sources more aggressively at the

initial slots, and as time goes ahead, select the new sources more

conservatively. More speci�cally, at the initial slots, usually the

number of selected sources are not large enough to cover the de-

mand that may lead to higher capacity violation. Hence, we tune

our rounding to pick the sources more aggressively. On the other
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Algorithm 3: kOnInt- Online Integral Algorithm with Maxi-

mum Discharge Rate, at time t

1 Initialization
2 Iselt ← the set of selected sources by executing OnInt at slot t

3 Iunselt ←
{
i ∈ I : i < Iselt and t ∈ Ti

}

4 ybk ← 0// the aggregated demand beyond the maximum

discharge rate

5 foreach i ∈ Iselt do
6 ybk ← ybk + [yi (t ) − ki ]

+

7 yi (t ) ← min

{
ki ,yi (t )

}

8 end
9 sort the sources in Iunselt in descending order of xi values

obtained by the OnFrc at slot t
10 while ybk > 0 do
11 i ← the next source in sorted set of Iunselt
12 yi (t ) ← min

{
ki , ci −

∑t−1
τ=ai yi (τ ),y

bk
}

13 ybk ← ybk − yi (t )

14 xi ← 1

15 Iselt ← Iselt ∪ {i}

16 end

hand, when enough number of slots have been passed, potentially

su�cient number of sources are already selected in the previous

slots, hence, we select new sources more conservatively. Toward

this, we modify the random generation in Line 2 of the OnInt as an
increasing function of time, e.g., pi = β (t × RAND(0, 1))/T , where
β is a constant factor. In this way, the sources are selected in Line 8

more conservatively with large values of t .
(2) Congestion-aware Source Selection. Another heuristic

runs a�er the source selection phase in Lines 7-15 of the OnInt.
�e high-level idea is to measure the current congestion of the

selected sources and if a pre-determined portion of them are fully

congested, select a new source. In our experiments, at each slot we

select a new source given that at least 25% of selected sources are

fully-congested. �e new selected source is the one with the largest

xi in the OnFrc that (i) already is not chosen, and (ii) is available at

the current slot.

(3) Water Filling-based Uncovered Demand Scheduling.
�e last heuristic changes the re-scheduling approach of the OnInt
in Lines 16-18. �e high-level idea is to ful�ll the uncovered de-

mand ync following a water-�lling approach. Toward this, we sort

the selected sources according to their unused capacity, and start

covering ync with the one with the highest unused capacity, and

proceed to the others accordingly.

3.4 Extension to the Maximum Discharge Rate
In this section, we extend the OnInt to consider the case that the
maximum discharge rate is limited, i.e., yi (t ) ≤ ki ,∀i, t . In other

words, in this se�ing the single-slot capacity constraint in Eq. (2b)

of the S3P is taken into account. �e procedure of the algorithm is

summarized in Algorithm 3 and called the kOnInt. �e algorithm

works in two successive steps.

In the �rst step as listed in Lines 5-8, we add the surplus amount,

i.e., [yi (t ) − ki ]
+
, to ybk which contains the aggregate amount of

shortage that is beyond the maximum discharge rate of the se-

lected sources. Note that [a]+ = max{0,a}. �en, we project

the deduction amount of the selected sources to at most ki , i.e.,
yi (t ) = min

{
ki ,yi (t )

}
.

In the second step, we select more sources in the set of sources

that are available at slot t and are not selected by executing the

OnInt (Iunselt in Line 3). Our selection criteria is to sort the unse-

lected available sources in descending order of their highest frac-

tional values xi in algorithm the OnFrc (as shown in Line 9). Recall

that according to theOnFrc, the higher the value of xi , the lower the
cost of the corresponding source. �en, in an iterative procedure,

we select the sources in the ordered set one-by-one and set the

yi (t ) values according to Line 12, which is the minimum amount

between the maximum discharge rate and the residual capacity of

the current selected source, and the remaining uncovered shortage.

We proceed this procedure until the uncovered shortage is ful�lled.

We �nally note that in the kOnInt, we assume that the su�cient

sources to cover the supply shortage.

