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ABSTRACT
One of the most prominent applications of smart technology
for energy saving is in buildings, in particular, for optimizing
heating, ventilation, and air-conditioning (HVAC) systems.
Traditional HVAC systems rely on wired temperature reg-
ulators and thermostats installed at fixed locations, which
are both inconvenient for deployment and ineffective to cope
with dynamic changes in the thermal behavior of buildings.
New generation of wireless sensors are increasingly becoming
popular due to their convenience and versatility for sophis-
ticated monitoring and control of smart buildings. However,
there also emerge new challenges on how to effectively har-
ness the potential of wireless sensors. First, wireless sensors
are energy-constrained, because they are often powered by
batteries. Extending the battery lifetime, therefore, is a
paramount concern. The second challenge is to ensure that
the wireless sensors can work in uncertain environments with
minimal human supervision as they can be dynamically dis-
placed in new environments. Therefore, in this paper, we
study a fundamental problem of optimizing the trade-off be-
tween the battery lifetime and the effectiveness of HVAC re-
mote control in the presence of uncertain (even adversarial)
fluctuations in room temperature. We provide an effective
offline algorithm for deciding the optimal control decisions of
wireless sensors, and a 2-competitive online algorithm that is
shown to attain performance close to offline optimal through
extensive simulation studies. The implication of this work
is to shed light on the fundamental trade-off optimization in
wireless sensor controlling HVAC systems.

Categories and Subjects: [Computer systems organiza-
tion]: Embedded and cyber-physical systems: Sensors and
actuators

General Terms: Algorithms, Design, Management

Keywords: Wireless Sensors, Smart Buildings, HVAC, Air-
Conditioning, Online Algorithms
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1. INTRODUCTION
Buildings are among the largest consumers of energy, top-

ping 40% of total energy usage in many countries [9]. A
significant portion of energy use in buildings is attributed
to the heating, ventilation, and air conditioning (HVAC)
systems, which account for up to 50% of the total energy
consumption in buildings [7]. Therefore, improving energy
efficiency of buildings, in particular, optimizing HVAC sys-
tem is critically important and will have a significant impact
in reducing the overall energy consumption.

Usually, the air conditioning systems need to maintain
room temperature within a certain desirable range. To de-
tect the variations of temperature, traditional air condition-
ing systems rely on wired temperature regulators and ther-
mostats installed at fixed locations. These classical con-
trollers are both inconvenient for deployment and ineffec-
tive to cope with dynamic changes in the thermal behavior
of buildings. In particular, the temperature distribution is
not spatially uniform. Having sensors installed at fixed and
limited locations cannot react to the rapidly varying room
conditions due to transient and non-stationary human be-
havior.

New generation of wireless sensors are revolutionizing the
design of HVAC systems. Wireless sensors, being not limited
by wired installation, can be deployed strategically close to
the fluctuating thermal sources in an ad hoc fashion (e.g.,
near to doors, windows and computers). With wireless sen-
sors, demand responsive air-conditioning control can be de-
veloped that dynamically adjusts the room temperature ac-
cording to intelligent monitoring and tracking of human be-
havior and room conditions. Furthermore, wireless sensors
can be integrated with home security and infotainment sys-
tems, enabling more sophisticated smart home control sys-
tems.

Despite the promising potential, wireless sensors also in-
troduce several new challenges:

1. Battery Lifetime: Wireless sensors are often battery-
powered and typically have to operate for prolonged
periods of time. Therefore, one of the primary goals is
to maximize the battery lifetime of sensors. According
to a survey of several commercial wireless sensors (see
Appendix-C), the communication operations consume
the most energy. Thus, an effective way to extend bat-
tery lifetime is to reduce the communication frequency,
inducing limited communication among wireless sen-
sors.

2. Control Effectiveness: Wireless sensors are also dis-



tributed autonomous computing devices. They can be
programmed to intelligently optimize their energy con-
sumption with respect to the effectiveness of their con-
trol operations. Intuitively, energy consumption is in-
versely proportional to the effectiveness (i.e., sleeping
all the time can effectively reduce energy consumption,
but is ineffective to satisfy the control requirement).
The ability to balance the energy consumption and ef-
fectiveness is critical to the usefulness of these wireless
sensors, particularly for smart home applications.

3. Uncertain Deployment: Wireless sensors are sup-
posed to be deployed in an ad hoc fashion, without
a-prior measurement or calibration. It is critical to en-
sure that wireless sensors operate robustly and reliably
in the presence of uncertainty of new environments.
They should be able to rapidly cope with dynamic
displacements with minimal human supervision. An
important question is to investigate the fundamental
ability of wireless sensors to control room temperature
without assuming any a-prior or stochastic knowledge
of the temperature fluctuations.

In this paper, we study a fundamental problem of optimiz-
ing the trade-off between the lifetime of the wireless sensors
and the effectiveness of HVAC remote control in the presence
of uncertain (even adversarial) fluctuations in room temper-
ature. The novelty of our work lies in the fact that unlike
most intelligent HVAC control techniques (as summarized
in the related work section), our approach is to solve the op-
timization problem in an online manner without stochastic
modeling or machine learning methods. The key contribu-
tions of this work are summarized as follows.

1. We formulate a new online optimization problem of
balancing the trade-off between communication fre-
quency of wireless sensor and the effectiveness of HVAC
remote control. Our goal is to simultaneously main-
tain thermal comfort and maximize the battery life-
time of the wireless sensor. In other words, we aim to
maximize the sensor energy efficiency while meeting
the required control performance. To the best of our
knowledge, this specific problem has not been studied
before.

2. We present an effective offline algorithm, which is based
on dynamic programming, for determining the optimal
control decisions by wireless sensors when all future
temperature fluctuations are known in advance. The
offline algorithm is useful to benchmark the online al-
gorithm we propose.

3. We devise an online algorithm that optimizes the con-
trol decisions without the knowledge about future tem-
perature fluctuations. We prove that our online al-
gorithm is 2-competitive against offline optimal algo-
rithm.

4. We experimentally evaluate the performance of our al-
gorithm through simulations and show that our online
algorithm can attain performance close to the offline
optimal solution.

The rest of the paper is organized as follows. In Section 2, we
present the background of online algorithmic approach, com-
petitive analysis, and a related problem known as dynamic
TCP acknowledgement problem. We present the models and

formulations of ambient room temperature and wireless sen-
sor network control in Section 3. In Section 4, we provide
the offline and online algorithms and competitive analysis.
In Section 5, we evaluate the performance of our algorithms
through extensive simulations. In Section 6, we present a
review of related work. Finally, we summarize and discuss
several future extensions in Section 7.

