Exact Analysis of Latency of Stateless
Opportunistic Forwarding

Chi-Kin Chau Prithwish Basu
University of Cambridge & University College London, UK BBN Technologies, Cambridge MA, USA
Chi-Kin.Chau@cl.cam.ac.uk pbasu@bbn.com

Abstract—Stateless opportunistic forwarding is a simple fault- “random walk manner”, until they either expire or reach the
tolerant distributed approach for data delivery and information  destination. For instance, ad hoc routing protocols mag als
querying in wireless ad hoc networks, where packets are for- ;56 opportunistic forwarding (instead of flooding) as a keing

warded to the next available neighbors in a “random walk” tina techni in the ab ft | inf fi
fashion, until they reach the destinations or expire. This pproach copy routing technique in the absence ot topology Inforomatl

is robust against ad hoc topology changes and is amenable toHowever, despite the simplicity of implementation, it imge-
computation/bandwidth /energy-constrained devices; however, it ally difficult to predict the end-to-end latency, becausekets
is generally difficult to predict the end-to-end latency sufered may (legitimately) travel in loops or along sub-optimal st
by such a random walk in a given network. In this paper, we  Ajhough there have been several simulation studies and

make several contributions on this topic. First, by using spctral :
graph theory we derive a general formula for computing the asymptotic analyses to suggest the usefulness of stateless

exact hitting and commute times of weighted random walks on a Opportunistic forwarding (e.g. [1], [2]), this paper prete
finite graph with heterogeneous sojourn times at relaying ndes. exact analytical formulas to predict the latency of staele

Such sojourn times can model heterogeneous duty cycling re$ in - gpportunistic forwarding on finite graphs. The benefit okthi
sensor networks, or heterogeneous delivery times in delaglerant style of analysis is that it can reduce the dependence of

networks. Second, we study a common class of distance-regul . lationd di ise th tofi |
networks with varying numbers of geographical neighbors, ad simulatons, and IS more precise than asymptouc analyses

obtain simple estimate-formulas of hitting times by numercal Which typically hold for large networks only, whereas most
analysis. Third, we study the more sophisticated settings fo practical networks are often moderate in size.

r_andom geographlcal _Iocatlons and dlsta}nce—depenqent_xp;rn A. Motivating Scenarios

times through simulations. Finally, we discuss the implictons

of this on the optimization of latency-overhead trade-off. We first present two motivating scenarios where stateless
Index Terms—Opportunistic forwarding, Wireless sensor net- forwarding may be useful: _ _

works, Delay tolerant networks, Random walks on finite grapls, (i) Sensor Networkdn this setting, we are given a network

Spectral graph theory of battery-powered nodes that are capable of sourcing and

relaying packets for delay-tolerant applications. Realgyile-

] N . . ) vices performpseudo-random duty cyclingleep scheduling)
Routing data to specific endpoints in ad hoc wirelesg conserve energy [3]-[5], such that an awake transmitter ¢
networks typically requires accurate global topology ffo communicate with the receiver only when the latter is awake.

mation and_ proactive route maintenance by all particigatintg, 1ow values of duty cycling (or wake-up) probability, the
nodes. Various flavors of ad hoc networks such as sengghwork may be highly disconnected, and hence traditional
networks and delay tolerant networks present challenges SWouting protocols that operate upon freshly gathered tpol
as frequent disr_uptions_of connectivity. For insFance,einss;r updates may not be very suitable. So, stateless oppoitunist
networks relaying devices may be performing sleep-wakgyarding by which the packets are forwarded to the neighbo
duty cycling, while in delay tolerant networks mobile patkenat wakes up first, may be a viable strategy [3]. We consider
carriers may be often out of reach. _ . the “low traffic volume” scenario, where the interference
~ Always flooding a data item may be reliable and simple bk concurrent wireless transmissions is negligible, but th
is often too bandwidth and energy intensive; hence, a simplgtimation of end-to-end latency is a significant concern.
approach is stateless opportunistic forwarding — packets(ii): Store-carry-forward Networka/e follow the paradigm
are forwarded to one of the next available neighbors in & gg-called “pocket switched networks” [1]. The nodes of
f— network are collection sites that can store messages, armd ha
This researc_h_was sponsored by the U.S. Army Research ltabpra fixed hical | fi Traelav-tol t link th
and the U.K. Ministry of Defense and was accomplished undgreément geographical locations. ay-tolerant linksare the
Number W911NF-06-3-0002.I. The views and conclusions aioetl in this mobile message carriers (e.g. vehicles) randomly wanglerin
document are those of the author(s) and should not be ietetbas repre- hatween collection sites. Every message carrier has aelimit
senting the official policies, either expressed or impliefithe U.S. Army . L
Research Laboratory, the U.S. Government, the U.K. Minist Defence reachable region and messages can only be forwarded within

or the U.K. Government. The U.S. and U.K. Governments arbhagized to
reproduce and distribute reprints for Government purposgwithstanding 2In our experience, one has to run several thousand simusatio get a
any copyright notation hereon. good estimate of the mean latency even in small networks.
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a certain geographical region by a single carrier. By statel Il. PROBLEM FORMULATION
opportunistic forwarding, the packets are picked up by 8¢ fi |, {his section, we formulate a model to capture stateless

near-by carrier that approaches the respective collesii@n 4 rtynistic forwarding in sensor networks and delayréoie

and are off-loaded to the next collection site stopped by thenyorks, which is related to random walk on finite graphs.

