Combinatorial Optimization of AC Electric Power Systems Bridging Power Engineering & Computer Science [Tutorial]

Sid Chi-Kin Chau

Australian National University

sid.chau@anu.edu.au

June 14, 2022

크

https://users.cecs.anu.edu.au/~sid.chau/FnT.html

Big Picture

Combin. Opt. of AC Power Sys

Sid Chau

Overview

CKP DPF Simulation

• Challenges

- *Complexity*: Non-linear constraints of AC power systems, energy storage, (combined heat & power) generators, etc.
- Uncertainty: Intermittent renewable energy, dynamic market prices, fluctuating demands (e.g. EVs, datacenters)
- **Goal:** How to optimize the management of energy demands and resources efficiently and intelligently?

• Circular motion of dynamo generator \Rightarrow Periodic current and voltage

イロト イポト イヨト イヨト

-

Combin. Opt. of AC Power Sys

Sid Chau

Overview Preliminary CKP OPF Simulation Summary

• Expressed by complex numbers: $V = |V|e^{i\omega t}, I = |I|e^{i(\omega t + \phi)}$

• Circular motion of dynamo generator \Rightarrow Periodic current and voltage

- Expressed by complex numbers: $V = |V|e^{i\omega t}$, $I = |I|e^{i(\omega t + \phi)}$
- Power: $S = V \times I^*$ (also a complex number)
 - Active power: $\operatorname{Re}(S)$
 - *Reactive* power: Im(S)
 - Apparent power: $|S| = \sqrt{\operatorname{Re}(S)^2 + \operatorname{Im}(S)^2}$

Combin. Opt. of AC Power Sys

Sid Chau

- Active power $(\operatorname{Re}(S))$
 - Deliver useful work at loads (unit: Watt)
 - Demands: positive active power
 - Supplies: negative active power
- Reactive power (Im(S))
 - Contribute to electricity flows (unit: VAR):
 - Inductors: positive reactive power
 - Capacitors: negative reactive power

Combin. Opt. of AC Power Sys

Sid Chau

- Active power $(\operatorname{Re}(S))$
 - Deliver useful work at loads (unit: Watt)
 - Demands: positive active power
 - Supplies: negative active power
- Reactive power (Im(S))
 - Contribute to electricity flows (unit: VAR):
 - Inductors: positive reactive power
 - Capacitors: negative reactive power
- Power factor $(PF = \frac{Re(S)}{|S|})$
 - Normalized measure of reactive power
 - Power electronic standards usually require limited reactive power in most domestic appliances ($\mathrm{PF} \geq 0.8$)

	Compressors/Pumps	Motors	Machining
Power factor	0.75-0.8	0.5-0.8	0.4-0.65

Combin. Opt. of AC Power Sys

Sid Chau

Power Networks 101

Combin. Opt. of AC Power Sys

Sid Chau

Overview Preliminary CKP OPF Simulation Summary

• Electric networks: set of nodes (\mathcal{V}) , set of edges (\mathcal{E})

- Voltage at node *i*: V_i
- Impedance between $i \& j: z_{i,j}$
- Current from i to j: $I_{i,j}$
- Transmitted power from i to j: $S_{i,j}$

Power Networks 101

Combin. Opt. of AC Power Sys

Sid Chau

- Electric networks: set of nodes (\mathcal{V}) , set of edges (\mathcal{E})
 - Voltage at node $i: V_i$
 - Impedance between $i \& j: z_{i,j}$
 - Current from i to j: $I_{i,j}$
 - Transmitted power from i to j: $S_{i,j}$
- Direct Current (DC) electric systems:
 - $(V_i, I_{i,j}, z_{i,j}, S_{i,j})$ are *real* numbers (\mathbb{R})
- Alternating Current (AC) electric systems:
 - $(V_i, I_{i,j}, z_{i,j}, S_{i,j})$ are *complex* numbers (\mathbb{C})