2. BACKGROUND
In this section, we present the background information

about online algorithms and a well-known online problem
known as dynamic TCP acknowledgment problem, which is
closely related to our problem.

2.1 Online Algorithms
Online algorithms have received considerable attention in

the literature for their fundamental principles and practical
applications. In an online problem, a sequence of input is
revealed gradually over time. The algorithm needs to make
certain decisions and generate output instantaneously over
time, based on only the part of the input that has been seen
so far, without knowing the rest of the input to be revealed
in the future. There are many practical problems studied in
the online algorithmic setting that require real-time and in-
stantaneous decisions, such as real-time resource allocation
in operating systems, data structuring, robotics or communi-
cation networks [1,8]. The performance of online algorithms
is evaluated using competitive analysis. The competitive ra-
tio of an online algorithm is defined as the worst-case ratio
between the cost of the solution obtained by the online al-
gorithm versus that of an offline optimal solution obtained
by knowing the all input sequence in the future [19].

Online algorithms have several practical implications. Fir-
st, they do not require a-prior or stochastic knowledge of
the input sequence, which makes them robust in any uncer-
tain (even adversarial) environments. Second, online algo-
rithms uses often simple decision-making mechanisms, with-
out being hampered by inaccurate or slow convergent ma-
chine learning techniques. Third, online algorithms can give
a fundamental characterization without further assumptions
of the problems, which are useful to benchmark other sophis-
ticated and more complicated decision-making mechanisms.
In this paper, we adopt the online algorithmic approach to
study the fundamental problem of optimizing the trade-off
between the battery lifetime and the effectiveness of HVAC
remote control in the presence of uncertain fluctuations in
room temperature.

2.2 Dynamic TCP Acknowledgment
A well-known example involving online algorithms is the

dynamic TCP acknowledgment problem as described as fol-
lows. A stream of packets arrives at a destination. The
packets must be acknowledged in order to notify the sender
that the transmission was successful. However, it is possible
to simultaneously acknowledge multiple packets using a sin-
gle acknowledgments packet. The delayed acknowledgment
mechanism reduces the frequency of the acknowledgments,
but it might also add excessive latency to the TCP connec-
tion and interfere with the TCP’s congestion control mech-
anisms [10]. The problem is to find an optimal trade-off
between the total number of acknowledgments sent and the
latency cost introduced due to delaying acknowledgment.



More specifically, Dooly et al. [6] formulated this trade-off
as the dynamic TCP acknowledgement problem as follows.

In the dynamic TCP acknowledgement problem, a se-
quence of n packets σ = (p1, p2, ..., pn) arrive at a certain
destination. An algorithm divides the received sequence σ
into m subsequences σ1, σ2, ..., σm, where a single acknowl-
edgment is sent at the end of each subsequence. All the
packets contained in σj(1 ≤ j ≤ m) are acknowledged to-
gether by the j-th acknowledgement at time tj . The objec-
tive is to choose an optimal acknowledgment time sequence
that minimizes the weighted sum of the cost for transmit-
ting acknowledgements and the cost of the latency of de-
layed acknowledgements. The decision of transmitting an
acknowledgment time is decided in an online fashion with-
out knowing the future packet arrivals.

(a) Dynamic TCP acknowledgment

(b) Wireless sensor controlling AC system

Figure 1: A pictorial comparison between dynamic
TCP acknowledgment and wireless sensor control-
ling AC system.

Comparison to Our Problem: Our problem is some-
what similar to the dynamic TCP acknowledgment problem.
In TCP, random arrivals of packets are received, such that
the receiver makes online decisions when to transmit ac-
knowledgments considering the weighted total cost of num-
ber of acknowledgment and latency. In our problem, random
fluctuations of temperature and external thermal sources
are perceived by the wireless sensor, and the wireless sensor
makes online decisions when to transmit control commands
to remote air conditioning system considering the weighted
total cost of transmissions and effectiveness (defined by the
disturbance of temperature compared to a desirable temper-
ature). A pictorial comparison between the two problems is
provided in Fig. 1.

Despite the similarity, our results are not direct applica-
tions of the dynamic TCP acknowledgment problem. In par-
ticular, the dynamic TCP acknowledgment problem assumes
latency as a linearly increasing function of time, whereas in

our problem the total disturbance of temperature changes
non-linearly with time. This requires a non-trivial exten-
sion of the original TCP acknowledgment problem to the
new context of air-conditioning control. Furthermore, we
present extensive simulation studies that are specific to the
air-conditioning control setting for corroborating the useful-
ness of our online algorithms for this new problem.

3. MODEL AND FORMULATION
The goal of our study is to optimize the trade-off between

the wireless sensor battery lifetime and the effectiveness of
ambient room temperature control in the presence of un-
certain fluctuations. In this section, we present the models
of ambient room temperature and wireless sensor control.
We note that a table of notations with explanations is pro-
vided in Table 5 in the Appendix. It is worth mentioning
that we make several assumptions in order to improve the
tractability of our models and for convenience of analysis.

3.1 Assumptions of Ambient Room Tempera-
ture

The thermal behavior of buildings is a complex system.
The mathematical models in the literature typically involve
several empirical constants, non-linear functions and uncer-
tain factors such as heat flow and material properties [16].
Moreover, external factors, such as weather condition (e.g.,
temperature, humidity), soil temperature, radiation effects
and other sources of energy (e.g., human activities, lighting
and equipment), also play a critical role in determining the
thermal behavior of buildings [16].

Tractable mathematical models of building thermal be-
havior are particularly useful for the design of intelligent
controls and regulations of HVAC systems. Therefore, as-
sumptions are often imposed to improve the tractability of
the thermal models of buildings.

In this work, we employ a simple yet commonly used ther-
mal model for a single room. This model considers several
major factors, such as the outdoor environment, the ther-
mal characteristics of the room, and the air-conditioning sys-
tem. We mostly consider the setting of cooling, where the
air-conditioning system is required to make continual ad-
justment to the room temperature for maintaining a (lower)
desirable temperature level. We remark that our results can
be applied to the setting of heating with minor modifica-
tions.

First, we list several common assumptions of the ambient
room temperature in the literature [21] for improving the
tractability:

• The air in the room is assumed to be fully mixed.

• The temperature distribution is assumed to be uni-
form and the dynamics can be expressed using a lump
capacity model.