carrier, independent of the paths traveled by the packets. also, we formulate a common class of distance-regular net-
For the two aforementioned scenarios, stateless oppeftuRirks with varying numbers of nearest neighbors to model the

tic forwarding can be modeled by a random walk on a ﬁ”'tﬁeographical proximity in opportunistic forwarding.

graph. We are motivated j[O study several aspects of IatefncyA(? Random Walks on Finite Graphs
random walks on graphs:

1) Hitting time (or access time): The expected time of a. dTO m]f_) d_fl the st?tedljes; optp(;rtunlsg;cjor]\;vzagd|ngr; wchon-
packet from the source toit a certain destination. Sider a finiteconnectedindirected graply = (V, £), where

2) Commute timeThe expected round-trip time betweeﬂls the set of nodes (e.g. relaying devices or collectiorssdad
source and destination £ is the set of edges. Each edge means one-hop forwarding is
3) Cover time The expected time of a packet from theoossible between the pair of nodes (e.g. by radio transomissi

source to visit every other node in the network. or packet carriers). Let = [V], m = |£|. We also letV,, €V
u visit every I W be the set of neighbors aof, and its degred,, = |V,|.

B. Our Contributions We consider the setting of slotted time. In random walk

Hitting, commute, and cover times of random walks haJased forwarding, a packet is stored in a node for certaie tim
been studied extensively in the literature [6]-[13]. A nrajoSIOtS before there is an opportunity to be forwarded to the ne
approach is based on spectral graph theory [6], [L2]-[1#]. hop neighbor. We assume that the forwarding operation in the

this paper, we study the general setting of random walks wigirrent hop is stateless, being independent of the forwgrdi

heterogeneous sojourn times at relaying nodes. For irstarfP€rations of previous hops.

these can correspond to heterogeneous duty cycling rates iff®" ach neighboring pair of nodesv € V, we let’,,, be
sensor networks, or heterogeneous delivery times in stof@€ expected sojourn time of a packet that travels frota v.
carry-forward networks. We generalize the formulas in [6}/e @ssign & weigh,, to each edgéu, v) to indicate the
[12] to compute theexact hitting and commute times with he availability of opportunistic forwa_r(_jmg operqtlorrstWeen
heterogeneous sojourn times. Our results also enable mbe nedes, such that, ., the probability that: will forward

accurate numerical analysis of cover times via MatthewRACKets tov € N, is defined as:

bounds [7], [8]. a2 M’ where w, £ Z Wy o
Furthermore, we study random walks on a common class ' Wey o N ’

of distance-regular networks with varying numbers of nsre\pte that in this paper we assume the symmetric case: =

neighbors, which captures the notion of geographical proy; . Therefore, this defines a random walk on a weighted

imity in sensor networks and delay tolerant networks. F_%rréph, or equivalently, a reversible Markov chain [7].

instance, in anr-nearest neighbor cycle (or torus), there is Tpe hitting timeH,, ,, from sourceu to reach destination
an edge between every pair of neighbors-dfops away on a ¢5n pe computed recursively by:

cycle (or torus). The varying numbers of nearest neighbors _
by 7's can capture the levels of overhead for maintainiﬁg B GZN Puw(lu,wtHe v) = Lyt D puwHu if u#v
.ﬁ,u = w w

local neighbors (e.g. as the levels of transmission powe 0 weN, TR
sensor networks, or the areas of reachable regions of kzarrie N . . _ (1%
in delay tolerant networks). One of our aims is to understatfieret, = >~ Puw - Luw iS the expected sojourn time'a
and optimize the latency-overhead trade-off. Exam IZENM

Although there has been a study in [15] about the asymptoﬁ(: P

analysis on the asymptotic order of cover timesferearest ~Example 1 (Sensor Networks with ii.d. Random Duty
neighbor torus (called-fuzz of torus) via effective resistance,CYycling: Let pqc be the duty cycling rate, such that in one
in this paper we provide exact formulas via spectral graghne slot, each node is awake with i.i.d. probability, and
theory to compute the hitting and commute times-emearest S dormant with probabilityl — p4c. Hence, every neighbor
neighbor torus. This work offers the exact analyses of th&s equal chance of opportunistic forwarding;, = 1. Then
latency of stateless opportunistic forwarding on finitepyrs, the waiting time for bothu and v to be awake in the same
which are more precise than asymptotic analyses on t#@e slot is a geometric random variable with paramefer
asymptotic orders. Our formulas can be computed efficienflys shown in [3], the per-hop latency is = W
without relying on extensive simulations.