Power Flow Model

- Basic electricity laws:
 - Ohm's Law: For each edge $(i, j) \in \mathcal{E}$,

$$V_i - V_j = z_{i,j} I_{i,j}.$$

• Kirchhoff's Current Law: For each node $i \in \mathcal{V}$,

j

$$\sum_{\in \mathcal{V}: (i,j) \in \mathcal{E}} I_{i,j} = 0.$$

• Electric Power Formula: For each edge $(i, j) \in \mathcal{E}$,

$$S_{i,j} = V_i I_{i,j}^*.$$

イロト イポト イヨト イヨト

3

Combin. Opt. of AC Power Sys

Sid Chau

Power Flow Model

- Basic electricity laws:
 - Ohm's Law: For each edge $(i, j) \in \mathcal{E}$,

$$V_i - V_j = z_{i,j} I_{i,j}.$$

• Kirchhoff's Current Law: For each node $i \in \mathcal{V}$,

j

$$\sum_{\in \mathcal{V}: (i,j) \in \mathcal{E}} I_{i,j} = 0.$$

• Electric Power Formula: For each edge $(i,j) \in \mathcal{E}$,

$$S_{i,j} = V_i I_{i,j}^*.$$

Definition (Branch Flow Model)

$$S_{i,j} = z_{i,j} |I_{i,j}|^2 + \sum_{l:(j,l) \in \mathcal{E}} S_{j,l},$$

$$V_i - V_j = z_{i,j} I_{i,j},$$
$$S_{i,j} = V_i I_{i,j}^*,$$

for all $(i, j) \in \mathcal{E}$, for all $(i, j) \in \mathcal{E}$.

for all $j \in \mathcal{V}$,

Combin. Opt. of AC Power Sys

Sid Chau

Power Flow Model

Definition (Branch Flow Model with Angle Relaxation)

Let $v_i = |V_i|^2$ and $\ell_{i,j} = |I_{i,j}|^2$. Omit the phase angles:

$$\begin{split} S_{i,j} &= z_{i,j}\ell_{i,j} + \sum_{l:(j,l)\in\mathcal{E}} S_{j,l}, & \text{for all } j\in\mathcal{V}, \\ v_i - v_j &= 2\text{Re}(z^*_{i,j}S_{i,j}) - |z_{i,j}|^2\ell_{i,j}, & \text{for all } (i,j)\in\mathcal{E}, \\ |S_{i,j}|^2 &= v_i\ell_{i,j}, & \text{for all } (i,j)\in\mathcal{E}. \end{split}$$

- Angle relaxation reduces complex-valued variables, and hence is more tractable
- Always possible to recover $(V_i, I_{i,j})$ from $(v_i, \ell_{i,j})$, when it is a **tree** network [Low et al.]
- Assume a tree (radial) distribution network

Sid Chau

Control Variables & Operating Constraints

- Each user $k \in \mathcal{N}$ can control individual demand s_k
- Some have **discrete** (inelastic) power demands $(\mathcal{I} \subseteq \mathcal{N})$
 - A discrete demand is either completely satisfied or dropped
 - E.g., equipment is either switched on with a fixed power consumption rate or completely off
 - $s_k = \bar{s}_k x_k$, where $x_k \in \{0, 1\}$
- Others have **continuous** (elastic) demands $(\mathcal{F} \subseteq \mathcal{N})$
 - $\underline{s}_k \leq s_k \leq \overline{s}_k$