• The room behaves ideally, such that the effect of each
wall is uniformly equivalent.

• The density of the air is constant and is not affected
by the changes in temperature and humidity.

3.2 Dynamic Model of Ambient Room Tem-
perature

Based on the above assumptions, a simple dynamic model
of ambient room temperature can be formulated as follows.



We consider the setting of continuous time, and model the
ambient room temperature at time t by a function T (t),
which depends on several major factors:

1. The initial ambient room temperature T0 at time t = 0.

2. The influence of outdoor temperature Tod(t), which is a
function of time affected by time-of-day and weather.
A simple example is a sinusoidal function depending
on the time-of-day. We assume that the variation of
Tod(t) is relatively slow, as compared to the effect of
air-conditioning system. Hence, we simply write Tod(t)
as a constant Tod.

3. The external thermal sources entering into the room,
for example, due to human body heat or human ac-
tivities (e.g., computers). We model the arrivals of
thermal sources by a function W (t), such that there is
a level of thermal intensity W (t) (measured by degree
Celsius) arriving at time t.

4. The heat absorptivity and insulation properties of the
materials in a room (e.g., walls). Heat can be retained
in a room for a longer period of time in a well-insulated
room with sufficiently absorptive materials.

5. The air-conditioning system output. This is the control
variable we seek to optimize in order to maintain the
ambient room temperature within a desirable range.

a) Without external thermal sources: Throughout
this paper, we rely on a widely-used model of dynamic am-
bient room temperature [5]. First, we assume that there
is no external thermal sources entering into the room (i.e.,
W (t) = 0 for all t). In particular, we denote the ambient

room temperature without external thermal sources as T̃ (t).
Given the initial ambient room temperature T0 and outdoor
temperature Tod, the dynamic behavior of T̃ (t) can be de-
scribed by the following differential equations

dT̃ (t)

dt
=

1

c ·Mair
·
(

dQin(t)

dt
− dQac(t)

dt

)
(1)

dQin(t)

dt
=
Tod − T̃ (t)

Req
(2)

dQac(t)

dt
=

c ·Mac · (T̃ (t)− Tac)

Eac
(3)

where Tac is the temperature output by the air-conditioning
system, Qin(t) is the net heat transfer from outdoor, Qac(t)
is the net heat chilled by the air-conditioning system, Mair,
Mac, Eac, c, Req are constants that model the heat absorp-
tivity and insulation properties in the room (see Appendix
for full explanations). By substitution, one can solve the
differential equations by the following lemma.

Lemma 1. In the above model, the solution to Eqns. (1)-
(3) is given by

T̃ (t) =
C1

C2
−
(
C1

C2
− T̃ (0))

)
· e−C2·t (4)

where

C1 =
c · Tac ·Mac ·Req + Eac · Tod

c ·Mair ·Req + Eac
(5)

C2 =
Eac + c ·Mac ·Req

c · Eac ·Mair ·Req
(6)

We provide the proof in Appendix-A.

b) With external thermal sources: Next, we consider
the setting with external thermal sources. We consider W (t)
as a sequence of impulsive thermal sources, such that

W (t) =

m∑
i=1

wi · δ(t− ti) (7)

where δ(t) is Dirac delta function, and wi is the level of
thermal intensity entering into the room at time t.

Impulsive thermal sources are a reasonable assumption
for modeling short-lived thermal sources (e.g., temporarily
opening a door). Further, any arbitrary W (t) can be ap-
proximated by a sequence of appropriately placed impulsive
thermal sources by taking wi = W (ti) (see Fig. 2 for an il-
lustration). Note that, in this paper, we do not assume any
a-priori knowledge of the stochastic property of W (t). We

Figure 2: An illustration for using impulsive heat
sources to approximate arbitrary W (t).

denote a , ((wi, ti) : i = 1, ...,m) for a sequence of arrivals
of impulsive thermal sources, where m is the total number of
arrivals. Given a, the ambient room temperature at time t
can be obtained recursively as follows. For i ∈ {1, ...,m}, we
note that there is no external thermal source during interval
ti−1 < t < ti. We denote the ambient room temperature
during interval ti−1 ≤ t < ti by T̃i(t). Thus, following by
Lemma 1, we obtain

T̃i(t) =
C1

C2
−
(
C1

C2
− T̃i−1(ti−1)− wi−1

)
· e−C2·(t−ti−1) (8)

where T̃i−1(ti−1) + wi−1 is the initial temperature at ti−1.

For completeness, we let t0 = 0, w0 = 0 and T̃0(t0) =
T0. Hence, we obtain the ambient room temperature for
given external thermal sources a and initial ambient room
temperature T0 as

T (t; a, T0) = T̃i(t), if ti−1 ≤ t < ti (9)

3.3 Model of Wireless Sensor Control
To model wireless sensor control, we consider a wireless

sensor deployed in the target zone for sensing the ambient
temperature. The wireless sensor issues control commands
to a remote air-conditioning system when the locally sensed
ambient temperature exceeds a certain desirable tempera-
ture range. There are several issues considered in our sensor
model.

a) Trade-off: Since wireless sensors are energy constrain-
ed and often powered by batteries, the wireless sensor is
required to optimize the battery lifetime without affecting
the thermal comfort. Although various operations are per-
formed in wireless sensors (e.g., computations and sensing),
the wireless communication operations typically consumes



most of the energy in a wireless sensor (see Appendix-C).
Hence, it is crucial to reduce the number of wireless com-
munication operations for extending the battery lifetime.

There are two prominent conflicting factors that a wireless
sensor needs to optimize:

1. The update frequency of control commands to remote
air-conditioning system in the presence of random fluc-
tuating thermal sources, which characterizes the effec-
tiveness of ambient room temperature control.

2. The communication operations for transmitting the con-
trol commands, which critically governs the wireless
sensor battery lifetime.

Note that increasing of the number of communication op-
erations will reduce the battery lifetime. This naturally gives
rise to an online decision problem, where the wireless sensor
decides the update frequency in an online manner without
a-prior information of random fluctuating arrivals of thermal
sources.

b) Air-conditioning Operations: Let Tmax
des be the

maximally desirable temperature (e.g., 25 degree Celsius),
and Tmin

des be the minimally desirable temperature (e.g., 21
degree Celsius). The desirable ambient room temperature is
aimed to be retained within [Tmin

des , T
max
des ].