Finally, we study more sophisticated settings of random Example2 (Sensor Networks with i.i.d. Pseudo-random
geographical locations and distance-dependent sojonresti Duty Cycling: As proposed in [4], if neighboring nodes first
through simulations, and discuss the ramifications to t§¥change the seed of pseudo-random sequence to generate

optimization of latency-overhead trade-off in opportisis duty cycling, then a node can predict the exact awake time
forwarding algorithms. slots of its neighbors. Lepq. be the duty cycling rate.



Similarly, w,,, = 1. Then the waiting time for bothx and A. Effective Resistance

v to be awake in the same time slot is a geometric randome first survey the approach of effective resistance [9]:[11
variable with parametegac, Hence l, = =5z Given a finite graply, we assign each edde, v) € £ a resis-
) _ tance of valuel /w,,,. For any pair of nodes, v € V (which
Example3 (Delay Tolerant Networks with Geographlcalmay not be neighbors), we define the effective resistahge

Dependence We assume that each collection site has iigs the voltage difference betweerandv, when a unit current
packet carriers commuting among its neighbors within a C€& jnjected atu and removed from.

tain bounded reachable region. The location of packetesarri | [11], it is shown that;

within the reachable region follows an i.i.d. stationargtdi

bution. Hence, we assume that the per-hop latency depend lin Cuw=Rup- Z Wayw (Cuo + o) (3
early on the geographical distance, such that = ¢||u — v|| (uv)€E

andw,, = 1. That is, the further away the nodes are, theombining Eqgns. (2)-(3), it is possible to compute hitting
longer latency is incurred. Although other mobility model§mes via effective resistance. However, it is non-trivial
(e.g. random waypoint model) can also be considered, closeé@mpute efficiently the exact values of effective resistanc

form expressions fow,, , and/, , will be more involved. of a arbitrary network. In this paper, we rely on an alternate
approach by spectral graph theory.

C. Nearest Neighbor Networks
B. Spectral Graph Theory

In this paper, we consider a common class of distance- i )
regular networks that can capture the notion of geographicaDenote the adjacency matrix gfas A such that
proximity. For simplicity, we consider boundary-less spac A, 2 Wy f (U7U) €&

Suppose there is a set ofnodes placed evenly in one dimen- _ ’ 0 o.therW|se .
sion as a cycle, or in two dimensional space as a torus. \ReMetimes, we denote the adjacency matrix of gréphs
then define am-nearest neighbor cycle as the graph with edge[9]- Denote the diagonal matrix @f asD such that
between every pair of nodes withinhops away on the cycle. D, . 4] Wu if u= v
This naturally captures the notion geographical proxinsitich “r 0  otherwise
i 1thi i i i _1 _1
that neighbors are within the bounde_zd transm|35|on range\ih define normal matrix all 2 D > AD . That is,
sensor networks, or reachable by a single carrier wandering Wuw o f
o ) A [ u,v) €
a bounded region in delay tolerant networks. See Fig. 1 (b) Ny, =4q YWutv .
: ' 0 otherwise
for an example of 2-nearest neighbor cycle.

To generalize to two dimensional as a torus, we note th’?;l?te that N is symmetric, and hence there exist real

there are various ways of defining the nearest neighborse' e”"a“;es_ and eigenvectors Bl. Let )"? an(_j vi be the
two dimensions. One may use thé norm such that there is (k+1)-th* eigenvalue and the corresponding eigenvectaWof
an edge between the nodes whose shortest path is within
hops on the torus (see Fig. 2 (a)), 6t° norm such that the
vertical and horizontal distance are both withimops on the
torus (see Fig. 2 (b)). Generally, we can allow other nor 9
(e.g. L2 norm to model circular transmission range), which H,, = Z w (Vk-,v _ kau'/k-,v) (4)
however are less convenient to handle. " I L=k \ wy V Wy Wy

1. HITTING AND COMMUTE TIMES OF RANDOM WALks  and hence byC, , = H, , + H, 4,

B.1. Homogeneous Sojourn Times
Consider homogeneous sojourn timég:= 1 for all w. In
n@ (Theorem 3.1), Lovasz solved Eqn. (1) with a solution:

2
In this section, we present two general techniques to solve Cuv= Z W (V’“*“ _ Phw ) (5)
the hitting and commute times of random walks on arbitrary Eidp#1 L= AV

graphs — effective resistance and spectral graph theosgeda Alt
on spectral graph theory, we then derive efficient gener
formulas for the hitting and commute times of random wal dges), it can be easily generalized to weighted graphs

with heterogeneous sojourn times at relaying nodes In [12] (Theorem 8), Chung and Yau considered the (nor-
Denoter,, as the unique stationary distribution of rando%alized) Laplacian of’a graph defined Bs2 I — N, and

walk ong. By standard Markov chain theorem [7], we Obta'nihdependently proved Eqn. (4) via discrete Green's fumtio

Ty = Wu  \where W £ Z Wy The complexity of Eqn. (4) or (5) i®(n), and solving the

w Byt eigen spectrum of a symmetric matrix @(n?). Since the
Denote the commute time between nadand nodey as €i9en spectrum oN can be reused for all source-destination
C... Note thatC,,, = H, ,, + H,,, (i.e. the sum of hitting pairs. Hence, the complexity of computing the hitting and

times fromu to v and vice versa). In [10], it is shown that

hough Lovasz considered unweighted graphs wheye=
w (the degree ofy) and W = 2m (twice of the number of

3The order of eigenvalues does not matter.