Sid Chau

Control Variables & Operating Constraints

- Each user $k \in \mathcal{N}$ can control individual demand s_k
- Some have discrete (inelastic) power demands $(\mathcal{I}\subseteq\mathcal{N})$
 - A discrete demand is either completely satisfied or dropped
 - E.g., equipment is either switched on with a fixed power consumption rate or completely off
 - $s_k = \bar{s}_k x_k$, where $x_k \in \{0, 1\}$
- Others have **continuous** (elastic) demands $(\mathcal{F} \subseteq \mathcal{N})$
 - $\underline{s}_k \leq s_k \leq \overline{s}_k$
- Operating Constraints of Power Systems:
 - Power Capacity Constraints: $|S_{i,j}| \leq \overline{S}_{i,j}$
 - Current Thermal Constraints: $\ell_{i,j} \leq \overline{\ell}_{i,j}$
 - Voltage Constraints: $\underline{v}_j \leq v_j \leq \overline{v}_j$

Sid Chau

Optimal Power Flow Problem (OPF)

Definition (Optimal Power Flow Problem)

$$\begin{array}{ll} \text{(OPF)} & \max_{s_0,s,x,S,v,\ell} f(s_0,s) \\ \text{subject to } \ell_{i,j} = \frac{|S_{i,j}|^2}{v_i}, & \forall (i,j) \in \mathcal{E}, \\ & S_{i,j} = \sum_{k \in \mathcal{U}_j} s_k + \sum_{l:(j,l) \in \mathcal{E}} S_{j,l} + z_{i,j}\ell_{i,j}, & \forall (i,j) \in \mathcal{E}, \\ & v_j = v_i + |z_{i,j}|^2 \ell_{i,j} - 2 \text{Re}(z_{i,j}^*S_{i,j}), & \forall (i,j) \in \mathcal{E}, \\ & \frac{v_j \leq v_j \leq \overline{v}_j, & \forall j \in \mathcal{V}^+, \\ & |S_{i,j}| \leq \overline{S}_{i,j}, |S_{j,i}| \leq \overline{S}_{i,j}, & \forall (i,j) \in \mathcal{E}, \\ & \ell_{i,j} \leq \overline{\ell}_{i,j}, & \forall (i,j) \in \mathcal{E}, \\ & s_k \leq s_k \leq \overline{s}_k, & \forall k \in \mathcal{F}, \\ & s_k = \overline{s}_k x_k, & x_k \in \{0,1\}, & \forall k \in \mathcal{I}, \\ & v_j \in \mathbb{R}^+, \forall j \in \mathcal{V}^+, \ \ell_{i,j} \in \mathbb{R}^+, S_{i,j} \in \mathbb{C}, & \forall (i,j) \in \mathcal{E}. \end{array}$$

Combin. Opt. of AC Power Sys

Sid Chau

Preliminary CKP OPF Simulation Summary

Hardness of OPF

 Non-Convex Constraints involving complex-valued variables and parameters of AC electric power systems

• E.g.
$$\ell_{i,j} = \frac{|S_{i,j}|^2}{v_i}$$

• **Combinatoric Constraints** involving binary control decision variables for the operations of power systems

• E.g. $s_k = \bar{s}_k x_k, \ x_k \in \{0, 1\}$

 \bullet Even without combinatoric constraints, checking feasibility of ${\rm OPF}$ (with voltage & capacity constraints) is NP-hard

• Ref. [Lehmann et al.] [Verma]

- Need to relax some constraints
 - Namely, considering a less restrictive optimization problem

Combin. Opt. of AC Power Sys

Sid Chau

Definition (Convex Relaxed OPF)