In Sec. 4.2.5, we investigate the performance of the kOnInt as
a function of the ratio ρi = ki/ci , where lower value of ρi corre-
sponds that the maximum discharge rate restricts the scheduling,

while ρi = 1 relaxes the maximum discharge rate, i.e., it is possible

to consume all the capacity of any selected sources at single slot.

4 PERFORMANCE EVALUATIONS
In this section, we use real-world date traces to evaluate the perfor-

mance of the online fractional and integral algorithms OnFrc and
OnInt and the extended algorithm kOnInt in di�erent scenarios.

4.1 Experimental Setup and Overview
4.1.1 Parameter Se�ings and Data Traces. �e electricity data

are obtained from [7] which is the demand of a college in California.

To inject the uncertainty in demand, the renewable energy supply

is injected by a wind power trace from [14] which is the output

of a wind station in California with installed capacity of 12MW.

Finally, we assume that on average %10 of the demand is regarded

as supply shortage in each slot.

Unless otherwise speci�ed, the unit cost for each source follows

a uniform distribution over [$0, $1]. �e �xed cost is chosen in

order of ×20 of the unit costs, which is roughly around 1/3 of

the volume cost. �e available capacity ci is randomly generated

in [10, 70]kWh which includes typical sizes for Tesla EV [25] and

SolarCity Powerwall ba�eries (10kWh for approximately 1 bedroom

home, and 70kWh for approximately 6 bedrooms home). We setT =
12 and the length of each slot to 1 hour, and randomly generate the

available interval Tj for sources. �e value of congestion parameter

θ in the OnFrc is set to 1.2.

4.1.2 Performance Metrics. We compare the result of both on-

line fractional (OnFrc) and integral algorithms (OnInt) to the o�ine

optimum which is calculated by Gurobi solver [9]. �e di�erence

between the result of the OnFrc and the OnInt is the integrality
gap, i.e., the performance loss due to the randomized rounding to

integral solution.
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Figure 2: Impact of number of sources
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Figure 3: Impact of number of slots

In our experiments, we report four metrics: (i) total cost, we

report this value for o�ine optimum, the OnFrc, and the OnInt;
(ii) average percentage of capacity violation for the OnFrc and

OnInt; note that o�ine optimum �nds the feasible solution without

capacity violation so in corresponding �gures, there is no capacity

violation for the o�ine optimum. (iii) empirical cost ratio which is

de�ned as the ratio between obtained cost of our algorithms over

the optimum. �is metric is reported for both OnFrc and OnInt;
and �nally (iv) the average percentage of selected sources for o�ine

optimum and the OnInt. Note that this measure is not reported for

the OnFrc because it partially selects the sources.

4.1.3 Experimental Scenarios. We report the above performance

metrics under di�erent scenarios. In particular, we consider four

di�erent scenarios and investigate the impact of (i) the number of

sources; (ii) the number of time slots; (iii) the capacity of sources;

and �nally (iv) the congestion parameterθ inOnFrc algorithm. Note

that each data point of the �gures demonstrates average value of

100 runs, each of which is a di�erent randomly generated scenario.

4.2 Results of the Online Algorithm
4.2.1 Impacts of the Number of Sources. In this experiment, we

change the number of users from 50 to 150 with step 10. �e results

are shown in Fig. 2 and we report the following observations:

(i) As the number of sources increases, total cost (Fig. 2(a)) and

average percentage of selected sources decreases (Fig. 2(b)). Both

are reasonable since with the increase in the number of sources,

there is more freedom to pick cost-e�ective sources. In addition,

since the supply shortage is �xed in this scenario, the average

percentage of selected sources decreases.

(ii) �e average cost ratios for the fractional algorithm OnFrc
and the integral algorithm OnInt are 1.56 and 1.71, respectively

(Fig. 2(c)) which demonstrate sound performance of our algorithms.

In addition, the performance loss in terms of total cost due to

randomized rounding is 9.6%, on average.

(iii)Another observation is that as the number of sources in-

creases the cost ratio also increases (from 1.53 when n = 50 to 1.93

when n = 150 inOnInt). �is justi�es the competitive ratio analysis

since it increases as the number of sources increases. Finally, we

note that the obtained empirical cost ratios demonstrate that our

algorithms can achieve much be�er results than those obtained in

theoretical analysis.