A simple setting of control command by wireless sensor is
the“ON/OFF”or hysteresis control, such that when the am-
bient room temperature is sufficiently higher than Tmax

des , an
ON command is communicated to air-conditioning system,
whereas when the sensed ambient room temperature is suffi-
ciently lower than Tmin

des , an OFF command is communicated
to air-conditioning system1. This induces an ON/OFF cycle
of air-conditioning operations (see Fig. 3 for an illustration),
which is one of the most commonly used control strategy in
today’s air-conditioning systems [13].

Figure 3: An illustration of the ON/OFF cycle of
air-conditioning. Note that we may allow the ambi-
ent room temperature to exceed Tmax

des temporarily.

Furthermore, for the sake of tractability, we assume that
an OFF command is automatically issued when the ambient
room temperature drops below Tmin

des , and the cooling process
is rather efficient, i.e.,cooling can be achieved in a relatively
short time. However, we may allow the ambient room tem-
perature to exceed Tmax

des temporarily. Hence, our study is
simplified to only optimize the ON command decisions in
order to balance the trade-off between the wireless sensor

1In our ambient room temperature model, the air-
conditioning system can be disabled by letting Mac = 0

battery lifetime and the effectiveness of ambient room tem-
perature control, without considering the OFF commands.

We consider a finite time horizon for any t ∈ [0, B]. We
define the decision variables as x = (xk ∈ [0, B])Kk=1, where
each xk is the time that the k-th ON command is issued by
the wireless sensor, while K is the total number of ON com-
mands which the wireless sensor needs to optimize without
affecting the thermal comfort.

c) Disturbance of Temperature: We characterize the
thermal comfort by a metric defined as the total disturbance
of ambient temperature exceeding the desirable temperature
range.

For given time τ , we let aτ be the sub-sequence, such that(
(wi, ti − τ), (wi+1, ti+1 − τ), (wi+2, ti+2 − τ), ...

)
(10)

where ti is defined such that ti−1 < τ ≤ ti. Namely, aτ is a
truncated sequence of a starting at τ .

We define Tτ (t) to be the temperature function T (t; a, T0)
starting at time τ with initial temperature T0 = Tmin

des and
sequence of thermal sources aτ . That is, for any t ≥ τ ,

Tτ (t) , T
(
t− τ ; aτ , T

min
des

)
(11)

Hence, the total disturbance given decision variables x is
defined by (also shown in Fig. 3)

D(x) ,
K∑
k=1

∫ xk+1

t=xk

[Txk (t)− Tmax
des ]+dt (12)

where [x]+ = max(x, 0) and Tmax
des is the maximal desirable

temperature threshold.

Definition 1. Formally, we define the decision problem
for wireless sensor controlling air-conditioning (WSAC) as
follows:

WSAC problem:

min
x

Cost(x) , min
x

η ·K + (1− η) · D(x) (13)

where η ∈ [0, 1] is a weight assigned to balance the update
frequency and the thermal comfort.

In the offline decision setting, x is decided given a-priori
information of a and Tod without any restriction; whereas in
the online decision setting, we require x to be decided such
that xk only considers the thermal sources before time xk:
{(wi, ti) | ti ≤ xk}.

Let x∗ be the offline optimal solution to WSAC problem,
while xA is the output solution given by an online algorithm
A. We define the competitive ratio as

CR(A) , max
a,Tod

Cost(xA)

Cost(x∗)
(14)

In our problem, we seek to find an optimal online algorithm
A to solve WSAC problem with the minimal CR(A).

4. RESULTS
In this section, we provide an effective offline algorithm to

solve WSAC problem, and a 2-competitive online algorithm.

4.1 Offline Algorithm
While the rest of paper considers online algorithm, we first

devise an effective offline algorithm to solve WSAC problem



based on dynamic programming. The ramifications are that
(1) the offline algorithm will enable us to compute the com-
petitive ratio under diverse simulation settings; (2) the of-
fline algorithm is useful in the setting with predictable a. For
example, based on the past history and statistics of a, one
can effectively solve WSAC problem by offline algorithm.

In the offline decision setting, we assume that all future
temperature fluctuations are given in advance. We present
our offline algorithm (AOFL) in Algorithm 1 that gives an
optimal solution to WSAC problem.

Algorithm 1 Optimal Offline Algorithm AOFL, Input(a)

1: Costmin[0]← 0

2: Cost[1, 1]← 1 · η + (1− η) ·
[∫ t1
t=0

[Tt0(t)− Tmax
des ]+dt

]
3: Costmin[1]← Cost[1, 1], idx[1]← 1
4: for i ∈ [2,m] do
5: for j ∈ [1, i] do
6: Cost[i, j]← 1 · η

+ (1− η) ·
[∫ ti
t=ti−j

[Tti−j (t)− Tmax
des ]+dt

]
+ Costmin[i− j]

7: if Cost[i, j] < Costmin[i] then
8: Costmin[i]← Cost[i, j]
9: idx[i]← j

10: end if
11: end for
12: end for
13: y1 ← tm, k′ ← 1, r ← m . backtrack to find x∗

14: while r > 1 do
15: r ← r − idx[r], k′ ← k′ + 1
16: yk′ ← tr
17: end while
18: K ← k′

19: Output (xk = yK−k+1)Kk=1

The basic idea ofAOFL is based on dynamic programming,
which relies on solving a sub-problem to decide when the
previous ON command should be transmitted, assuming all
the previous ON commands can be decided optimally.

Recall that ti is the arrival time of the i-th external ther-
mal source in sequence a. Let Cost[i, j] be the minimum
cost when the last ON command is transmitted at time ti
and the second to last ON command is transmitted at time
ti−j , over all possible x with fixed xK = ti and xK−1 = ti−j .
Also, let Costmin[i] be the minimum cost when the last ON
command is transmitted at time ti. We note that Cost[i, j]
and Costmin[i] can be computed recursively in Algorithm 1.

Once Costmin[m] is found, the optimal decision x∗ can
be determined by backtracking. To enable backtracking,
we maintain indices idx[i] to record j when Costmin[i] ←
Cost[i, j].

Theorem 1. AOFL in Algorithm 1 outputs an optimal
solution to WSAC problem

Proof. The proof can be achieved in two steps.

(i) WSAC problem exhibits the optimal sub-structure
property;

(ii) AOFL explores all sub-problems and thus gives an
optimal solution.