1 . . s not
H — (C + 7. (C -C ) 2 The proof given by Lovasz in [6] is rather sketchy and some &@ps
we 2 wy Xe; w( W w"u) ( ) have been skipped. Hence, we base our results on the oneg]in [1
w



@ () a b
Fig. 1. (a) Cycle. (b) 2-Nearest neighbor cycle. Fig. 2. (a)L! Near((es)t neighbor tori. (H)>° Nearest E\éighbor tori. The dotted
boxes indicate the different levels of neighbors of the eenbde.
commute times for alh? source-destination pairs {8(n3).  hitting and commute times with heterogeneous sojourn times
by Eqn. (4) for alln? source-destination pairs 8(n?).
B.2. Heterogeneous Sojourn Times Finally, we present an instance Bkample3 in Fig. 3 with
In this paper, we consider heterogeneous sojourn tifpes hitting times computed by Eqgn. (7). We have verified that the
Note that one can set,, = 1 for all (u,v) € &, equating hitting times in Fig. 3 satisfy Eqn. (1).
Eqgn. (3) and Eqn. (5) to obtain the effective resistance as:

1 Vi Vi 2
Ruo= D l—Ak(\/w_u_\/w_v) ©6)

k:)\k ;ﬁl

Then one can use Eqgns. (2)-(3) to compute the hitting and
commute times. But the complexity of computing the hitting
times for alln? source-destination pairs becon@gn?).
Nonetheless, it is more efficient to use the similar formulas
- i 3 i
a_s Eq_ns' (4) (5)’ WhIC_h_ takes Orﬂ}'(n ) Moreov_er’ it a"OWS Fig. 3. A randomly generated instance Bxample3, where the radius of
simplification for specific network topology as discusseth®  one-hop reachable region is 0.3. On each node is the hittirgto hit the blue
next section. A major contribution of this paper is Theorem tircled node, where the red number on each edge is the Eanlidistance,
which extends the formulas in [6], [12] to the setting Ofmd the number in brackets is the expected sojourn time &t reade.

heterogeneous sojourn times. IV. NEARESTNEIGHBORNETWORKS
First, we define latency matri§ as: In this section, we especially study the Laplacian of neares
S, 2 { by ifu= v neighbor networks and obtain specific formulas for computin
’ 0 otherwise the hitting and commute times. For clarity, in this sectioa w

consider the homogeneous caég;, = 1 for all (u,v) € &.

a “generalized” Laplacian &k 2 Sfé (I-N)S * That is,

1 i u= o A. Nearest Neighbor Cycles
f‘u,v 2 _“% if (u,v) €& Denote a cycle ofi nodes a€,,. We construct am-nearest
v tutioto neighbor cycle (denoted a€”) as the graph with edges
between nodes and theirnearest left and--nearest right
Note thatL is symmetric, hence there exist real eigenvalugighbors orC,. We label the nodes by the order around the
and eigenvectors oL. Let ¢} and u, be the (k + 1)-th cycle as:0,2,...,n — 1. We consider the uniform symmetric

eigenvalue and the corresponding eigenvectak. of CaASe: Wy utj = Wun—jtu = a5 fOr 1 < j <.

o)

otherwise

o

Theorem 1:Given arbitrary sojourn timé,, > 0 for each Lemma 1:The (k+1)-th eigenvalue and eigenvector of the
u, the hitting time and commute time from to v can be LaplacianL of r-nearest neighbor cycl€, are:

computed by: r 2mjk
P d i 2 —_1_ ijl a; cos ( nj ) _ i k (n—1)k\T
w 'u’k,v p’k,up’k,u Ok = 1 T y M = (1,6 yeeey € )
Ho,= > U—(w o e ) @) S_Lap NG
kiop0 OF CTviv Vututlut e is complex number defined as cos (25) + isin (22).

Cuv:

)

W/ B Pioy \2 Proof: Becausel — o, and u,, are the eigenvalue and
Z o (\/W - \/W) (8) eigenvector of normal matritN of C;. See Appendix. ®
ko, #£0 utu vtu

whereW £ 57 1 ce wuo(luw +Llow) = ey Wurbu.
Proof: We generalize the proof in [12]. See Appendi.