(iv) �e average capacity violation in OnFrc and OnInt are 3.7%
and 12.2%, respectively (Fig. 2(d)). �e la�er number says that on

average OnInt goes 12.2% beyond the announced capacity of se-

lected sources. As mentioned in Sec. 3, this capacity violation could

be compensated by using external sources such as on-site micro-

grid generation or acquiring the energy from main grid. Another

approach, perhaps, is to intelligently scale down the capacities of

the sources, such that the violation amount in scaled-down version

of the problem is roughly equal to the amount that is reserved due

to scaling down the capacity.

4.2.2 Impacts of the Number of Time Slots. In this scenario, the

number of time slots changes from 10 to 30 with step 2. �e results

are shown in Fig. 3 and we report the following observations:

(i) As shown in Figs. 3(a) and 3(b), as the number of time slots

increases, total cost and the average percentage of selected sources

increase for the o�ine optimum and also for our online algorithms.

�is is reasonable since with �xed number of sources as the number

of slots increases, more demand must be covered and hence total

cost and the number of selected sources increase.

(ii) �e second interesting observation is shown in Fig. 3(c),

where as the number of slot increases, the cost ratio decreases

(from 2.11 when T = 10 to 1.83 when T = 30 for OnInt). �e
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Figure 4: Impact of capacity scaling
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Figure 5: Impact of congestion parameter θ

justi�cation is that as the number of time slot increases the unit

(volume) cost dominates the �xed cost, so, the cost ratio decreases.

Recall that �xed-cost and time availability are two main issues that

make the online decision making important and not-trivial. And,

as time horizon increases, it means that the importance of �xed

cost becomes lower, which lead to lower cost ratio.

(iii) �e last observation in Fig. 3(d) shows that with the increase

in the number of slots, the capacity violation decreases, on average

(from 15.25% to 3.26%). �e reason is that with the increase in slots,

more sources are selected (see Fig. 3(b)), hence, there is more room

to schedule the sources without capacity violation.

4.2.3 Impacts of the Capacity of Sources. In this experiment, we

scale the capacity of the sources from×1 to×2 of the original values,

and plot the results in Fig. 4. We report the following observations:

(i) As shown in Fig. 4(a), as the capacity scales, total cost de-

creases since each source can cover more supply shortage. Appar-

ently, the percentage of selected sources also decreases with the

same reason (Fig. 4(b)).

(ii) As the results show in Fig. 4(c), the empirical cost ratio,

increases with scaling up the capacity, which is counter-intuitive.

�is is due to the fact that when we increase the capacity of the

sources, optimal o�ine havemore �exibility in scheduling to reduce

total cost. �is observation, indeed, calls for further investigation

on providing more intelligent scheduling policies for the online

scenarios.

(iii) As expected in Fig. 4(d), the capacity violation reduces sig-

ni�cantly for OnInt with scaling the capacity (from 10.1% to 3.4%),

since there are enough capacity to ful�ll the shortage by the selected

set of sources.

4.2.4 Impacts of the Congestion Parameter θ . An important pa-

rameter in online algorithm OnFrc is the congestion parameter θ

which is used in Eq. (5) to incorporate the importance of capacity

violation on the online algorithm. In general, the higher the value

of θ , the more the importance of respecting the capacity constraint.

Toward investigating the impacts of θ , we change the value of θ
from 1.1 to 2 with step 0.1. �e results are shown in Fig. 5.

(i) �e results in Figs. 5(a) and 5(b) demonstrate almost smooth

values for total cost and percentage of selected sources, which are

reasonable due to no change on the parameters that can potentially

impact these values.

(ii) �e results in Fig. 5(c) demonstrate a gentle increase in cost

ratios for both OnFrc and OnInt. Ideally, we would expect increase

in cost ratio when the congestion parameter θ increases, since by

doing so, we lean toward respecting violation as compared to re-

ducing the cost. However, the performance of OnFrc is already
promising in respecting the capacity constraints (the capacity vio-

lation of OnFrc is always less than 2% in this scenario as shown in

Fig. 5(d)). Hence, the increase in cost ratio is not signi�cant (from

1.38 to 1.51 in OnFrc and from 1.58 to 1.76 in OnInt).
(iii) On the other hand, results for the online fractional algorithm

OnFrc in Fig. 5(d) demonstrate that capacity violation drops with

increase in congestion parameter (from 2.52% to 0.57%). �e ca-

pacity violation behavior for OnInt is ad-hoc in Fig. 5(d), which

mainly demonstrate that the capacity violation due to ful�lling the

uncovered demand of rounding procedure (as shown is Lines 16-18

of OnInt algorithm) dominates the capacity violation due to OnFrc.

