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Abstract—Stateless opportunistic forwarding is a simple fault-
tolerant distributed approach for data delivery and inform ation
querying in wireless ad hoc networks, where packets are for-
warded to the next available neighbors in a “random walk”
fashion, until they reach the destinations or expire. This approach
is robust against ad hoc topology changes and is amenable to
computation/bandwidth/energy-constrained devices; however, it
is generally difficult to predict the end-to-end latency suffered
by such a random walk in a given network. In this paper, we
make several contributions on this topic. First, by using spectral
graph theory we derive a general formula for computing the
exact hitting and commute times of weighted random walks on a
finite graph with heterogeneous sojourn times at relaying nodes.
Such sojourn times can model heterogeneous duty cycling rates in
sensor networks, or heterogeneous delivery times in delay tolerant
networks. Second, we study a common class of distance-regular
networks with varying numbers of geographical neighbors, and
obtain simple estimate-formulas of hitting times by numerical
analysis. Third, we study the more sophisticated settings of
random geographical locations and distance-dependent sojourn
times through simulations. Finally, we discuss the implications
of this on the optimization of latency-overhead trade-off.

Index Terms—Opportunistic forwarding, Wireless sensor net-
works, Delay tolerant networks, Random walks on finite graphs,
Spectral graph theory

I. I NTRODUCTION

Routing data to specific endpoints in ad hoc wireless
networks typically requires accurate global topology infor-
mation and proactive route maintenance by all participating
nodes. Various flavors of ad hoc networks such as sensor
networks and delay tolerant networks present challenges such
as frequent disruptions of connectivity. For instance, in sensor
networks relaying devices may be performing sleep-wake
duty cycling, while in delay tolerant networks mobile packet
carriers may be often out of reach.

Always flooding a data item may be reliable and simple but
is often too bandwidth and energy intensive; hence, a simple
approach is stateless opportunistic forwarding — packets
are forwarded to one of the next available neighbors in a
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“random walk manner”, until they either expire or reach the
destination. For instance, ad hoc routing protocols may also
use opportunistic forwarding (instead of flooding) as a single-
copy routing technique in the absence of topology information.
However, despite the simplicity of implementation, it is gener-
ally difficult to predict the end-to-end latency, because packets
may (legitimately) travel in loops or along sub-optimal paths.

Although there have been several simulation studies and
asymptotic analyses to suggest the usefulness of stateless
opportunistic forwarding (e.g. [1], [2]), this paper presents
exact analytical formulas to predict the latency of stateless
opportunistic forwarding on finite graphs. The benefit of this
style of analysis is that it can reduce the dependence of
simulations2, and is more precise than asymptotic analyses
which typically hold for large networks only, whereas most
practical networks are often moderate in size.

A. Motivating Scenarios

We first present two motivating scenarios where stateless
forwarding may be useful:

(i) Sensor Networks: In this setting, we are given a network
of battery-powered nodes that are capable of sourcing and
relaying packets for delay-tolerant applications. Relaying de-
vices performpseudo-random duty cycling(sleep scheduling)
to conserve energy [3]–[5], such that an awake transmitter can
communicate with the receiver only when the latter is awake.
For low values of duty cycling (or wake-up) probability, the
network may be highly disconnected, and hence traditional
routing protocols that operate upon freshly gathered topology
updates may not be very suitable. So, stateless opportunistic
forwarding by which the packets are forwarded to the neighbor
that wakes up first, may be a viable strategy [3]. We consider
the “low traffic volume” scenario, where the interference
of concurrent wireless transmissions is negligible, but the
estimation of end-to-end latency is a significant concern.

(ii ): Store-carry-forward Networks: We follow the paradigm
of so-called “pocket switched networks” [1]. The nodes of
network are collection sites that can store messages, and have
fixed geographical locations. Thedelay-tolerant linksare the
mobile message carriers (e.g. vehicles) randomly wandering
between collection sites. Every message carrier has a limited
reachable region and messages can only be forwarded within

2In our experience, one has to run several thousand simulations to get a
good estimate of the mean latency even in small networks.



a certain geographical region by a single carrier. By stateless
opportunistic forwarding, the packets are picked up by the first
near-by carrier that approaches the respective collectionsite,
and are off-loaded to the next collection site stopped by the
carrier, independent of the paths traveled by the packets.

For the two aforementioned scenarios, stateless opportunis-
tic forwarding can be modeled by a random walk on a finite
graph. We are motivated to study several aspects of latency of
random walks on graphs:

1) Hitting time (or access time): The expected time of a
packet from the source tohit a certain destination.

2) Commute time: The expected round-trip time between
source and destination.

3) Cover time: The expected time of a packet from the
source to visit every other node in the network.

B. Our Contributions

Hitting, commute, and cover times of random walks have
been studied extensively in the literature [6]–[13]. A major
approach is based on spectral graph theory [6], [12]–[14]. In
this paper, we study the general setting of random walks with
heterogeneous sojourn times at relaying nodes. For instance,
these can correspond to heterogeneous duty cycling rates in
sensor networks, or heterogeneous delivery times in store-
carry-forward networks. We generalize the formulas in [6],
[12] to compute theexact hitting and commute times with
heterogeneous sojourn times. Our results also enable more
accurate numerical analysis of cover times via Matthew’s
bounds [7], [8].

Furthermore, we study random walks on a common class
of distance-regular networks with varying numbers of nearest
neighbors, which captures the notion of geographical prox-
imity in sensor networks and delay tolerant networks. For
instance, in anr-nearest neighbor cycle (or torus), there is
an edge between every pair of neighbors ofr-hops away on a
cycle (or torus). The varying numbers of nearest neighbors
by r’s can capture the levels of overhead for maintaining
local neighbors (e.g. as the levels of transmission power in
sensor networks, or the areas of reachable regions of carriers
in delay tolerant networks). One of our aims is to understand
and optimize the latency-overhead trade-off.