Theorem 2:Supposez; = 1 for 1 < j < r. Without loss
of generality, we consider the hitting time fromto 0 on
r-nearest neighbor cyclé’. Then, it is computed by:

When ¢, , = 1 for all (u,v) € &, it is easy to see that n—1 1 — cos (2zku)
or = 1— X, and u;, = v,. Hence, Eqns. (7)-(8) reduce H,o=2r)_ sin (n”i’“(”*”)
to Eqns. (4)-(5). Similarly, the complexity of computingeth k=1 (2r 4+ 1) — 7“)

sin | &%

9)




Proof: Note that the degreé, = 2r is a constant for all Z 1 —cos (W)

u. Thus,WW = 2rn. By Lemma 1 and Eqn. (4), we obtain;

r—|i

n- = i L (27jl
o L o (EDEO {00} ] — L (_2_: _72 cos (22£) cos (222) — 1)
1-— cos( T “) —isin (M) i=—rj=—r+|i|
H,o= 27‘nz e — (11)
k=1 2rn(1 — 15 cos (M)) 3) (L*° r-Nearest Neighbor Tor(s
Tj:l " 1 — cos (271'(ku+lv))
n—1 2wku n
Z 1 cos (55%) 1 SR 2mik 27l
= T , k,1)€[0,n-112\{(0,0)} 1 — 7o cos (2Z%) cos (Z£L) — 1
113 cos (2228 (DL O = g (3 30 cos (57) cos (55) =)
i=1 (12)
This is due to the identitiesios (y) = cos (WT""“) and (Proof ided: The proof of Theorem 4 relies on the notion
sin (%) — —sin (Qﬂ(nnfwu). Finally, Eqn. (9) follows from ©f two types of composed graphs. We specially denote the
the trigonometric identity of Dirichlet kernel of Lemma 2 inadjacency matrix of grapi as A[G]. We define two types of
Appendix. m composed graphs as follows:
1) Union Graph Giveng = (V, &) andH = (V, F), define
Theorem 3:Whenr < n andn is even, the maximum hit- a graph,G U H, such that the set of nodes¥sand its

ting time on an--nearest neighbor cycle can be approximated ~ adjacency matrix is just the sum of those®fand #:

by: g2 A[GUH] = A[G] + A[H]
no R~ T T2) (10) Namely, the edge weights are the sum of thosg 0.
2) Tensor Product GraphGiven g = (V,€) and G’ =
Proof: Based on careful approximation of the Taylor (V', &), define a graphg x G’, such that the set of
series expansion of Eqn. (9). See Appendix. [ | nodes isV x V', and its adjacency matrix is the tensor
produc? of those ofG, G':
Theorem 2 generalizes our previous results in [14] on only AlG x G'] = AlG] ® A[G']
the maximum hitting times on-nearest neighbor cycle. Namely, (u,v') and (v,v) are adjacent irg x ¢/, if
Whenr = 1, it is well known that via effective resistance (u,v) € £ and(u/,v') € &'. Particularly, ifn. = |V| and
[7], [8] the hitting time for a pair of farthest nodes on an Iis then x n identity matrix, thenA[G] ® I definesn
node cycle is indeed-. Hence, Theorem 3 is accurate for disjoint copies ofG.

nearest neighbor cycles. Fomearest neighbor cycles, Fig. 4 The combinations of union graphs and tensor product graphs
shows that Eqn. (10) gives a relatively accurate approxémat oyer nearest neighbor cycles can generate a wide class of

to the exact computation based on Eqn. (9). nearest neighbor tori with arbitrary norms. We give some
Maximum Hitting Time . . .
1000C- examples of such constructions in Fig. 5.
[ £xad Q000000 0000000 0000000
soar a2 Q000000 0000000 (:10-Q © 0 O P-OGY
L 2@+n@r+ 1) O00O0OO0ODO0OO0O 00QOLOLOO O O0\0 © OO O
8008y Q0094000 000KO0OO 0008 OO0
L O00O0OO0OO0OO 0OOOTCODOO O 0O/O O 0\0 O
4000 CNONONONCHONOINONONONONONONONC IO LONONONONONOCE)
L CNONONONONONOINNONONONONONONG (ONONONONONONG)
2000r (@) (b) ()
i Fig. 5. The figures show different settings of neighbors ef ¢entre node.
0

0 50 ‘100““150““200 . 9 . .
Fig. 4 Hy o computed exactly by Eqn. (9) is plotted against the We consider” nodes placed evenly on the two dimensional

approximation using Eqn. (10). boundary-free surface of a torus. We assume that the setting
of neighbors is uniform to all nodes. We label the nodes by
the coordinateg(u, v), where0 < u,v < n—1 on the surface.

B. Nearest Neighbor Tori We explain the examples in Fig. 5 as follows:
Theorem 4:The hitting timeH,, .,),(0,0) from node(u,v) 1) InFig. 5 (a), each node has four neighbors (two horizon-
to node(0,0) can computed by: tal and two vertical). This indeed forms a torus, whose
1) (Torus: adjacency matrix iSA[C,,] @ I+ I® A[C,]

27r(ku+lv)) 2) InFig. 5 (b), each node has four neighbors (all diagonal).
n If n is odd, then this forms a connected graph. This
defines a graph, with adjacency matrix ASC,,|® A [C,,]

1 —cos (
Z 1—l(COS(2ﬂk)+COS(27Tl))

(k1)€[0,n-1]2\{(0,0)} ~ 2 n n

2) (L' r-Nearest Neighbor Torgs 5The definition of tensor product of matrices can be found ipénmix.