To prove (i), we consider a subsequence of thermal sources(
(w1, t1), (w2, t2), ..., (wi, ti),

)
(15)

where the last ON command is transmitted at time xk =
ti. Let us assume that we know that (perhaps told by an
oracle) the second to last ON command is transmitted after
the (i − j)-th arrival of thermal sources (i.e., xk−1 = ti−j)
is optimal, then we only need to optimize the subsequence(

(w1, t1), (w2, t2), ..., (wi−j , ti−j)
)

in order to obtain the full

optimal solution. Thus, the problem exhibits the optimal
sub-structure property.

To prove (ii), we need to examine the execution of AOFL.
We note that there are two FOR-loops. For each iteration of
the outer loop (i.e., upon arrival of each new thermal source),
the inner loop is executed from start to i (i.e., all sub-

sequences in
(

(w1, t1), (w2, t2), ..., (wi, ti),
)

are traversed).

This process is repeated for each new thermal source un-
til we reach the end of the sequence. By doing so, AOFL

is able to explore all subsequences and, therefore, all sub-
problems.

4.2 Online Algorithm
In this section, we present a deterministic online algorithm

that optimizes the trade-off between the frequency of ON
commands and the thermal comfort. Our online algorithm
achieves so by balancing the cost of transmitting the ON
command immediately with the cost of delaying the ON
command.

We assume that a wireless temperature sensor continu-
ously tracks the change of temperature. Without the arrival
of external thermal sources, the change in ambient temper-
ature occurs smoothly as given by the differential equations
Eqns. (1)-(3). However, when there is an arrival of external
thermal source, the wireless sensor will be able to detect a
sudden spike (because we assume impulsive thermal sources)
in temperature, and hence, infer the arrival time of thermal
source.

Recall that the j-th thermal source arrives at tj . Let

σk , {i ∈ {1, ...,m} | xk−1 < ti ≤ xk} (16)

Namely, σk is the set of thermal sources arrived between
the (k− 1)-th and the k-th ON commands. Upon each new
arrival of thermal source, our online algorithm sets a timer
such that the total cost (i.e., sum of transmission and dis-
turbance costs) for σk if an ON command is transmitted
immediately is equal to the disturbance cost for σk if an ON
command is transmitted after waiting for some time τ .

To be specific, suppose the last ON command is transmit-
ted at time xk. We decide the transmission time of the next
ON command (xk+1). The cost incurred if an ON command
is transmitted immediately (i.e., at time tj) is given by

η + (1− η) ·
∫ tj

t=xk

[Txk (t)− Tmax
des ]+dt (17)

On the other hand, the total cost if an ON command is
transmitted after waiting for time τ (i.e., at tj + τ) is given
by

(1−η)·

[∫ tj

t=xk

[Txk (t)− Tmax
des ]+dt+

∫ tj+τ

t=tj

[Txk (t)− Tmax
des ]+dt

]
(18)



Equating Eqn. (17) and Eqn. (18), we obtain τ as a solution
to the following equation.

η

(1− η)
=

∫ tj+τ

t=tj

[Txk (t)− Tmax
des ]+dt (19)

However, if there is an arrival of a new thermal source (at
tj+1) before timer expires, then we have to reset the timer
and obtain a new τ as a solution to the following equation.

η

(1− η)
=

∫ tj+1+τ

t=tj

[Txk (t)− Tmax
des ]+dt (20)

Thus, upon each new arrival, we increment the upper in-
tegration limit in Eqn. (20) and get a new τ . The complete
algorithm is presented in Algorithm 2 (AONL).

Algorithm 2 OnlineAlgorithm AONL, Input(tnow)

1: Global variables: τ, timer
2: Initialization: τ ← 0, timer← 0

3: if tnow > timer then . upon the beginning or af-
ter each OFF command

4: Find τ such that

η

(1− η)
=

∫ tnow+τ

t=tnow

[Txk(t)− Tmax
des ]+dt

5: timer← tnow + τ
6: end if
7: if tnow = timer then . timer has expired
8: Transmit an ON command
9: else if tnow < timer then . timer has not expired yet

10: if j-th new thermal source is detected at tnow then
11: Let tj be the time after the last ON command
12: Find τ such that . decrease the timer due to

new thermal source

η

(1− η)
=

∫ tnow+τ

t=tj

[Txk (t)− Tmax
des ]+dt

13: timer← tnow + τ
14: else
15: Do not transmit . wait for timer expiry
16: end if
17: end if
18: if Room Temperature ≤ Tmin

des then
19: Transmit an OFF command
20: end if

Selecting the timer in such a manner will make AONL be-
have as follows. Upon the arrival of a each new temperature
command, the algorithm sets a timer such that the expiry
of timer will indicate that the comfort level threshold has
reached and an ON command needs to be transmitted to
the air-conditioning system. If an additional thermal source
arrives before the timer expires, then a new smaller timer
is set because the comfort level threshold will reach sooner
due to the additional thermal source. In any case, whenever
the timer expires, an ON command is transmitted and the
current outstanding sequence is ended.

Example: We provide an example to illustrate the op-
erations of offline optimal and online algorithms. In the
example, the outdoor temperature is assumed to follow si-
nusoidal pattern. The input temperature sampled by the

wireless sensor as a result of thermal sources entering the
room at at random intervals are given by Table. 1. For con-
venience, we restrict the example to 10 input samples (i.e.,
m = 10). The maximally desirable temperature Tmax

des is 24
degree Celsius.

Table 1: Arrivals of impulsive thermal sources

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
4 12 15 21 26 30 34 35 40 43
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

24 23 24 25 23 29 24 27 25 28

For the arrivals shown in Table. 1, we execute AOFL. Ta-
ble. 2 lists the entries Cost[i, j], where the minimum costs
(i.e.,Costmin[i]) are highlighted in yellow.

Table 2: Costmin[i] and Cost[i, j] for offline optimal
algorithm

i,j 1 2 3 4 5 6 7 8 9 10
1 1.4
2 4.1 4.5
3 7.4 7.1 7.9
4 11.5 12.0 12.6 14.4
5 17.1 17.2 18.5 20.0 22.5
6 23.9 23.8 24.6 26.6 28.7 31.8
7 31.0 31.1 31.8 33.2 35.9 38.6 42.3
8 37.4 36.6 36.7 37.4 38.8 41.5 44.2 47.9
9 44.8 46.3 47.2 49.1 51.4 54.4 58.6 62.7 67.8
10 54.0 53.2 54.6 55.5 57.4 59.7 62.7 66.9 71.0 76.1

After obtaining Costmin[m], we use backtracking to deter-
mine the optimal decision variables x∗ as

x∗ = (t1, t3, t4, t6, t8, t10)

where each ti is the time to transmit an ON command.
For the same arrivals, the online algorithm online algo-

rithm AONL gives the following solution

xONL = (t6, t10)

The decision made by both algorithms are illustrated in
Fig. 4.