Although there has been a study in [15] about the asymptotic
analysis on the asymptotic order of cover times forr-nearest
neighbor torus (calledk-fuzz of torus) via effective resistance,
in this paper we provide exact formulas via spectral graph
theory to compute the hitting and commute times onr-nearest
neighbor torus. This work offers the exact analyses of the
latency of stateless opportunistic forwarding on finite graphs,
which are more precise than asymptotic analyses on the
asymptotic orders. Our formulas can be computed efficiently
without relying on extensive simulations.

Finally, we study more sophisticated settings of random
geographical locations and distance-dependent sojourn times
through simulations, and discuss the ramifications to the
optimization of latency-overhead trade-off in opportunistic
forwarding algorithms.

II. PROBLEM FORMULATION

In this section, we formulate a model to capture stateless
opportunistic forwarding in sensor networks and delay tolerant
networks, which is related to random walk on finite graphs.
Also, we formulate a common class of distance-regular net-
works with varying numbers of nearest neighbors to model the
geographical proximity in opportunistic forwarding.

A. Random Walks on Finite Graphs

To model the stateless opportunistic forwarding, we con-
sider a finiteconnectedundirected graphG = (V , E), whereV
is the set of nodes (e.g. relaying devices or collection sites) and
E is the set of edges. Each edge means one-hop forwarding is
possible between the pair of nodes (e.g. by radio transmission
or packet carriers). Letn = |V|, m = |E|. We also letNu ⊆ V
be the set of neighbors ofu, and its degreedu = |Nu|.

We consider the setting of slotted time. In random walk
based forwarding, a packet is stored in a node for certain time
slots before there is an opportunity to be forwarded to the next
hop neighbor. We assume that the forwarding operation in the
current hop is stateless, being independent of the forwarding
operations of previous hops.

For each neighboring pair of nodesu, v ∈ V , we let`u,v be
the expected sojourn time of a packet that travels fromu to v.
We assign a weightwu,v to each edge(u, v) to indicate the
the availability of opportunistic forwarding operations between
the nodes, such thatρu,v, the probability thatu will forward
packets tov ∈ Nu, is defined as:

ρu,v ,
wu,v

wu

, where wu ,
∑

v′∈Nu

wu,v′

Note that in this paper we assume the symmetric case:wu,v =
wv,u. Therefore, this defines a random walk on a weighted
graph, or equivalently, a reversible Markov chain [7].

The hitting timeHu,v from sourceu to reach destinationv
can be computed recursively by:

Hu,v =

{ ∑

w∈Nu

ρu,w(`u,w+Hw,v) = `u+
∑

w∈Nu

ρu,wHw,v if u 6= v

0 if u = v
(1)

where`u ,
∑

w∈Nu

ρu,w · `u,w is the expected sojourn time atu.

B. Examples

Example 1 (Sensor Networks with i.i.d. Random Duty
Cycling): Let ρdc be the duty cycling rate, such that in one
time slot, each node is awake with i.i.d. probabilityρdc, and
is dormant with probability1 − ρdc. Hence, every neighbor
has equal chance of opportunistic forwarding:wu,v = 1. Then
the waiting time for bothu and v to be awake in the same
time slot is a geometric random variable with parameterρ2

dc,
As shown in [3], the per-hop latency is̀u = 1

1−(1−ρ2
dc

)du

Example 2 (Sensor Networks with i.i.d. Pseudo-random
Duty Cycling): As proposed in [4], if neighboring nodes first
exchange the seed of pseudo-random sequence to generate
duty cycling, then a node can predict the exact awake time
slots of its neighbors. Letρdc be the duty cycling rate.



Similarly, wu,v = 1. Then the waiting time for bothu and
v to be awake in the same time slot is a geometric random
variable with parameterρdc, Hence,̀ u = 1

1−(1−ρdc)du

Example3 (Delay Tolerant Networks with Geographical
Dependence): We assume that each collection site has its
packet carriers commuting among its neighbors within a cer-
tain bounded reachable region. The location of packet carriers
within the reachable region follows an i.i.d. stationary distri-
bution. Hence, we assume that the per-hop latency depend lin-
early on the geographical distance, such that`u,v = c||u − v||
and wu,v = 1. That is, the further away the nodes are, the
longer latency is incurred. Although other mobility models
(e.g. random waypoint model) can also be considered, closed-
form expressions forwu,v and`u,v will be more involved.

C. Nearest Neighbor Networks

In this paper, we consider a common class of distance-
regular networks that can capture the notion of geographical
proximity. For simplicity, we consider boundary-less space.
Suppose there is a set ofn nodes placed evenly in one dimen-
sion as a cycle, or in two dimensional space as a torus. We
then define anr-nearest neighbor cycle as the graph with edges
between every pair of nodes withinr-hops away on the cycle.
This naturally captures the notion geographical proximity, such
that neighbors are within the bounded transmission range in
sensor networks, or reachable by a single carrier wanderingin
a bounded region in delay tolerant networks. See Fig. 1 (b)
for an example of 2-nearest neighbor cycle.

To generalize to two dimensional as a torus, we note that
there are various ways of defining the nearest neighbors in
two dimensions. One may use theL1 norm such that there is
an edge between the nodes whose shortest path is withinr
hops on the torus (see Fig. 2 (a)), orL∞ norm such that the
vertical and horizontal distance are both withinr hops on the
torus (see Fig. 2 (b)). Generally, we can allow other norms
(e.g. L2 norm to model circular transmission range), which
however are less convenient to handle.