$$\begin{array}{ll} \text{(cOPF)} & \max_{s_0,s,x,S,v,\ell} f(s_0,s) \\ \text{subject to} & \hline \ell_{i,j} \geq \frac{|S_{i,j}|^2}{v_i} \\ & S_{i,j} = \sum_{k \in \mathcal{U}_j} s_k + \sum_{l:(j,l) \in \mathcal{E}} S_{j,l} + z_{i,j}\ell_{i,j}, & \forall (i,j) \in \mathcal{E}, \\ & v_j = v_i + |z_{i,j}|^2 \ell_{i,j} - 2 \text{Re}(z_{i,j}^*S_{i,j}), & \forall (i,j) \in \mathcal{E}, \\ & \frac{v_j}{2} \leq v_j \leq \overline{v}_j, & \forall j \in \mathcal{V}^+, \\ & |S_{i,j}| \leq \overline{S}_{i,j}, |S_{j,i}| \leq \overline{S}_{i,j}, & \forall (i,j) \in \mathcal{E}, \\ & \ell_{i,j} \leq \overline{\ell}_{i,j}, & \forall (i,j) \in \mathcal{E}, \\ & s_k \leq s_k \leq \overline{s}_k, & \forall k \in \mathcal{F}, \\ & s_k = \overline{s}_k x_k, & x_k \in \{0,1\}, & \forall k \in \mathcal{I}, \\ & v_j \in \mathbb{R}^+, \forall j \in \mathcal{V}^+, \ \ell_{i,j} \in \mathbb{R}^+, S_{i,j} \in \mathbb{C}, & \forall (i,j) \in \mathcal{E}. \end{array}$$

Combin. Opt. of AC Power Sys

Sid Chau

Preliminary

- Second Order Cone Problem: Easier convex problem with polynomial-time algorithms
- Exactness: Solution of $\mathrm{COPF} \Rightarrow$ Solution of OPF
 - Under certain sufficient conditions [Low et al.] [Huang et al.]
 - Conversion is polynomial-time

Sid Chau

- Second Order Cone Problem: Easier convex problem with polynomial-time algorithms
- *Exactness*: Solution of $\text{COPF} \Rightarrow$ Solution of OPF
 - Under certain sufficient conditions [Low et al.] [Huang et al.]
 - Conversion is polynomial-time

Assumptions

A1: $z_e \ge 0, \forall e \in \mathcal{E}$, naturally holds in distribution networks A2: $\underline{v}_j < v_0 < \overline{v}_j, \forall j \in \mathcal{V}^+$ C2: Given a solution s, it satisfies

$$\sum_{k \in \mathcal{N}_j} \operatorname{Re}(z_{h,l}^* s_k) \ge 0 \quad \forall j \in \mathcal{V}^+, (h,l) \in \mathcal{E}_j \cup \{(i,j) \in \mathcal{E}\}$$

where N_j is the set of attached users within subtree from node j, and \mathcal{E}_j is the set of edges of subtree node j

・ロト ・日ト ・日ト ・日ト ・日

Combin. Opt. of AC Power Sys

Sid Chau

Theorem

Assuming A1,A2,C2, an optimal solution to COPF, $F^* = (s_0^*, s^*, x^*, S^*, v^*, \ell^*)$ can be converted to an optimal solution to OPF, $\hat{F}^* = (\hat{s}_0^*, s^*, x^*, \hat{S}^*, \hat{v}^*, \hat{\ell}^*)$, in polynomial-time, by solving the following convex problem:

$$(\widehat{\operatorname{cOPF}}[F^*]) \min_{s_0, S, v, \ell} \sum_{e \in \mathcal{E}} \ell_e$$

subject to constraints of cOPF

$$s = s^{\star}$$
$$f(s_0, s^{\star}) \ge f(s_0^{\star}, s^{\star})$$

Combin. Opt. of AC Power Sys

Sid Chau

Theorem

Assuming A1,A2,C2, an optimal solution to COPF, $F^* = (s_0^*, s^*, x^*, S^*, v^*, \ell^*)$ can be converted to an optimal solution to OPF, $\hat{F}^* = (\hat{s}_0^*, s^*, x^*, \hat{S}^*, \hat{v}^*, \hat{\ell}^*)$, in polynomial-time, by solving the following convex problem:

$$\widehat{\text{COPF}}[F^{\star}]) \min_{s_0, S, v, \ell} \sum_{e \in \mathcal{E}} \ell_e$$

subject to constraints of COPF
 $s = s^{\star}$
 $f(s_0, s^{\star}) > f(s^{\star}_0, s^{\star})$

Question

How to solve cOPF with discrete demands?