Figure 4: An illustration of the decisions by the of-
fline optimal and online algorithms

Finally, the costs of both algorithms and the competitive
ratio are computed as:

Cost(x∗) = 53 Cost(xONL) = 63 CR(AONL) = 1.19



4.3 Competitive Analysis
Let x∗ be the offline optimal solution, while xONL is the

output solution given by online algorithm AONL . We define
the competitive ratio as

CR(AONL) , max
a,Tod

Cost(xONL)

Cost(x∗)
(21)

We show that the competitive ratio i.e., CR(AONL) ≤ 2.

Theorem 2. Cost(xONL) ≤ 2 · Cost(x∗)

Proof. Assume that AONL sends a total of m ON com-
mands for certain external thermal source arrivals, thus par-
titioning the sequence into m subsequences, where each sub-
sequence ends with an ON command being transmitted to
the air-conditioning system. The total cost by AONL for
the input a is the sum of the cost for transmitting m ON
commands and the extra latency cost for each subsequence,
which can be calculated as follows. First, as shown previ-
ously, AONL sets τ , such that

η

(1− η)
=

∫ tj+τ

t=tj

[Txk (t)− Tmax
des ]+dt (22)

Note that
∫ tj+τ
t=tj

[Txk (t)−Tmax
des ]+dt is a strictly increasing

function in τ . Hence, the solution τ always exists and is
uniquely defined. Also, it can be seen from Eqn. (22) that
the timer is set in a manner that equalizes the total ther-
mal disturbance of the subsequence to η/(1− η). Thus, the
disturbance cost for each subsequence is η

(1−η) · (1− η) = η.

The total cost incurred by AONL , therefore, is

Cost(xONL) = cost of m ON commands

+ disturbance cost for m subsequences

= mη +mη = 2mη (23)

To calculate Cost(x∗), let m∗ be the number of ON com-
mands transmitted to the air-conditioning system in an op-
timal solution. When m ≤ m∗, it immediately follows that
Cost(x∗) ≥ m∗η ≥ mη. Thus Cost(xONL)/Cost(x∗) ≤ 2.

We now consider the case when m > m∗. Since the m∗

optimal ON commands are distributed over the m subse-
quences partitioned by AONL . Thus, at least m−m∗ subse-
quences in online algorithm partition have no ON command
at their end from the corresponding optimal solution. We
claim that for each such a sequence, the disturbance cost is
at least η in AONL, because AONL decides ON command in
such a way that the disturbance cost is equal to weighted
cost of ON command (i.e., η). It is straightforward to see
that disturbance cost of such a subsequence is at least η,
because AONL resets the room temperature to Tmin

des at the
beginning of each subsequence, whereas offline optimal al-
gorithm does not. This induces a total disturbance cost of
at least (m −m∗)η to the optimal solution. The total cost
of offline optimal algorithm is:

Cost(x∗) ≥ m∗η + (m−m∗)η = mη (24)

Thus, Cost(x∗) ≥ mη, which is at least half of Cost(xONL).

5. SIMULATION STUDIES
In this section, we present the results of the simulations to

experimentally evaluate the performance of our algorithms.
We have used the classical ON/OFF algorithm as a baseline

control model. In the classical ON/OFF technique (also
known as bang-bang or hysteresis control), the wireless sen-
sor sends an ON command to the air-conditioner whenever
the room temperature reaches Tmax

des and OFF command
when the temperature drops to Tmin

des . First we compare the
online solution against the baseline algorithm. We, then,
provide a detailed cost comparison between the online and
offline algorithms under different models of random thermal
sources and different values of η.

In the first experiment, all three algorithms were run mul-
tiple times for different values of η to determine their relative
performance against each other. Fig. 5 shows the results of
the experiment. The input size during all experiments was
1000. As can be seen, the average cost ratio of the online al-
gorithm against offline algorithm is always below 1.5 which is
much better than the theoretical ratio of 2. We can also see
that our algorithm always perform better than than classic
ON/OFF control technique.

Figure 5: Simulation results showing the perfor-
mance comparison between the online, the offline,
and the classical ON/OFF algorithms.

We now compare the performance of the online algorithm
with the optimal offline algorithm under different models
of random thermal sources. For the next experiment, we
draw the random thermal sources from Poisson distribution.
Poisson distribution is with one parameter, where parame-
ter, λ, is both the mean and the variance of the distribu-
tion. Thus, we can change the behaviour of random thermal
source by changing λ. Poisson distribution is suitable in sit-
uations that involve counting the number of times a random
event occurs in a given interval (e.g.,time, distance, area
etc.). We ran the simulations for different models of ran-
dom thermal sources generated by varying the parameter
λ. Fig. 6 shows the simulations results for λ ∈ {10, 20, 30}.
and η ∈ {0.1, 0.2, ..., 0.9}. The vertical axis gives the ratio
of the cost of the online algorithm’s solution to the cost of
the optimal solution and the horizontal axis represents the
relative cost weighting of sending a control signal to the air-
conditioner. By looking at each line, it can be seen that the
cost ratio gets closer to one when the value of η approaches
either zero or one. This means that the online algorithm per-
forms better when the relative weighting of sending a control
signal is either very low or very high. It can also be ob-
served that the performance of the algorithm improves as we
decrease λ (i.e.,reducing the random thermal disturbances).

Similar results were observed when the experiment was re-



Figure 6: Competitive ratio of the online algorithm
against the optimal algorithm when random thermal
sources are drawn from Poisson distribution

peated, with random thermal sources drawn from Binomial
distribution (see Fig. 7). Binomial distribution requires a
parameter p, the probability of success. In our case, p is the
probability of a random thermal source entering the room at
a certain time. The results shown are for p ∈ {0.2, 0.5, 0.75}
and η ∈ {0.1, 0.2, ..., 0.9}. Once again, as expected, the al-
gorithm’s performance improves as we reduce the value of p
(i.e.,the probability of occurrence of thermal disturbances).

Figure 7: Competitive ratio of the online algorithm
against the optimal algorithm when random thermal
sources drawn from Binomial distribution.