4.2.5 The Performance of the Algorithm kOnInt . In this sec-

tion, we evaluate the algorithm proposed in Sec. 3.4 that takes into

account the maximum discharge rate of each source at each slot.

Toward this, we change the ratio ρi = ki/ci as an indicator on

how much the maximum discharge rate is restrictive. For example,

ρi = 0.1 mean that at each slot, we can use at most 0.1 of the
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Figure 6: Impact of the ratio ki/ci

capacity of source i . On the other extreme, ρi = 1 means that there

is no maximum discharge limit and it is possible to use the entire

capacity in one slot. In this experiment, we change the value of ρi
form 0.1 to 1 with step 0.1, and the results are shown in Fig. 6.

�e �rst observation in Fig. 6(a) is that as ρi increases, total cost
of both optimal solution (from 104 to 87) and the kOnInt (from 184

to 106) decreases. �e reason is that with the increase in ρi there is
more �exibility in scheduling that leads to lower cost. �e second

observation in Fig. 6(b) demonstrate that the empirical cost ratio

decreases as ρi increases. �e reason is that with lower values of

ρi , the scheduling is more complicated and the optimal can �nd it,

while our algorithm kOnInt is not able to �nd the proper scheduling,
and instead selects more sources which increases the cost.

5 RELATEDWORK
S3P is mainly related to CFLP [21] and �xed-charge transportation

problem [19]. While all challenges in these two problems exist in

our problem, there are some unique challenges raised by special

constraint in our problem. �ere are some existing o�ine results

for CFLP [18, 21] and �xed-charge transportation problem [26], but,

none of them provide constant approximation ratios for the general

case. Recently, An et al. in [1] proposed a 288-approximation o�ine

algorithm for CFLP that is, to the best of our knowledge, the �rst

constant factor algorithm for CFLP based on LP relaxation. �e

result in [1] cannot be directly applied to S3P because of the unique

challenges in our problem, mainly interval availability. In addition,

the result in [1] works for the o�ine scenarios, while the problem

of study in this paper emphasizes online algorithm design.

�e second category of related problems in the literature is called

interval cover [4, 5, 8], which is the time-expanded version of the

minimum knapsackwithout capacity constraints, and unit cost taking
into account. �e capacity constraint in S3P turns the problem into

a mixed packing and covering one which is fundamentally di�erent

and more challenging than the interval cover as a covering problem

[2]. �e most promising result of interval cover problem has been

presented in [4], that is a 4-approximation o�ine algorithm.

�e last category is the problem that can be contemplated as the

S3P with a �xed scheduling as input. �is problem has appeared

in di�erent application scenarios such as device-to-device load

balancing in cellular networks [11] and client-assisted cloud stor-

age systems [30]. �e se�ing considers a time-decoupled problem

where at each slot a sub-problem must be solved by just select-

ing the winning sources. In this way, the design space by proper

scheduling is overlooked. �is apparently leads to a sub-optimal

scenario. In addition, equal scheduling may lead to infeasible cases

for scheduling. For example in the simple scenario of Fig. 1, the

only available source at the last slot is source 3. �e total capacity

of this source is 18 and since this source is available at 9 slots, by

�xed scheduling, there would be 18/9 = 2 units available for each

slot. On the other hand, at the last slot in which source 3 is the

only available source, the amount of supply shortage is 3, hence,

it is not possible to cover this shortage with �xed scheduling of 2

units at each slot. �is example shows that scheduling is important

role in our problem.