Sid Chau

Main Ideas

 $\bullet~{\rm Solve~OPF}$ by studying simplified problems

• Complex-demand Knapsack Problem (CKP)

- Single-capacitated AC system without impedance
- Demands are complex numbers
- Knapsack Problem (KP)
 - Classical computer science problem
 - Packing discrete items subject to capacity constraint
 - Demands are non-negative real numbers

Combin. Opt. of AC Power Sys

Sid Chau

What is Knapsack Problem?

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES RESTAURANT APPETIZERS MUXED FRUIT 2.15 FRENCH FRIES 2.75 SIDE SALAD 3.35 HOT WINGS 3.55 MOZZARELLA STICKS 4.20 SAMULER PLATE 5.80 SANDWICHES BARBECILE 6.55	WED LIKE EXACTLY \$ 15. 05 WORTH OF APPETIZERS, PLEASE. (EXACTLY? UHH HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT. LISTEN, I HAVE SIX OTHER TABLES TO GET TO - - AS FAST AS POSSIBLE, OF COURSE. WANT SOMETHING ON TRIVELING SALESMAN?
---	---

Combin. Opt. of AC Power Sys

Sid Chau

Complex-demand Knapsack Problem (CKP)

 $\mathsf{Knapsack}\ \mathsf{Problem}\ \Rightarrow\ \mathsf{Complex-demand}\ \mathsf{Knapsack}\ \mathsf{Problem}$

イロト イポト イヨト イヨト

Combin. Opt. of AC Power Sys

Sid Chau

Overview Preliminary CKP OPF Simulation Summary

-

(1D) Knapsack Problem (KP)

- $\mathcal{N} = \{1, \dots, n\}$: a set of users (or items)
- $s_k^{\rm R}$: positive real-valued demand of k-th user (e.g. weight)
- u_k : utility of k-th user when s_k^{R} is satisfied (e.g. value)
- C: real-valued capacity
- xk: decision variable of allocation
 - $x_k = 1$, if k-th user's demand is satisfied
 - $x_k = 0$, otherwise

Definition (1DKP)

$$\max_{x_k \in \{0,1\}} \sum_{k \in \mathcal{N}} x_k u_k$$

subject to

$$\sum_{k \in \mathcal{N}} s_k^{\mathrm{R}} x_k \le C$$

Combin. Opt. of AC Power Sys

Sid Chau

Overview Preliminary CKP OPF Simulation Summary

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● ● ●

(1D) Knapsack Problem (KP)

- $\mathcal{N} = \{1, \dots, n\}$: a set of users (or items)
- $s_k^{\rm R}$: positive real-valued demand of k-th user (e.g. weight)
- u_k : utility of k-th user when s_k^{R} is satisfied (e.g. value)
- C: real-valued capacity
- x_k: decision variable of allocation
 - $x_k = 1$, if k-th user's demand is satisfied
 - $x_k = 0$, otherwise

Definition (1DKP)

$$\max_{x_k \in \{0,1\}} \sum_{k \in \mathcal{N}} x_k u_k$$

subject to

$$\sum_{k \in \mathcal{N}} s_k^{\mathrm{R}} x_k \le C$$

• 1DKP is NP-Hard, but can be approximately solved efficiently

Combin. Opt. of AC Power Sys

Sid Chau

Complex-demand Knapsack Problem (CKP)

• s_k is complex-valued demand of k-th user $(s_k = s_k^{\rm R} + \mathbf{i} s_k^{\rm I})$

Combin. Opt. of AC Power Sys

Sid Chau

Complex-demand Knapsack Problem (CKP)

• s_k is complex-valued demand of k-th user $(s_k = s_k^{\rm R} + \mathbf{i} s_k^{\rm I})$