Maximum Hitting Time

3) Let C](s) be anr-nearest neighbor cycle such that 15000

as =1 anda; = 0 for j # s. In Fig. 5 (c), each node Exacl
(u,v) has only four neighbors &g + s mod n,v £t 10000¢r
mod n). This defines a graph, with adjacency matrix as: soooch 39827 log(n)
AlC,(s)] @ A[C, (1)) 2+ P
In fact, a nearest neighbor torus defined by arbitrary norm  eoooc
can be regarded as a union graph of a collection of graphs
with suitable A[C!,(s)] ® A[CE()]. 4000¢
For example, fol0 < k,I < n — 1, define a vectop, ;) 2000¢
sl g (n—1)k\T ! (n—1)i\T
= — 1, g eeny n ® 17 g ey n A P ey
Hk.n n( ‘ ‘ ) ( ‘ ‘ ) Oo 50 100 150 200

. . Fig. 6. ForL! r-nearest neighbor toru¥l(n ny o) computed exactly
B_y Lemma 1, it follows that”(k,l) is the (kn +_l +_1)'th by Eqn. (14) is plotted against the approxirrlzat[‘bn using Ea).
eigenvector of the Laplacian of the example in Fig. 5 (c),

whose eigenvalue is — 1 (cos (222£) + cos (22t)).

Maximum Hitting Time

In general, it can be generalize by the following lemma. 8000C  _ Exacl
Lemma 2:Given a set of tuplesf(sy, t1), ..., (s, t,)} such 6000C/ Mm
that (s;,t;) # (0,0) for 1 < j < r. Consider a graply with @+ __

n? nodes, such that each no¢ie v) has only four neighbors
as (u £ s; modn,v+t; modn) for 1 < j < r, whose

edge weight is 1. Then th&n + [ 4 1)-th eigenvalue of the
LaplacianL of G is:

4000C-

2000C

1 2ms ik 27t ik
O (k,1) 21—;2(308( Wsj )cos( Fnj ) 0

Jj=1

0 50 100 150 200
Fig. 7. ForL°® r-nearest neighbor toruﬂ(%’%),(o’o) computed exactly
by Eqgn. (15) is plotted against the approximation using Kg8).

and the corresponding eigenvectoris, ).
Proof: (Theorem 4) Since for &.! r-nearest neighbor
torus the degree i8r? + 2r, and for al.>* r-nearest neighbor

torus the degree i$r2 + 4r, applying Lemma 2 we complete In this section we study random geographical locations
the proof of Theorem 4. m and distance-dependent weights and sojourn times based on

random geometric graphs.
Theorem 4 can be extended to even more sophisticated®@ndom geometric graphs are widely-used for modelling

geographical proximity relations, other thahandL> norms. diverse wireless ad hoc networks, in which nodes are ran-
domly placed in a confined area, and communication links

Theorem 5:Whenr < n, the maximum hitting time on an are established between nodes that are within a pre-defined

V. RANDOM GEOGRAPHICAL LOCATIONS

r-nearest neighbor torus is: transmission radius. In this section, we especially sty t
How B @(n2 1og(n)) (13) hitting time of random walks on random geometric graphs.
(,%),(0,0) = (1+2r)2 We denote a random geometric graphgas, (N, R), which

] is an ensemble ofV-node graph such that the position of
Proof: See Appendix. B each node is independently uniformly distributed on a 2D
unit area, and there is an edge between a pair of nodes if
We remark that [15] has proven similar results of Theoremiaey are within transmission radit® First, we draw on a
for the commute times ok-fuzz of torus. lemma from [16] which shows the distribution of degrees of

Furthermore, we numerically approximate the exact formg-random geometric graph is concentrated on the mean degree.
las in Theorem 4 as follows (See Figs. 6-7):

1) (L' r-Nearest Neighbor Torgs Lemma 3: [16] (Lemma 10) Given a random geometric
3.98n2log(n) graph Ggeo (N, R), such thatR = Q(y/log N/N). Then the

Hiz,2).00 122 +0.96n (14)  degree of every node is:

) dy = N7R%*(1 +0o(1)) w.h.p.
2) (L*° r-Nearest Neighbor Torgs
2.34n2log(n) It is easy to see that the degree distribution of a node fallow

= +0.96n" (15) the Binomial distribution, wher&/ 7R? is the mean. Lemma 3
(14 2r) VTR L _
further suggests the degree distribution of random geaenetr
These equations will be useful for latency-overhead optmi graphs for largeV and appropriat® is concentrated around
tion and prediction of TTL values in opportunistic forwardi the mean. Hence, it seems feasible to approximate random