III. H ITTING AND COMMUTE TIMES OF RANDOM WALKS

In this section, we present two general techniques to solve
the hitting and commute times of random walks on arbitrary
graphs — effective resistance and spectral graph theory. Based
on spectral graph theory, we then derive efficient general
formulas for the hitting and commute times of random walk
with heterogeneous sojourn times at relaying nodes

Denoteπu as the unique stationary distribution of random
walk onG. By standard Markov chain theorem [7], we obtain:

πu =
wu

W
where W ,

∑

u′∈V
wu′

Denote the commute time between nodeu and nodev as
Cu,v. Note thatCu,v = Hu,v + Hv,u (i.e. the sum of hitting
times fromu to v and vice versa). In [10], it is shown that

Hu,v =
1

2

(

Cu,v +
∑

w∈V
πw(Cw,v − Cw,u)

)

(2)

A. Effective Resistance

We first survey the approach of effective resistance [9]–[11].
Given a finite graphG, we assign each edge(u, v) ∈ E a resis-
tance of value1/wu,v. For any pair of nodesu, v ∈ V (which
may not be neighbors), we define the effective resistanceRu,v

as the voltage difference betweenu andv, when a unit current
is injected atu and removed fromv.

In [11], it is shown that:

Cu,v = Ru,v ·
∑

(u,v)∈E
wu,v(`u,v + `v,u) (3)

Combining Eqns. (2)-(3), it is possible to compute hitting
times via effective resistance. However, it is non-trivialto
compute efficiently the exact values of effective resistances
of a arbitrary network. In this paper, we rely on an alternate
approach by spectral graph theory.

B. Spectral Graph Theory

Denote the adjacency matrix ofG asA such that

Au,v ,

{

wu,v if (u, v) ∈ E
0 otherwise

Sometimes, we denote the adjacency matrix of graphG as
A[G]. Denote the diagonal matrix ofG asD such that

Du,v ,

{

wu if u = v
0 otherwise

We define normal matrix asN , D
− 1

2
AD

− 1
2 . That is,

Nu,v ,

{ wu,v√
wuwv

if (u, v) ∈ E
0 otherwise

Note that N is symmetric, and hence there exist real
eigenvalues and eigenvectors ofN. Let λk and νk be the
(k+1)-th3 eigenvalue and the corresponding eigenvector ofN.

B.1. Homogeneous Sojourn Times
Consider homogeneous sojourn times:`u = 1 for all u. In

[6] (Theorem 3.1), Lovasz solved Eqn. (1) with a solution:

Hu,v =
∑

k:λk 6=1

W

1 − λk

(ν
2
k,v

wv

− νk,uνk,v√
wuwv

)

(4)

and hence byCu,v = Hu,v + Hv,u,

Cu,v =
∑

k:λk 6=1

W

1 − λk

(

νk,u√
wu

− νk,v√
wv

)2

(5)

Although Lovasz considered unweighted graphs wherewu =
du (the degree ofu) and W = 2m (twice of the number of
edges), it can be easily generalized to weighted graphs.

In [12] (Theorem 8), Chung and Yau considered the (nor-
malized) Laplacian of a graph defined asL , I − N, and
independently proved Eqn. (4) via discrete Green’s function4.

The complexity of Eqn. (4) or (5) isO(n), and solving the
eigen spectrum of a symmetric matrix isO(n3). Since the
eigen spectrum ofN can be reused for all source-destination
pairs. Hence, the complexity of computing the hitting and

3The order of eigenvalues does not matter.
4The proof given by Lovasz in [6] is rather sketchy and some keysteps

have been skipped. Hence, we base our results on the ones in [12].



(a) (b)

Fig. 1. (a) Cycle. (b) 2-Nearest neighbor cycle.
(a) (b)

r=1

r=2

r=1

r=2

Fig. 2. (a)L1 Nearest neighbor tori. (b)L∞ Nearest neighbor tori. The dotted
boxes indicate the different levels of neighbors of the centre node.

commute times for alln2 source-destination pairs isO(n3).

B.2. Heterogeneous Sojourn Times
In this paper, we consider heterogeneous sojourn times`u.

Note that one can set̀u,v = 1 for all (u, v) ∈ E , equating
Eqn. (3) and Eqn. (5) to obtain the effective resistance as:

Ru,v =
∑

k:λk 6=1

1

1 − λk

(

νk,u√
wu

− νk,v√
wv

)2

(6)

Then one can use Eqns. (2)-(3) to compute the hitting and
commute times. But the complexity of computing the hitting
times for alln2 source-destination pairs becomesO(n4).

Nonetheless, it is more efficient to use the similar formulas
as Eqns. (4)-(5), which takes onlyO(n3). Moreover, it allows
simplification for specific network topology as discussed inthe
next section. A major contribution of this paper is Theorem 1,
which extends the formulas in [6], [12] to the setting of
heterogeneous sojourn times.

First, we define latency matrixS as:

Su,v ,

{

`u if u = v
0 otherwise

a “generalized” Laplacian as̃L , S
− 1

2 (I− N)S
− 1

2 . That is,

L̃u,v ,







1
`u

if u = v

− wu,v√
wu`uwv`v

if (u, v) ∈ E
0 otherwise

Note thatL̃ is symmetric, hence there exist real eigenvalues
and eigenvectors of̃L. Let σk and µk be the (k + 1)-th
eigenvalue and the corresponding eigenvector ofL̃.