イロト イロト イヨト イヨト 三日

Combin. Opt. of AC Power Sys

Sid Chau

- NP-Hard Problems can't be solved exactly
- But efficient approximation solutions exist

Combin. Opt. of AC Power Sys

Sid Chau

- NP-Hard Problems can't be solved exactly
- But efficient approximation solutions exist
- Denote a solution by $(\hat{x}_k)_{k \in \mathcal{N}} \in \{0, 1\}^n$
- Denote an optimal solution by $(x_k^*)_{k\in\mathcal{N}}$
- Let $u(x) \triangleq \sum_k u_k x_k$ be the objective value of x

Sid Chau

- NP-Hard Problems can't be solved exactly
- But efficient approximation solutions exist
- Denote a solution by $(\hat{x}_k)_{k\in\mathcal{N}}\in\{0,1\}^n$
- Denote an optimal solution by $(x_k^*)_{k\in\mathcal{N}}$
- Let $u(x) \triangleq \sum_k u_k x_k$ be the objective value of x

Definition

Given $\alpha \in (0,1]$ and $\beta \geq 1$, a bi-criteria (α, β) -approximation to CKP is $(\hat{x}_k)_{k \in \mathcal{N}}$ satisfying:

$$\begin{aligned} u(\hat{x}) &\geq \alpha \cdot u(x^*) \\ \Big| \sum_{k \in \mathcal{N}} s_k \hat{x}_k \Big| &\leq \beta \cdot C, \end{aligned}$$

Combin. Opt. of AC Power Sys

Sid Chau

Overview Preliminary CKP OPF Simulation Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ○○○

- NP-Hard Problems can't be solved exactly
- But efficient approximation solutions exist
- Denote a solution by $(\hat{x}_k)_{k\in\mathcal{N}}\in\{0,1\}^n$
- Denote an optimal solution by $(x_k^*)_{k\in\mathcal{N}}$
- Let $u(x) \triangleq \sum_k u_k x_k$ be the objective value of x

Definition

Given $\alpha \in (0, 1]$ and $\beta \geq 1$, a bi-criteria (α, β) -approximation to CKP is $(\hat{x}_k)_{k \in \mathcal{N}}$ satisfying:

$$\begin{aligned} u(\hat{x}) &\geq \alpha \cdot u(x^*) \\ \Big| \sum_{k \in \mathcal{N}} s_k \hat{x}_k \Big| &\leq \beta \cdot C, \end{aligned}$$

• **PTAS** ($\alpha = 1 - \epsilon$, $\beta = 1$): Running time is polynomial in n for any fixed ϵ

Combin. Opt. of AC Power Sys

Sid Chau

- NP-Hard Problems can't be solved exactly
- But efficient approximation solutions exist
- Denote a solution by $(\hat{x}_k)_{k \in \mathcal{N}} \in \{0, 1\}^n$
- Denote an optimal solution by $(x_k^*)_{k\in\mathcal{N}}$
- Let $u(x) \triangleq \sum_k u_k x_k$ be the objective value of x

Definition

Given $\alpha \in (0,1]$ and $\beta \geq 1$, a bi-criteria (α, β) -approximation to CKP is $(\hat{x}_k)_{k \in \mathcal{N}}$ satisfying:

$$\begin{aligned} u(\hat{x}) &\geq \alpha \cdot u(x^*) \\ \Big| \sum_{k \in \mathcal{N}} s_k \hat{x}_k \Big| &\leq \beta \cdot C, \end{aligned}$$

- **PTAS** ($\alpha = 1 \epsilon$, $\beta = 1$): Running time is polynomial in n for any fixed ϵ
- FPTAS: PTAS with running time also polynomial in $1/\epsilon$

Combin. Opt. of AC Power Sys

Sid Chau

Combin. Opt. of AC Power Sys

Sid Chau

- $\bullet\,$ Let ϕ be the maximum angle between any two demands
- The (in)approximability is dependent on ϕ
- CKP is rotational invariant
 - When all demands are rotated by the same angle