We also note that several related problems with di�erent solution

approaches have been studied in the literature. We refer to [13]

with the Lyapunov optimization and [29] with Markov decision pro-

cess as examples. Overall, these approaches relies on the stochastic

process of the inputs. Instead, in this paper, we follow competitive

design approach, in which there is no assumptions on the stochastic

process of the unknown inputs. As in competitive analysis there

is no assumptions on the stochastic modeling of future input, the

online algorithm tries to compete against an adversarial input. In

competitive design the goal is to compete against the adversarial

input, hence, the competitive algorithm might be conservative, and

it cannot provide satisfactory results in practical scenarios in some

cases. On the other hand, stochastic optimization approaches rely

on the distribution of the input sequence. However, learning the

potentially time-varying distribution in real inputs can be a formi-

dable task. It is worth noting that not only our online algorithm

in this paper can guarantee a bounded performance, but also, our

experimental results demonstrate sound results of our algorithm.

Finally, we note that our basic online fractional algorithm OnFrc
leverages the ideas in [2]. More speci�cally, we tailor the algorithm

in [2] to our problem which is di�erent from the one in [2] mainly

because of di�erent availability of sources. Our integral algorithm

OnInt is entirely di�erent from the approach in [2] and also as

explained in Sec. 3.3, we propose several heuristics to improve the

performance of our algorithms in practice.

6 CONCLUSION AND FUTUREWORK
In this paper, we advocated the idea of using the potentials of ex-

isting energy storage systems in a microgrid to accomplish crowd-

sources storage-assisted demand response. We formulate the joint

problem of source selection and scheduling with the goal of min-

imizing the cost, while respecting mixed packing and covering

constraints. We devised online algorithms that are built upon a

recent results for online problems with mixed packing and cov-

ering constraints. We also analyzed the analytical performance

of our online algorithms in bi-criteria competitive approach. �e

trace-driven experimental results demonstrated that the proposed

algorithms work well in practice. Obtained analytical and experi-

mental results open a number of further research directions. First,

an interesting line is to study the problem through mechanism

design to see whether the proposed algorithms are dominant strat-

egy incentive compatible or not. Second, providing lower bound

for fractional algorithm to characterize the fundamental price-of-

uncertainty of the problem and characterizing the integrality gap

due to randomized rounding are two important open questions.
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A APPENDIX
A.1 Proof of �eorem 3.2
�e proof is adapted from [2] with several modi�cations based on

special properties of the problem studied in this paper. �e �rst

step is to de�ne a potential function for each source based on its

cost, capacity characteristics, and congestion level. Toward this, at

�rst we de�ne the potential function ϕi for source i as

ϕi (t ) =



ˆfiθ
γi (t )−1 +

∑t−1
τ=ai ûi (τ )zi (τ ), if xi = 1,

ˆfixi +
∑t−1
τ=ai ûi (τ )zi (τ ), otherwise.

(6)

During the execution of the algorithm as congestion on each source

increases, its potential function also changes. In addition, let

ϕ (t ) =
∑
i ∈I ϕi (t ) as the aggregated potential function. To prove

�eorem 3.2 is su�ces to show that ϕ (T ) = O (n logn) [2]. We ob-

tain this bound by achieving a bound on any single iteration in

OnFrc in Lemma A.1. �en, we use the results in Lemma A.1 and

prove the bound on the �nal potential function value a�er executing

OnFrc algorithm.

Lemma A.1. If 1 < θ < 3/2, then the increment of ϕ in a single
iteration of OnFrc is at most 4/T .

Proof. First, for notation convenience, let us de�ne

P ′t = Pt ∪ {lt }, as the set of sources that actively contribute

in covering dt in fractional solution in OnFrc algorithm. Herea�er,

for notational convenience we drop index t from the potential

function and use ϕi and ϕ instead of ϕi (t ) and ϕ (t ). To prove we

consider two cases:

case 1: when xlt < 1.
Since xi < 1 for all i ∈ P ′t (by de�nition in Lines 3-4 of OnFrc

algorithm) the second term in Eq. (6) is active. Hence, �e increase

in potential function denoted as δϕ is given by:

δϕ ≤
∑
i ∈P′t

*
,
ˆfi
xi
ˆfiT
+ ûi (t ) *

,

xi/ ˆfiT

di (t ) + ûi (t )/ ˆfi

+
-
+
-
. (7)

Knowing the fact that di (t ) ≥ 0 we have

δϕ ≤
∑
i ∈P′t

*
,
ˆfi +

ûi (t )