Theorem 1:Given arbitrary sojourn timèu > 0 for each
u, the hitting time and commute time fromu to v can be
computed by:

Hu,v =
∑

k:σk 6=0

W̃

σk

( µ
2
k,v

wv`v

− µk,uµk,v√
wu`uwv`v

)

(7)

Cu,v =
∑

k:σk 6=0

W̃

σk

(

µk,u√
wu`u

− µk,v√
wv`v

)2

(8)

whereW̃ ,
∑

(u,v)∈E wu,v(`u,v + `v,u) =
∑

u′∈V wu′`u′ .
Proof: We generalize the proof in [12]. See Appendix.

When `u,v = 1 for all (u, v) ∈ E , it is easy to see that
σk = 1 − λk and µk = νk. Hence, Eqns. (7)-(8) reduce
to Eqns. (4)-(5). Similarly, the complexity of computing the

hitting and commute times with heterogeneous sojourn times
by Eqn. (4) for alln2 source-destination pairs isO(n3).

Finally, we present an instance ofExample3 in Fig. 3 with
hitting times computed by Eqn. (7). We have verified that the
hitting times in Fig. 3 satisfy Eqn. (1).
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Fig. 3. A randomly generated instance ofExample3, where the radius of
one-hop reachable region is 0.3. On each node is the hitting time to hit the blue
circled node, where the red number on each edge is the Euclidean distance,
and the number in brackets is the expected sojourn time at each node.

IV. N EARESTNEIGHBOR NETWORKS

In this section, we especially study the Laplacian of nearest
neighbor networks and obtain specific formulas for computing
the hitting and commute times. For clarity, in this section we
consider the homogeneous case:`u,v = 1 for all (u, v) ∈ E .

A. Nearest Neighbor Cycles

Denote a cycle ofn nodes asCn. We construct anr-nearest
neighbor cycle (denoted asCr

n) as the graph with edges
between nodes and theirr-nearest left andr-nearest right
neighbors onCn. We label the nodes by the order around the
cycle as:0, 2, ..., n − 1. We consider the uniform symmetric
case:wu,u+j = wu,n−j+u = aj for 1 ≤ j ≤ r.

Lemma 1:The(k+1)-th eigenvalue and eigenvector of the
LaplacianL̃ of r-nearest neighbor cycleCr

n are:

σk = 1−
∑r

j=1 aj cos
(

2πjk
n

)

∑r
j′=1 aj′

, µk =
1√
n

(

1, εk, ..., ε(n−1)k
)T

ε is complex number defined as:ε , cos
(

2π
n

)

+ i sin
(

2π
n

)

.
Proof: Because1 − σk and µk are the eigenvalue and

eigenvector of normal matrixN of Cr
n. See Appendix.

Theorem 2:Supposeaj = 1 for 1 ≤ j ≤ r. Without loss
of generality, we consider the hitting time fromu to 0 on
r-nearest neighbor cycleCr

n. Then, it is computed by:

Hu,0 = 2r

n−1
∑

k=1

1 − cos
(

2πku
n

)

(2r + 1) − sin
(

πk(2r+1)
n

)

sin
(

πk
n

)

(9)



Proof: Note that the degreedu = 2r is a constant for all
u. Thus,W = 2rn. By Lemma 1 and Eqn. (4), we obtain:

Hu,0 = 2rn
n−1
∑

k=1

1 − cos
(

2πku
n

)

− i sin
(

2πku
n

)

2rn
(

1 − 1
r

r
∑

j=1

cos
(

2πjk
n

)

)

=

n−1
∑

k=1

1 − cos
(

2πku
n

)

1 − 1
r

r
∑

j=1

cos
(

2πjk
n

)

This is due to the identities:cos
(

2πjk
n

)

= cos
( 2πj(n−k

n

)

and
sin

(

2πku
n

)

= − sin
( 2π(n−k)u

n

)

. Finally, Eqn. (9) follows from
the trigonometric identity of Dirichlet kernel of Lemma 2 in
Appendix.

Theorem 3:Whenr � n andn is even, the maximum hit-
ting time on anr-nearest neighbor cycle can be approximated
by:

Hn
2

,0 ≈ 3n2

2(1 + r)(1 + 2r)
(10)

Proof: Based on careful approximation of the Taylor
series expansion of Eqn. (9). See Appendix.

Theorem 2 generalizes our previous results in [14] on only
the maximum hitting times onr-nearest neighbor cycle.

When r = 1, it is well known that via effective resistance
[7], [8] the hitting time for a pair of farthest nodes on ann-
node cycle is indeedn

2

4 . Hence, Theorem 3 is accurate for1-
nearest neighbor cycles. Forr-nearest neighbor cycles, Fig. 4
shows that Eqn. (10) gives a relatively accurate approximation
to the exact computation based on Eqn. (9).

r=1

r=2
r=3

r=4
r=5

Maximum Hitting Time

n

Exact

3n2

2 H1 + rL H2 r + 1L

0 50 100 150 200
0

2000

4000

6000

8000

10 000

Fig. 4. Hn
2

,0 computed exactly by Eqn. (9) is plotted against the
approximation using Eqn. (10).