Hz )00 =~
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geometric graphs by nearest-neighbor networks to compllzrkence,1_(1_%1)“2 v N pdcmglog]\,. Thus, the maximum

the hitting times. _ hitting time is Hyay ~ =
Next, we consideiExample2 and Example3 from Sec. e pext consideEx;r%pleB. The maximum hitting time
IL—B (_)verI zta_ randorrl1t ge;)rtr;]etrlc g_raph. l;ltgts 8t_andb9tsho¥\éln be estimated by:
the simulation results of the maximum hitting time between _
the farthest pair of nodes for the setting Ekgmplez and Hinasx ~ LN, R)E(N, R)
Example3 overGge, (V, R), whereR equals the critical radius where 7( N, R) is the expected per-hop latency at each node.
of connectivity. We approximate by(N,R) ~ R. Thus, the maximum hitting
The simulations are carried out as follows. We first rafme is H,,n ~ /N log NV.
domly generate a geometric graphdg. (N, R), such thaR  \we observe that the maximum hitting time approximations
scales as:\/log N/N for ¢ > 15 to ensure high probability match reasonably well with the trend as shown by simulations

of a connected geometric graph. Then we apply Eqn. (7) i Figs. 8-9 for moderate values of (< 200).
compute the maximum hitting time between the farthest pair

of nodes, averaged over 1000 different graph instancesiewhe VI. CONCLUSION AND DISCUSSION
Wy, and/y,, are set according thxample2 andExample3. In this paper, we study stateless opportunistic forwarding
Maximum Hiting Time as random walk on finite graphs, and present several exact

results for the hitting times of random walk on 1) arbitrary
finite graphs with heterogeneous sojourn times at relaying
nodes, 2) one dimensionainearest neighbor cycles, 3) two
dimensionalr-nearest neighbor tori. Particularly, we obtain
good approximation formulas for the hitting times on
nearest neighbor cycles amehearest neighbor tori. This has
applications in network design as discussed below.
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A. Latency-overhead Optimisation

Fa g E 0 o 50 k1°0 i 150 § éog d i Theorem 3 is useful to estimate the trade-off between
over & random geéﬁﬁeengrgﬁzmzé\fvg),I\;Qhéfj e sep om Qo '”g?ate_ncy and RF power consumption (i.e. different transioiss
radius or different number of nearest neighb@s). There-
fore, Hz o is proportional torl2 in the one dimensional case.
It is well-known that RF power consumption is proportioral t
1oop r2. Hence, we can roughly estimate that RF power consump-
8ol tion is proportional tol /latency. We expect this can serve as
a basis of estimation for the two dimensional case.
Furthermore, Eqns. (10), (14), (15) enable to set up an
aof optimization framework, useful for the design and planning
of wireless sensor networks. For instance, consider Ed). (1
and the problem is to optimize the maximum latency subject to

0

Maximum Hitting Time
120+

60~

20+

o = o0 o o the constraint of the total power consumption below a certai
Fig. 9. Example3 (store-carry-forward networks with geographical deperthreshold, or the dual problem to optimize the total power
dence) over a random geometric gragh.o(N, R), where we set.,, = consumption subject to the constraint of the maximum latenc

llu =l andwy, = 1. below a certain threshold. This can be set up as follows:

. 2 .
We observe that both the maximum hitting ime€xample 1) min 555757y Subject tonmr? < Euax, 1 < max
. . . . 2
2 andExample3 scale fairly sub-linearly ilV. We can explain ~ 2) minnnr? subject tom < Limax, T < Tmax

this observation using heuristics based on the resulteitet The solutions can be obtained by solving the respective

section. From Theorem 5, we let Lagrangian.
Nlog N
A
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VII. APPENDIX
A. Definition of Tensor Product

Nl

11
S ’D*
S D

~ 1 1 1 1 1 ~ 1 1
2 2 2 2 2 2 2
SupposeX is a(r+1) x (s+1) matrix andY is a(p+1) x PSLDLHDL Sl - S
(¢ + 1) matrix. Define the tensor product matrix %® Y, LS°D*HD"S* = W(zw'w 1)
which is a(r +1)(p + 1) x (s + 1)(¢ + 1) matrix, such that GLS’D’HD?S? — WE(Lwlw-T)
for0<a<r,0<b<p 0<c<s, 0<d<gq,the entry at A SIS W
position (a(p + 1) + b,c(q + 1) + d) is defined as: ~ww w)S'DHD'S" = -WG
(XD Y)a(pr1) 16, clqit)id 2 XaeYoa The diagonal entryu,u) of the above matrix equation is:
wb ~ 1
B. Proofs wuﬂuHu,u - w~ Z wwéwHw,u =-W Z _p’z,u
Theorem 1:Given arbitrary sojourn timé, > 0 for each W koo Ok
u, the hitting time and commute time from to v can be \yhile the non-diagonal entru, v) is:
computed by: 7( .
g V wu uwv v
H - Z K ( H%iu _ Hk,u’*”k,v ) V wuguwvgvHu,v - T Z wwngw,u
W fio i Ok Wyly Wy Ly Wiy ~ 1 wev
C . - Z E( Beow — Hiw )2 = —Wk_z;m U_ku’k,utu’k,v
“ee Ok \V Wy ly \% Wy ly "
ko #0 Combining the two equations and usiib, ,, = 0, we obtain

wherelV 2 Z(umeg W (o + o) = ey Wb, AN Eqn. (7). Eqn. (8) follows fronC,, , = H,, + H, 4. []

o and i, are thek-th eigenvalue and eigenvector bf

Proof: First, we letw,, = v/w,Z,. Then we observe that Lemma 1:The (k+1)-th eigenvalue and eigenvector of the
LaplacianL of r-nearest neighbor cyclé’:

~ Wa, = Zve/\/ Wy,v Wy
L,,w,=,/— and Lyywy=—"""-"2—"=—,/— r 27k
bu U;\; Vuly bu 2j=1 % COS( n ) 1 Ko Dk
“ op=1-— = ,ukz—(l,e,...,e )
Zj’:l ajg Vvn

Hence,Lw = 0. That is, 0 is an eigenvalue, and//W
is the corresponding eigenvector bf Note that sinceg is e is complex number defined as:= cos (22) + isin (22).

n



Proof: The adjacancy matriA[C]] is:

Oal...agal
a10...a3a2
ayp az ... ap 0

which is a circulant matrix [17]. It is well-known that theth
eigenvector isu,, and the corresponding eignevalue is:

rk r—1)k n—1)k ﬂ—]k
ar€ 4 tape ™ raemVR L gy —QZaJcos n)

AlCy]. =

_] 1

This completes the proof by[C’”] =1- 2ZT

1=1 45’

Lemma 2: Trigonometric identity of Dirichlet kernel [18]: {, ..
2

r sin ((r+2)x
1423 cos(jz) = M
= sm(z)
Lemma 3:Whenz — 0,
1 12
1 27: (7‘-1—1)(27‘-{-1)12 (17)
Proof: By Lemma 2 and Taylor series expansion:at 0,
sin ((’I‘-‘r%):ﬂ) 2 4

[ |

By numerical study, we observe that Eqn. (17) gives
relatively good approximation even for< z < 7 and small
r (see Fig. 10).

20} 1
r=1 ]7— Yoy cos (jx)
15]
12
r+1)Qr+1) 22
10
5
] e x
00 02 04 06 08 10 12 14
Fig. 10. The comparison of 1 against 12 > for
1,l 2 cos(jz) (r+1)(2r4+1)x
Jj=
0<z <

Theorem 2:Whenn — oo, the maximum hitting time on
r-nearest neighbor cyclé/, can be approximated by:

~ 3n?
Hy o~ 2(+r)(A+2r)

Proof: It suffices to consider the case= 4c for integer

n—1 %
1—cos(mk) 2
HQ = _— s =
5,0 2:: 1 Z cos (27\-Jk) ];::017% ZT: cos (27rj(ik+1))

n = n =

@ 24: 4 2) 24: 1202

- T . ~ 2 2
F=01-% 3 co s (ZmiGeED) T (r+1)(r+1)(2k+1)

J

where (1) is due to:cos = cos — .
and (2) is due to Lemma 3. We complete the proof by the

identity: lim 3> gy = :

(27rj(2k+1)) (27rj(n—2k—1)

=. [ |
Theorem 3:Whenr < n, the maximum hitting time on an
r-nearest neighbor torus is:
n? log(n))

H 29((14—21")2

Proof: (Sketch) Without loss of generality, we consider
is even. Since alh.>° r-nearest neighbor torus can bouhd
r-nearest neighbor torus, we considef r-nearest neighbor
torus. Substitutingu,v) = (%, ) into Theorem 4,

(%,%),(0,0)

— 2
(3,%),(0,0) (k,1)#(0,0) l—ﬁ( i i cos (27::1@) cos (2?1)—1)
k-+1 is odd i=—rj=—r
Let a(z,y) £ L

1— 4T2+4T (1 i i cos(ix) cos(jy)— 1)

—rj=-—r

17@(izzi”:zircos(z’zﬂy);cos(iz—jy)71)
Note that for—7m < 0 < 7, 1 — i < cos(f) <1- 9—52
Therefore, forg. < z,y < 7,
a(z,y) > S S %1(2 <m+2jy)2_<wf2jy)2) - (1+2T)222112+y2)
a T immrg=ar
a(z,y) < -m(iiﬂir%l@ <iz+5jy)2_<m—5jy)2) - (1+2T$Z2(.ﬂ502+y2)
This follows from Z (1— L2y — Q2 Ehore? %) gng

some algebraic S|mpl|f|cat|0ns that:

1 _ 24k ko
- iztiy)? io—i2)  (1+2r)2(x24y3) (k1 +k
472+4T (i;N;T%(g,%7< kéJ) ) ( e Ykrtha)
_ 1
Hence,a(z, y) = O (o y2ery7y)-
Sincer < n,
_ 2rk 2ml —
Hz 2),00 = 2a(=, ) ~ (Z Z m)
(k,1)%(0,0) k=11=1
k+1 is odd

SincekzlT is a decreasing function ik andi, whenn is

large, we obtain:
1 1

n—1n—1 1
>
k=11=1
b
/1 ﬁ dr = %(arctan(%) — arctan(l))

Note that

X -9~ Sincel < n and0 < arctan(x) < 7 for positivez,
¢, because we can always extrapolate in the approximation.

n

/1/1,621Tdm/m/1 O(L) dk = ©(log(n))