ûi (t )/ ˆfi

+
-
*
,

xi
ˆfiT

+
-

=
∑
i ∈P′t

2xi
T
≤

4

T
, (8)

where the last inequality is because

∑
i ∈P′t xi ≤ 2.

case 2: when xlt = 1.
By taking a similar approach as the previous case, we know that

that total increase in potential function for the sources in Pt is

≤ 2/T ; the procedure is exactly like the previous case, just in the

last step because

∑
i ∈Pt xi < 1, total increase is ≤ 2/T . Now, the
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http://capabilities.itron.com/CeusWeb/
http://www.gurobi.com/
http://wind.nrel.gov
https://www.navigantresearch.com/research/market-data-microgrids
https://www.navigantresearch.com/research/market-data-microgrids
http://www.udel.edu/V2G/
http://dx.doi.org/10.1109/TPWRS.2006.873018
https://www.teslamotors.com/


e-Energy ’17, May 16-19, 2017, Shatin, Hong Kong Mohammad H. Hajiesmaili, Minghua Chen, Enrique Mallada, and Chi-Kin Chau

goal is to show that total increase due to the last source lt is ≤ 2/T ,
hence, total increase would be ≤ 4/T .

�e increase in potential for last source lt follows from the �rst

term in Eq (6). So, it is required to calculate the increase in conges-

tion level which is δγlt (t ) = dlt (t )/vlt (t )T . Now, the increase in
potential function δϕlt is given as

δϕlt =
ˆflt

(
θγlt (t−1)−1+δγlt (t ) − θγlt (t−1)−1

)
+

ûlt (t )

vlt (t )T
.

On the other hand, we have

δγlt (t ) =
dlt (t )

vlt (t )T
,

then, we by a simple rearrangement we get

δϕlt = ˆflt θ
γlt (t−1)−1 *

,
θ

dlt (t )
vlt (t )T − 1+

-
+

ûlt (t )

vlt (t )T

= α
(
θ1/βT − 1

)
+

ûlt (t )

βTdlt (t )
, (9)

where

α = ˆflt θ
γlt (t−1)−1,

β =
vlt (t )

dlt (t )
= α +

ûlt (t )

dlt (t )
,

vlt (t ) =
ˆflt θ

γlt (t−1)−1dlt (t ) + ûlt (t ),

where the last equality is from the �rst term in Eq. (5). Now, given

the following inequality, (1 + x )1/y < ex/y < 1 + 2x/y,y ≥ x > 0,

we get

δϕlt <
α2(θ − 1)

βT
+

ûlt (t )

βTdlt (t )

<

(
α +

ûlt (t )

dlt (t )

)
1

βT
=

1

T
<

2

T
. (10)

�e proof requires 1 < θ < 3/2. �

Now, we proceed to obtain a bound on total potential function

ϕ. �e goal is to achieve bounds on total increase on the value of

potential function on all possible scenarios that might be happened

in execution of OnFrc algorithm.

Let us denote I? as the optimal selected sources and I?t as the

set of sources that contribute in covering the demand in time slot

t in the optimal o�ine solution. In addition, let i ′ ∈ I?t be the

most expensive source in terms of virtual cost that contributed in

covering the demand dt . We �nd bounds on total increase on the

value of potential function by categorizing the fractional solution

by OnFrc as compared to the optimal o�ine solution as follows:

category 1: i ′ ∈ Pt .
In this case, in any iteration of OnFrc the value of xi′ increases

to xi′
(
1 + 1

ˆfi′T

)
. In addition, xi is initialized to 1/n for all sources.

Consequently, there are at most

∑
i ∈I? ˆfiT logn iterations in this

case. From Lemma A.1 the bound in increase of potential function

in each iteration is 4/T . With the scaling procedure in Sec. 3.1.1 we

know that i ≤
∑
i ∈I? ˆfi ≤ 2n. �en, the total increase in potential

function in this case is O (n logn).
category 2: i ′ < Pt and xi′ < 1.

First, we �nd a bound on total number of iterations. For any

time slot t , OnFrc will stop if the demand dt is covered, i.e.,∑
i ∈I:t ∈Ti zi (t ) ≥ 1. Our goal is to show that a�er at most 2vi′ (t )T

steps the covering constraint is satis�ed. �is is equivalent to show

that in each iteration the increase in covered demand is at least

1/2vi′ (t )T . Since i
′ < Pt , the virtual cost of i

′
is greater than all

the items in P ′t , i.e., vi (t ) ≤ vi′ (t ),∀i ∈ P
′
t .