B. Nearest Neighbor Tori

Theorem 4:The hitting timeH(u,v),(0,0) from node(u, v)
to node(0, 0) can computed by:

1) (Torus):
∑

(k,l)∈[0,n-1]2\{(0,0)}

1 − cos
( 2π(ku+lv)

n

)

1 − 1
2

(

cos
(

2πk
n

)

+ cos
(

2πl
n

))

2) (L1 r-Nearest Neighbor Torus):

∑

(k,l)∈[0,n-1]2\{(0,0)}

1 − cos
( 2π(ku+lv)

n

)

1 − 1
2r2+2r

(

r
∑

i=−r

r−|i|
∑

j=−r+|i|
cos

(

2πik
n

)

cos
(

2πjl
n

)

− 1
)

(11)
3) (L∞ r-Nearest Neighbor Torus):

∑

(k,l)∈[0,n-1]2\{(0,0)}

1 − cos
( 2π(ku+lv)

n

)

1 − 1
4r2+4r

(

r
∑

i=−r

r
∑

j=−r

cos
(

2πik
n

)

cos
(

2πjl
n

)

− 1
)

(12)
(Proof idea): The proof of Theorem 4 relies on the notion

of two types of composed graphs. We specially denote the
adjacency matrix of graphG asA[G]. We define two types of
composed graphs as follows:

1) Union Graph: GivenG = (V , E) andH = (V ,F), define
a graph,G ∪ H, such that the set of nodes isV and its
adjacency matrix is just the sum of those ofG andH:

A[G ∪ H] = A[G] + A[H]

Namely, the edge weights are the sum of those ofG,H.
2) Tensor Product Graph: Given G = (V , E) and G′ =

(V ′, E ′), define a graph,G × G′, such that the set of
nodes isV × V ′, and its adjacency matrix is the tensor
product5 of those ofG,G′:

A[G × G′] = A[G] ⊗ A[G′]
Namely, (u, u′) and (v, v′) are adjacent inG × G′, if
(u, v) ∈ E and(u′, v′) ∈ E ′. Particularly, ifn = |V| and
I is then × n identity matrix, thenA[G] ⊗ I definesn
disjoint copies ofG.

The combinations of union graphs and tensor product graphs
over nearest neighbor cycles can generate a wide class of
nearest neighbor tori with arbitrary norms. We give some
examples of such constructions in Fig. 5.

(-s,-t)

(s, t)

(a) (b) (c)

(s, -t)

(-s, t)

Fig. 5. The figures show different settings of neighbors of the centre node.

We considern2 nodes placed evenly on the two dimensional
boundary-free surface of a torus. We assume that the setting
of neighbors is uniform to all nodes. We label the nodes by
the coordinates:(u, v), where0 ≤ u, v ≤ n−1 on the surface.

We explain the examples in Fig. 5 as follows:
1) In Fig. 5 (a), each node has four neighbors (two horizon-

tal and two vertical). This indeed forms a torus, whose
adjacency matrix is:A[Cn] ⊗ I + I ⊗ A[Cn]

2) In Fig. 5 (b), each node has four neighbors (all diagonal).
If n is odd, then this forms a connected graph. This
defines a graph, with adjacency matrix as:A[Cn]⊗A[Cn]

5The definition of tensor product of matrices can be found in Appendix.



3) Let Cr
n(s) be an r-nearest neighbor cycle such that

as = 1 andaj = 0 for j 6= s. In Fig. 5 (c), each node
(u, v) has only four neighbors as(u ± s mod n, v ± t
mod n). This defines a graph, with adjacency matrix as:
A[Cr

n(s)] ⊗ A[Cr
n(t)]

In fact, a nearest neighbor torus defined by arbitrary norm
can be regarded as a union graph of a collection of graphs
with suitableA[Cr

n(s)] ⊗ A[Cr
n(t)].

For example, for0 ≤ k, l ≤ n − 1, define a vectorµ(k,l):

µ(k,l) ,
1

n

(

1, εk, ..., ε(n−1)k
)T ⊗

(

1, εl, ..., ε(n−1)l
)T

By Lemma 1, it follows thatµ(k,l) is the (kn + l + 1)-th
eigenvector of the Laplacian of the example in Fig. 5 (c),
whose eigenvalue is1 − 1

2

(

cos
(

2πsk
n

)

+ cos
(

2πtl
n

))

.
In general, it can be generalize by the following lemma.

Lemma 2:Given a set of tuples:{(s1, t1), ..., (sr, tr)} such
that (sj , tj) 6= (0, 0) for 1 ≤ j ≤ r. Consider a graphG with
n2 nodes, such that each node(u, v) has only four neighbors
as (u ± sj mod n, v ± tj mod n) for 1 ≤ j ≤ r, whose
edge weight is 1. Then the(kn + l + 1)-th eigenvalue of the
LaplacianL̃ of G is:

σ(k,l) = 1 − 1

r

r
∑

j=1

cos
(2πsjk

n

)

cos
(2πtjk

n

)

and the corresponding eigenvector isµ(k,l).
Proof: (Theorem 4) Since for aL1 r-nearest neighbor

torus the degree is2r2 +2r, and for aL∞ r-nearest neighbor
torus the degree is4r2 + 4r, applying Lemma 2 we complete
the proof of Theorem 4.

Theorem 4 can be extended to even more sophisticated
geographical proximity relations, other thanL1 andL∞ norms.

Theorem 5:Whenr � n, the maximum hitting time on an
r-nearest neighbor torus is:

H( n
2 , n

2 ),(0,0) = Θ
(n2 log(n)

(1 + 2r)2

)

(13)

Proof: See Appendix.

We remark that [15] has proven similar results of Theorem 5
for the commute times onk-fuzz of torus.