6. RELATED WORK
Recently, many studies have explored the use of intelli-

gent methods to control HVAC systems. These methods
vary from simple manipulation of set-point temperatures
to more sophisticated techniques such as fuzzy logic, neu-
ral networks, genetic algorithms etc. In this section, we
first summarize a few papers that are relatively simple ex-
tensions to the classical HVAC control techniques, then we
discuss several state-of-the-art intelligent control techniques
employed in HVAC systems. We also present a brief sur-
vey of the recent works on HVAC control through WSN. We
conclude this section by discussing a paper that is somewhat
related to our work in that it also aims to optimize the wire-
less sensors cost while maintaining the control performance
within an acceptable range.

Extensions of Classical Techniques: In [12], the au-
thors proposed a relatively simple way of controlling the
HVAC systems in which the set-point temperature of the
regulator and thermostat is manipulated. They developed
an adaptive module of classical regulator to control the peak
consumption and provide thermal comfort. Their regulator
is based on varying temperature set-point of the air condi-
tioning in response to maximum permissible power. Similar
approach has been used in [13], where an optimal control
scheme for compressor ON/OFF cycling operations has been
proposed.

Intelligent HVAC Control: The design of an intelli-
gent comfort control system by using human learning strat-
egy for an HVAC system was proposed in [14]. Based on a
standard thermal comfort model, a human learning strategy
was designed to tune the user’s comfort zone by learning
the specific user’s comfort preference. The integration of
comfort zone with the human learning strategy was applied
for thermal comfort control. The authors in [22] proposed a
multi-objective particle swarm optimization algorithm, em-
bedded in a controller. The algorithm was used to determine
the amount of energy dispatched to HVAC equipment based
on utilizing swarm intelligence technique.

A method based on fuzzy logic controller dedicated to the
control of HVAC systems has been proposed in [2]. They ob-
tained the initial knowledge-base required by fuzzy logic con-
troller from human experts and control engineering knowl-
edge which they subsequently tuned by a genetic algorithm.
In [17], a hierarchical structure for the control of an HVAC
system using the Model Predictive Control (MPC) algo-
rithms and fuzzy control algorithms has been proposed. The
main task of the proposed hierarchical control system is to
provide thermal comfort and minimize energy consumption.
Their technique showed a good comparison between two con-
flicted objectives: thermal comfort and energy consumption.
The authors of [3] used model-predictive control technique
to learn and compensate for the amount of heat due to oc-
cupants and equipment. They used statistical methods to-
gether with a mathematical model of thermal dynamics of
the room to estimate heating loads due to inhabitants and
equipment and control the AC accordingly. However, major-
ity of the existing intelligent HVAC control techniques rely
on stochastic knowledge about the input which makes them
less robust in uncertain environments.

WSN-based AC Control: In [11], an air-conditioning
control system for a dynamical situation in wide public spaces
has been proposed. They tracked people movement through
multiple large scale scanners. Also, networked temperature
sensors were deployed in the target space for temperature
monitoring. The obtained temperature distribution was in-
tegrated with the results of people tracking in real-time to
direct HVAC to locations with high population density and
insufficient temperature. In [20], the authors presented the
conceptual design of an adaptive multi zone HVAC control
system that utilized WSN for predicting the occupancy pat-
tern of people in a building. Their control strategy involved
turning off the AC in unoccupied zones and manipulating
the set-point temperature. A multi-sensor non-learning con-
trol strategy has been proposed in [18]. This paper evaluates
the energy and comfort performance of three multi-sensor
control strategies that use wireless temperature and humid-
ity sensors and that can be applied to existing ON/OFF
central HVAC system. The multi-sensor control strategies



adjust the temperature set point of a thermostat to (i) con-
trol the average of all room temperatures using a tempera-
ture threshold logic, (ii) minimize aggregate discomfort of all
rooms, or (iii) maximize the number of rooms within a com-
fort zone. The strategies were evaluated in a real occupied
house and were found to outperform single-sensor control
strategies.

In [15], the authors proposed somewhat similar approach
to our work. They introduced a co-design methodology that
optimizes the sensor network cost while maintaining the con-
trol performance within an acceptable range. They applied
the developed co-design methodology to a distributed con-
trol for building lighting systems. They empirically com-
pared the developed system for building lighting control with
a baseline control method and reported significant reduction
in energy use and saving in the network cost while maintain-
ing the user comfort.

7. CONCLUSION AND FUTURE WORK
While intelligent systems for smart buildings have been

a popular research topic, online optimization approach has
been explored to a lesser extent. This paper investigates
a new breed of research problems by applying online algo-
rithms to wireless sensor based smart building control. We
provide the first study of optimizing the trade-off between
the battery lifetime of wireless sensor and the effectiveness
of HVAC remote control in the presence of uncertain fluc-
tuations in room temperature. We present both an effective
offline optimal algorithm and a 2-competitive online algo-
rithm.

There are plenty of research opportunities to extend the
results of this work to a more general context. So far, we de-
vised a deterministic online algorithm. It is well-known that
randomized online algorithms can exhibit both improved
theoretical competitive ratio and practical performance. For
the on-going work, we will study randomized online algo-
rithms for wireless sensor controlling air-conditioning sys-
tems, and evaluate their performance.

In this paper, we only consider a single sensor control set-
ting. In a general setting, there may be multiple sensors and
multiple air conditioning systems. The interaction among
multi-input and multi-control systems in a networked set-
ting will be a challenging yet important research problem.

Finally, we are implementing our control algorithms in
real-world air-conditioning systems. More empirical studies
will be presented in the extended version of this work.
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APPENDIX
A. PROOF OF LEMMA 1

In this subsection, we prove Lemma 1 that we used in
Section 3.2. The differential equations are again listed here:

dT̃ (t)

dt
=

1

c ·Mair
·
(

dQin(t)

dt
− dQac(t)

dt

)
(25)

dQin(t)

dt
=
Tod − T̃ (t)

Req
(26)

dQac(t)

dt
=

c ·Mac · (T̃ (t)− Tac)

Eac
(27)

where dQin(t)
dt

is the heat flowing into the room from out-

side environment and and dQac(t)
dt

is the chilled air flowing
from air conditioning system into the room. By substituting,
Eqn. (26) and Eqn. (27) into Eqn. (25), we obtain

dT̃ (t)

dt
=

1

c ·Mair
·
(
Tod − T̃ (t)

Req
− c ·Mac · (T̃ (t)− Tac)