Now, lets consider the case when xi = 1, i = lt in Line 12 of

OnFrc algorithm. Indeed, the total increase in covered demand

is at least 1/vi (t )T ≥ 1/vi′ (t )T ≥ 1/2vi′ (t )T . Hence, the proof is
completed for this case.

We turn our focus into Line 9. In what follows we show that in

any iteration, the total increment in covering demand is at least

1/2vi′ (t )T except for the last iteration. We note that in the case of

Line 9, the increment in covering demand is the minimum of two

values. Lets distinguish the sources based on this increment, so, let

P1

t ⊆ P
′
t be the sources that their increment in covering variable is

the �rst term, i.e., P1

t =
{
i : i ∈ P ′t , 2xi ≤

(xi−1/n)
di (t )+ûi (t )/ ˆfi

}
. Similarly,

we de�ne P2

t = P
′
t \P

1

t . If

∑
i ∈P1

t
xi ≥ 1/2, total increment is∑

i ∈P1

t
2xi ≥ 1, then the demand is covered, thereby the current

step is the last iteration. Otherwise, the total increment by sources

in P2

t could be expressed by

∑
i ∈P2

t

xi

( ˆfidi (t ) + ûi (t ))T
=

∑
i ∈P2

t

xi
vi (t )T

≥
1

vi′ (t )T

∑
i ∈P2 (t )

xi >
1

2vi′ (t )T

�e last inequality is because we have

∑
i ∈P2

t
xi > 1/2. �en, the

lower bound on the minimum cover in each iteration is 1/(2vi′ (t )T ).
�e total increase in potential for all iterations is at most the in-

crease in each iteration (≤ 4/T , by Lemma A.1) multiplied by the to-

tal number of iterations (≤ 2vi′ (t )T , proved above), i.e., the total in-
crease in potential is at most

∑
t ∈T 4/T × 2vi′ (t )T = 8

∑
t ∈T vi′ (t ),

where vi′ (t ) = ˆfi′ (t )di′ (t ) + ûi′ (t ) which is the second term in

Eq. (5) since in this category xi′ < 1. Finally, we require to bound

the total increase for all time slots, that is

∑
t ∈T vi′ (t ) = O (n)

because of scaling procedure in Sec. 3.1.1.

category 3: i ′ is fully chosen, i.e., xi′ = 1.

In this case we show that total increase in potential function

a�er all iterations is bounded by n + 8
∑
i ∈IA

ˆfiθ
Γi−1

, where Γi is
the �nal congestion level of source i by executing OnFrc a�er all
time slots and IA is the set of sources that are fully selected by

OnFrc algorithm. Since γi (t ) ≤ Γi , we get

vi′ (t ) = ˆfi′θ
γi′ (t )−1di′ (t ) + ûi′ (t ) ≤ ˆfi′θ

Γi′−1di′ (t ) + ûi′ (t )

�en, the total increase in potential function ∆ϕ is bounded by

the maximum increase in each iteration (≤ 4/T , by Lemma A.1)
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multiplied by the total number of iterations (≤ 2vi′ (t )T )

∆ϕ ≤ 8

∑
t ∈T

vi′ (t )

≤ 8

∑
t ∈T

ˆfi′θ
Γi′−1di′ (t ) + ûi′ (t )

< n + 8
∑

i ∈I?∩IA

ˆfiθ
Γi−1

∑
t :i′t=i

di (t )

≤ n + 8
∑
i ∈IA

ˆfiθ
Γi−1

Finally, note that a�er initialization of xi = 1/n, ϕ ≤ n, because
ˆfi ≤ n, then ˆfixi = ˆfi/n ≤ 1. Indeed, the initial value of potential

function is equal to

∑
i ∈I ϕi ≤ n. �e value of potential function is

at most the aggregation of its initial value and total increase during

the iterations of the fractional algorithm, that is ϕ ≤ O (n logn) +
8ϕ + n. Hence, ϕ = O (n logn).
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