Furthermore, we numerically approximate the exact formu-
las in Theorem 4 as follows (See Figs. 6-7):

1) (L1 r-Nearest Neighbor Torus):

H( n
2 , n

2 ),(0,0) ≈
3.98n2 log(n)

(1 + 2r)2
+ 0.96n2 (14)

2) (L∞ r-Nearest Neighbor Torus):

H( n
2 , n

2 ),(0,0) ≈
2.34n2 log(n)

(1 + 2r)2
+ 0.96n2 (15)

These equations will be useful for latency-overhead optimisa-
tion and prediction of TTL values in opportunistic forwarding.

r=1
r=2 r=3 r=4 r=5

Maximum Hitting Time

n

Exact

3.98 n2
 log HnL

H2 r + 1L2
+0.96n2
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40 000

60 000

80 000

100 000

120 000

Fig. 6. ForL1 r-nearest neighbor torus,H( n
2

, n
2

),(0,0) computed exactly
by Eqn. (14) is plotted against the approximation using Eqn.(11).

r=1
r=2 r=3

r=4
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Maximum Hitting Time

n

Exact

2.34 n2
 log HnL

H2 r + 1L2
+0.96n2

0 50 100 150 200
0
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40 000
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Fig. 7. ForL∞ r-nearest neighbor torus,H( n
2

, n
2

),(0,0) computed exactly
by Eqn. (15) is plotted against the approximation using Eqn.(12).

V. RANDOM GEOGRAPHICAL LOCATIONS

In this section we study random geographical locations
and distance-dependent weights and sojourn times based on
random geometric graphs.

Random geometric graphs are widely-used for modelling
diverse wireless ad hoc networks, in which nodes are ran-
domly placed in a confined area, and communication links
are established between nodes that are within a pre-defined
transmission radius. In this section, we especially study the
hitting time of random walks on random geometric graphs.

We denote a random geometric graph asGgeo(N, R), which
is an ensemble ofN -node graph such that the position of
each node is independently uniformly distributed on a 2D
unit area, and there is an edge between a pair of nodes if
they are within transmission radiusR. First, we draw on a
lemma from [16] which shows the distribution of degrees of
a random geometric graph is concentrated on the mean degree.

Lemma 3: [16] (Lemma 10) Given a random geometric
graphGgeo(N, R), such thatR = Ω(

√

log N/N). Then the
degree of every nodeu is:

du = NπR
2(1 + o(1)) w.h.p.

It is easy to see that the degree distribution of a node follows
the Binomial distribution, whereNπR

2 is the mean. Lemma 3
further suggests the degree distribution of random geometric
graphs for largeN and appropriateR is concentrated around
the mean. Hence, it seems feasible to approximate random



geometric graphs by nearest-neighbor networks to compute
the hitting times.

Next, we considerExample2 and Example3 from Sec.
II-B over a random geometric graph. Figs. 8 and 9 show
the simulation results of the maximum hitting time between
the farthest pair of nodes for the setting ofExample2 and
Example3 overGgeo(N, R), whereR equals the critical radius
of connectivity.

The simulations are carried out as follows. We first ran-
domly generate a geometric graph inGgeo(N, R), such thatR
scales asc

√

log N/N for c ≥ 15 to ensure high probability
of a connected geometric graph. Then we apply Eqn. (7) to
compute the maximum hitting time between the farthest pair
of nodes, averaged over 1000 different graph instances, where
wu,v and`u,v are set according toExample2 andExample3.

Maximum Hitting Time

N
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Fig. 8. Example2 (sensor networks with i.i.d. pseudo-random duty cycling)
over a random geometric graphGgeo(N, R), where we setρdc = 0.1.
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Fig. 9. Example3 (store-carry-forward networks with geographical depen-
dence) over a random geometric graphGgeo(N, R), where we set̀ u,v =
||u − v|| andwu,v = 1.

We observe that both the maximum hitting times inExample
2 andExample3 scale fairly sub-linearly inN . We can explain
this observation using heuristics based on the results in the last
section. From Theorem 5, we let

L(N, R) ,
N log N

r2

wherer2 is the number of neighbors. By Lemma 3 we obtain
r2 ∼ log N andL(N, R) ∼ N .

Then the maximum hitting time forExample 2 can be
estimated by:

Hmax ∼ L(N, R)

1 − (1 − ρdc)NπR2

which follows from the regularity suggested by Lemma 3.
Whenρdc is small,(1− ρdc)

πc2 log N ≈ 1− ρdcπc2 log N , and

hence, 1
1−(1−ρdc)πc2 log N

≈ 1
ρdcπc2 log N

. Thus, the maximum

hitting time isHmax ∼ N
log N

.
We next considerExample3. The maximum hitting time

can be estimated by:

Hmax ∼ L(N, R)¯̀(N, R)

where ¯̀(N, R) is the expected per-hop latency at each node.
We approximate bȳ̀(N, R) ∼ R. Thus, the maximum hitting
time is Hmax ∼ √

N log N .
We observe that the maximum hitting time approximations

match reasonably well with the trend as shown by simulations
in Figs. 8-9 for moderate values ofN (≤ 200).

VI. CONCLUSION AND DISCUSSION

In this paper, we study stateless opportunistic forwarding
as random walk on finite graphs, and present several exact
results for the hitting times of random walk on 1) arbitrary
finite graphs with heterogeneous sojourn times at relaying
nodes, 2) one dimensionalr-nearest neighbor cycles, 3) two
dimensionalr-nearest neighbor tori. Particularly, we obtain
good approximation formulas for the hitting times onr-
nearest neighbor cycles andr-nearest neighbor tori. This has
applications in network design as discussed below.

A. Latency-overhead Optimisation

Theorem 3 is useful to estimate the trade-off between
latency and RF power consumption (i.e. different transmission
radius or different number of nearest neighbors,2r). There-
fore, Hn

2 ,0 is proportional to 1
r2 in the one dimensional case.

It is well-known that RF power consumption is proportional to
r2. Hence, we can roughly estimate that RF power consump-
tion is proportional to1/latency. We expect this can serve as
a basis of estimation for the two dimensional case.