Eac

)
=
Eac · Tod − Eac · T̃ (t)−Req · c ·Mac · (T̃ (t)− Tac)

c ·Mair ·Req · Eac

=
Eac · Tod +Req · c ·Mac · Tac

c ·Mair ·Req · Eac

− Eac +Req · c ·Mac

c ·Mair ·Req · Eac
· T̃ (t) (28)

Let

C1 =
Eac · Tod +Req · c ·Mac · Tac

c ·Mair ·Req · Eac

C2 =
Eac +Req · c ·Mac

c ·Mair ·Req · Eac

Then, Eqn. (28) can be written as:

dT̃ (t)

dt
= C1 − C2 · T̃ (t)

By rearrangement,

dT̃ (t)
C1
C2
− T̃ (t)

= C2 · dt

Integrating both sides with respect to t,

− log |C1

C2
− T̃ (t)| = C2 · t+ C

By substituting t = 0 (i.e.,initial condition), we obtain

− log |C1

C2
− T̃ (t)| = C2 · t− log |C1

C2
− T̃ (0)|

eC2·t =

C1
C2
− T̃ (0)

C1
C2
− T̃ (t)

T̃ (t) =
C1

C2
−
(
C1

C2
− T̃ (0)

)
· e−C2·t (29)

This concluded the proof as Eqn. (29) is the same as Eqn. (4).

B. CALCULATION OF ROOM THERMAL
RESISTANCE

The building thermal model used in this paper (both dur-
ing the theoretical part and simulations) requires the total
equivalent (also called lumped) thermal resistance, Req, of
the entire room. Therefore, we include a simple example
on how to calculate Req using the rooms dimensions, num-
ber and sizes of windows and the type of insulation used
in walls. Table 3 shows the room geometry and insulation
details used for calculation of Req.

Table 3: Room geometry and insulation details

Description Value
Room length (Lenroom) 10 m
Room width (Widroom) 5 m
Room height (Htroom) 4 m
Roof pitch (Pitroof ) 40
Number of windows (Numwindows) 4
Height of windows (Htwindows) 1 m
Width of windows (Widwindows) 1 m
Wall insulation having glass wool (Lwalls) 0.2 m
Window insulation (Lwindows) 0.01 m
Thermal conductivity of walls (Kwalls) 0.038
Thermal conductivity of windows (Kwindows) 0.78

From the values in Table 3, we can calculate the equivalent
resistances of the walls as follows.

RWall =
LWall

kWall ×Wallarea
(30)

Where,

Wallarea = (2 · Lenroom ·Htroom) + (2 ·Widroom ·Htroom)

+ [2 · (1/ cos(Pitroof/2)] · (Widroom · Lenroom)

+ [(tan(Pitroof ) ·Widroom)]−Windowarea



Similarly, the equivalent resistance of windows is calculated
as:

RWindow =
LWindow

kWindow ×Windowarea
(31)

Where,

Windowarea = Numwindows ·Htwindows ·Widwindows

From Eqns. 31 and 30, Req is calculated as.

Req =
RWall ×RWindow

RWall +RWindow
(32)

C. SENSOR POWER CONSUMPTION
In order to maximize the battery life-time of wireless sen-

sors, it is important to understand the energy consumed
by each component of a wireless sensor node. Therefore, we
provide power consumption data for each unit (i.e.,transceiver,
micro-controller, and sensor) in common wireless sensor nodes
(see Tables 4-6). From the tables, it is evident that radio
communication is most energy-intensive among the three op-
erations (i.e.,sensing, processing, and communication). Spec-
ifically, the transceiver power consumption can get as high as
28 times compared the power consumption of micro-controller
(see Table 4 and 5). The ratio becomes even higher when
compared to the power consumption of the sensor modules.
For these reasons, we aim to maximize the battery life-time
of the wireless sensor by optimizing the update frequency of
the control commands sent to the air-conditioner.

Table 4: Power Consumptions of Transceivers and
in Common Wireless Sensors. [4]

Transceiver
Model

Transmission
(mA)

Reception
(mA)

Sleep
(mA)

TR1000 12 3.8 0.0007
CC1000 10.4 7.4 0.03
CC2500 21.6 12.8 0.0004
nRF2401A 10.5 18 0.0004
CC2420 17.4 18.8 0.4
RF230 14.5 15.5 0.00002
MC13192 30 37 0.5
JN5121 45 50 0.0004

Table 5: Power Consumptions of MCUs in Common
Wireless Sensors. [4]

MCU
Model

Active (mA) Sleep
(mA)

AT163 5 0.025
AT128 5.5 0.015
80c51 4.3 0.19
MSP430 1.8 0.00512
HCS08 4.3 0.0005

Table 6: Power Consumptions of Sensor Module in
Common Wireless Sensors. [4]

Sensor
Module

Function Current
(mA)

SHT15 Humidity, Temperature 0.55
TSL2561 Light 0.24
ADXL202 Accelerometer 0.6

Table 7: Key Notations in This Paper

Notation Definition

T̃ (t) Ambient room temperature at time t (unit:
degree Celsius)

T0 Initial ambient room temperature at time
t = 0

Tod Outdoor temperature
Tac Temperature of the cold air from air

conditioner

Mair Total air mass inside the room
Mac Air mass flow through air conditioner

(Kg/hr)

Eac Air conditioner efficiency

c Heat capacity of the air at constant
pressure

Req Equivalent thermal resistance of the entire
room

W (t) Sequence of impulsive thermal sources

wi Level of thermal intensity entering the
room at time t

a Sequence of arrivals of impulsive thermal
sources

Tmax
des Maximal desirable temperature

Tmin
des Minimal desirable temperature

Tτ (t) Temperature of thermal sources

X Set of decision variables

xk Time that the kth ON command is issued
by the wireless sensor

D(x) Thermal disturbance given decision vari-
able x

[x]+ max(x, 0)

Ttk(t) Temperature of the room after kth ON
command

η Weight assigned to balance the update fre-
quency and the thermal comfort

AOFL Offline Algorithm

Cost[i, j] Minimum cost when the last and second to
last ON command are transmitted at time
ti and ti−j respectively

Costmin[i] Minimum cost when the last ON command
is transmitted at time ti

idx[i] Array to record j when Costmin[i] ←
Cost[i, j]

σk Set of thermal sources arrived between the
(k − 1)-th and the k-th ON commands

AONL Online Algorithm

Dij(τ) Total thermal disturbance accumulated
from the start of the subsequence to the
latest arrival

tj The time when the timer was first set after
transmission of the last ON command

λ Mean and variance of the Poission
distribution

p Success probability. A parameter required
by Binomial distribution