Furthermore, Eqns. (10), (14), (15) enable to set up an
optimization framework, useful for the design and planning
of wireless sensor networks. For instance, consider Eqn. (10)
and the problem is to optimize the maximum latency subject to
the constraint of the total power consumption below a certain
threshold, or the dual problem to optimize the total power
consumption subject to the constraint of the maximum latency
below a certain threshold. This can be set up as follows:

1) min 3n2

2(1+r)(1+2r) subject tonπr2 ≤ Emax, r ≤ rmax

2) min nπr2 subject to 3n2

2(1+r)(1+2r) ≤ Lmax, r ≤ rmax

The solutions can be obtained by solving the respective
Lagrangian.
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VII. A PPENDIX

A. Definition of Tensor Product

SupposeX is a(r+1)×(s+1) matrix andY is a(p+1)×
(q + 1) matrix. Define the tensor product matrix asX ⊗ Y,
which is a(r + 1)(p + 1) × (s + 1)(q + 1) matrix, such that
for 0 ≤ a ≤ r, 0 ≤ b ≤ p, 0 ≤ c ≤ s, 0 ≤ d ≤ q, the entry at
position (a(p + 1) + b, c(q + 1) + d) is defined as:

(X ⊗ Y)a(p+1)+b, c(q+1)+d , Xa,cYb,d

B. Proofs

Theorem 1:Given arbitrary sojourn timèu > 0 for each
u, the hitting time and commute time fromu to v can be
computed by:

Hu,v =
∑

k:σk 6=0

W̃

σk

( µ
2
k,v

wv`v

− µk,uµk,v√
wu`uwv`v

)

Cu,v =
∑

k:σk 6=0

W̃

σk

(

µk,u√
wu`u

− µk,v√
wv`v

)2

whereW̃ ,
∑

(u,v)∈E wu,v(`u,v +`v,u) =
∑

u′∈V wu′`u′ , and

σk andµk are thek-th eigenvalue and eigenvector ofL̃.
Proof: First, we letωu =

√
wu`u. Then we observe that

L̃u,uωu =

√

wu

`u

and
∑

v∈Nu

L̃v,uωv = −
∑

v∈Nu
wu,v√

wu`u

= −
√

wu

`u

Hence,L̃ω = 0. That is, 0 is an eigenvalue, andω/
√

W̃
is the corresponding eigenvector ofL̃. Note that sinceG is

connected, by Frobenius-Perron Theorem, it can be shown that
σ0 = 0 is the unique eigenvalue.

Second, define (generalized) discrete Green’s functionG̃:

G̃ ,
∑

k:σk 6=0

1

σk

µ
T
k µk

This is the same one in [12], if̀u = 1 for all u. Sinceω/
√

W̃
is an eigenvector of̃L, it follows that

G̃ω = 0 and G̃L̃ = I − 1

W̃
ω

T
ω

Third, denote the all-ones matrix asJ. Thus, (SJ)u,v =
`u. We can rewrite Eqn. (1) as a matrix equation with non-
diagonal entry(u, u) as:

(

SJ + (D−1
A− I)H

)

u,v
= 0, for u 6= v (16)

For diagonal entries(u = v), we observe that
(

πSJ + π(D−1
A − I)H

)T

u
=

(

πSJ
)T

u
=

∑

u′∈V πu′`u′

Therefore, this is a diagonal matrix. Byπu = wu

W
and

Eqn. (16), we can obtain the diagonal entry as:

(

SJ+(D−1
A−I)H

)

u,u
=

∑

u′∈V πu′`u′

πu

=

∑

u′∈V wu′`u′

wu

=
W̃

wu

Combining these facts, we obtain:

(I− D
−1

A)H = SJ − W̃D
−1

D

1
2 (I − D

−1
A)D

− 1
2
D

1
2
HD

1
2 = D

1
2 (SJ − W̃D

−1)D
1
2

S
− 1

2 (I − N)S
− 1

2
S

1
2
D

1
2
HD

1
2 = S

− 1
2
D

1
2 (SJ − W̃D

−1)D
1
2

L̃S

1
2
D

1
2
HD

1
2
S

1
2 = S

− 1
2
D

1
2 (SJ − W̃D

−1)D
1
2
S

1
2

L̃S

1
2
D

1
2
HD

1
2
S

1
2 = W̃ ( 1

W̃
ω

T
ω − I)

G̃L̃S

1
2
D

1
2
HD

1
2
S

1
2 = W̃ G̃( 1

W̃
ω

T
ω − I)

(I − 1
W̃

ω
T
ω)S

1
2
D

1
2
HD

1
2
S

1
2 = −W̃G̃

The diagonal entry(u, u) of the above matrix equation is:

wu`uHu,u − wu`u

W̃

∑

w∈V
ww`wHw,u = −W̃

∑

k:σk 6=0

1

σk

µ
2
k,u

while the non-diagonal entry(u, v) is:

√

wu`uwv`vHu,v −
√

wu`uwv`v

W̃

∑

w∈V
ww`wHw,u

= −W̃
∑

k:σk 6=0

1

σk

µk,uµk,v

Combining the two equations and usingHu,u = 0, we obtain
Eqn. (7). Eqn. (8) follows fromCu,v = Hu,v + Hv,u.

Lemma 1:The(k+1)-th eigenvalue and eigenvector of the
LaplacianL̃ of r-nearest neighbor cycleCr

n:

σk = 1−
∑r

j=1 aj cos
(

2πjk
n

)

∑r

j′=1 aj′
, µk =

1√
n

(

1, εk, ..., ε(n−1)k
)T

ε is complex number defined as:ε , cos
(

2π
n

)

+ i sin
(

2π
n

)

.



Proof: The adjacancy matrixA[Cr
n] is:











0 a1 . . . a2 a1

a1 0 . . . a3 a2

...
...

. . .
...

...
a1 a2 . . . a1 0











which is a circulant matrix [17]. It is well-known that thek-th
eigenvector isµk and the corresponding eignevalue is:

a1ε
k+· · ·+arε

rk+arε
(r−1)k+· · ·+a1ε

(n−1)k = 2

r
∑

j=1

aj cos
(2πjk

n

)

This completes the proof bỹL[Cr
n] = I− 1

2
∑

r
j′=1

aj′
A[Cr

n].

Lemma 2:Trigonometric identity of Dirichlet kernel [18]:

1 + 2
r
∑

j=1

cos(jx) =
sin

(

(r+ 1
2 )x

)

sin( x
2 )

Lemma 3:Whenx → 0,
1

1− 1
r

r
∑

j=1

cos(jx)
≈ 12

(r+1)(2r+1)x2 (17)

Proof: By Lemma 2 and Taylor series expansion atx = 0,

sin
(

(r+ 1
2 )x

)

sin( x
2 ) = (2r + 1) − 1

6r(r + 1)(2r + 1)x2 + O(x4)

By numerical study, we observe that Eqn. (17) gives a
relatively good approximation even for0 ≤ x ≤ π and small
r (see Fig. 10).
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Fig. 10. The comparison of 1

1− 1
r

r
∑

j=1
cos(jx)

against 12
(r+1)(2r+1)x2 for

0 ≤ x ≤ π.

Theorem 2:When n → ∞, the maximum hitting time on
r-nearest neighbor cycleCr

n can be approximated by:

Hn
2 ,0 ≈ 3n2

2(1+r)(1+2r)

Proof: It suffices to consider the casen = 4c for integer
c, because we can always extrapolate in the approximation.

Hn
2 ,0=

n−1
∑

k=1

1−cos(πk)

1− 1
r

r
∑

j=1

cos
(

2πjk

n

) =

n
2

∑

k=0

2

1− 1
r

r
∑

j=1

cos
(

2πj(2k+1)
n

)

(1)
=

n
4

∑

k=0

4

1− 1
r

r
∑

j=1

cos
(

2πj(2k+1)
n

)

(2)≈
n
4

∑

k=0

12n2

π2(r+1)(r+1)(2k+1)2

where (1) is due to: cos
( 2πj(2k+1)

n

)

= cos
( 2πj(n−2k−1)

n

)

,
and (2) is due to Lemma 3. We complete the proof by the

identity: lim
n→∞

n
∑

k=0

1
(2k+1)2 = π2

8 .

Theorem 3:Whenr � n, the maximum hitting time on an
r-nearest neighbor torus is:

H( n
2 , n

2 ),(0,0) = Θ
(n2 log(n)

(1 + 2r)2

)

Proof: (Sketch) Without loss of generality, we considern
is even. Since anL∞ r-nearest neighbor torus can boundL1

r-nearest neighbor torus, we considerL∞ r-nearest neighbor
torus. Substituting(u, v) = (n

2 , n
2 ) into Theorem 4,

H( n
2 , n

2 ),(0,0) =
∑

(k,l)6=(0,0)

k+l is odd

2

1− 1
4r2+4r

( r
∑

i=−r

r
∑

j=−r

cos
(

2πik
n

)

cos
(

2πjl

n

)

−1
)

Let a(x, y) , 1

1− 1
4r2+4r

( r
∑

i=−r

r
∑

j=−r

cos(ix) cos(jy)−1
)

= 1

1− 1
4r2+4r

( r
∑

i=−r

r
∑

j=−r

cos(ix+jy)+cos(ix−jy)
2 −1

)

Note that for−π ≤ θ ≤ π, 1 − θ2

2 ≤ cos(θ) ≤ 1 − θ2

5 .
Therefore, for-π2r

≤ x, y ≤ π
2r

,

a(x, y) ≥ 1

1- 1
4r2+4r

( r
∑

i=−r

r
∑

j=−r

1
2

(

2- (ix+jy)2

2 - (ix−jy)2

2

) = 24
(1+2r)2(x2+y2)

a(x, y) ≤ 1

1- 1
4r2+4r

( r
∑

i=−r

r
∑

j=−r

1
2

(

2- (ix+jy)2

5 - (ix−jy)2

5

) = 62.5
(1+2r)2(x2+y2)

This follows from
r
∑

i=−r

(1− (ix)2

k
) = (1+2r)(3k−rx2−r2x2)

3k
, and

some algebraic simplifications that:

1

1− 1
4r2+4r

( r
∑

i=−r

r
∑

j=−r

1
2

(

2− (ix+jy)2

k1
− (ix−jy)2

k2

) = 24k1k2

(1+2r)2(x2+y2)(k1+k2)

Hence,a(x, y) = Θ
(

1
(1+2r)2(x2+y2)

)

.
Sincer � n,

H( n
2 , n

2 ),(0,0) =
∑

(k,l)6=(0,0)

k+l is odd

2a(2πk
n

, 2πl
n

) ≈ Θ
(

n−1
∑

k=1

n−1
∑

l=1

n2

(1+2r)2(k2+l2)

)

Since 1
k2+l2

is a decreasing function ink and l, whenn is
large, we obtain:

n−1
∑

k=1

n−1
∑

l=1

1
k2+l2

≈ Θ
(

∫ n

1

∫ n

1

1
k2+l2

dl dk
)

Note that
∫ b

1

1
c2+x2 dx = 1

c

(

arctan
(

b
c

)

− arctan
(

1
c

)

)

Since1 � n and0 < arctan(x) ≤ π
2 for positivex,

∫ n

1

∫ n

1

1
k2+l2

dl dk ≈
∫ n

1

Θ
(

1
k

)

dk = Θ
(

log(n)
)