$\operatorname{CKP}[0, \frac{\pi}{2}]$:

- **PTAS** $(1 \epsilon, \mathbf{1})$ -approx
- No FPTAS unless $\mathrm{P}{=}\mathrm{NP}$

Combin. Opt. of AC Power Sys

Sid Chau

Overview Preliminary CKP OPF Simulation Summary

・ロト・西ト・ヨト・ヨー うへの

- $\operatorname{CKP}[0, \frac{\pi}{2}]$:
 - **PTAS** $(1 \epsilon, 1)$ -approx
 - No FPTAS unless $\mathrm{P}{=}\mathrm{NP}$

 $\operatorname{CKP}[\frac{\pi}{2}, \pi - \varepsilon]$:

- $\bullet \ \varepsilon = 1/\mathrm{poly}(n)$
- **Bi-criteria FPTAS** $(1, 1+\epsilon)$ -approx
- No $(\alpha, 1)$ -approximation unless P=NP

イロト イロト イヨト イヨト

3

Combin

- $\operatorname{CKP}[0, \frac{\pi}{2}]$:
 - **PTAS** $(1 \epsilon, 1)$ -approx
 - No FPTAS unless $\mathrm{P}{=}\mathrm{NP}$

 $\operatorname{CKP}[\frac{\pi}{2}, \pi - \varepsilon]$:

- $\bullet \ \varepsilon = 1/\mathrm{poly}(n)$
- Bi-criteria FPTAS $(1, 1+\epsilon)$ -approx
- No $(\alpha, 1)$ -approximation unless P=NP

$$\operatorname{CKP}[\frac{\pi}{2}, \pi - \varepsilon]$$
:

- $\varepsilon = 1/\operatorname{super-pol}(n)$
- No (α, β)-approximation unless
 P=NP

Results for CKP

Sid Chau

- Other results: Greedy Algorithm
 - Running time $O(n \log n)$
 - Constant factor approximation algorithm $\left(\alpha = \frac{1}{2}\cos\frac{\phi}{2}\right)$

• Assume $\phi \in [0, \frac{\pi}{2}]$ (i.e. bounded power factor ≥ 0.75)

Combin. Opt. of AC Power Sys

Sid Chau

Combin. Opt. of AC Power Sys

Sid Chau

- Assume $\phi \in [0, \frac{\pi}{2}]$ (i.e. bounded power factor ≥ 0.75)
- Basic Ideas:
 - Fix partial solution by guessing
 - Solve convex relaxation with fractional solution
 - **③** Round the obtained fractional solution to integral solution
 - Enumerate all possible partial guessing and find the best solution

• Recall integer quadratic formulation:

$$\begin{split} \max_{x_k} & \sum_{k \in \mathcal{N}} u_k x_k \\ \text{subject to } \left(\sum_{k \in \mathcal{N}} s_k^{\text{R}} \cdot x_k \right)^2 + \left(\sum_{k \in \mathcal{N}} s_k^{\text{I}} \cdot x_k \right)^2 \leq C^2, \\ & x_k \in \{0, 1\}, \ \forall k \in \mathcal{N} \end{split}$$

Combin. Opt. of AC Power Sys

Sid Chau

SL

• Recall integer quadratic formulation:

$$\max_{x_k} \sum_{k \in \mathcal{N}} u_k x_k$$

to $\left(\sum_{k=1}^{R} s_k \cdot x_k\right)^2 + \left(\sum_{k=1}^{R} s_k^{\mathrm{I}} \cdot x_k\right)^2$

bject to
$$\left(\sum_{k \in \mathcal{N}} s_k^{\mathrm{R}} \cdot x_k\right)^2 + \left(\sum_{k \in \mathcal{N}} s_k^{\mathrm{I}} \cdot x_k\right)^2 \le C^2$$

 $x_k \in \{0, 1\}, \ \forall k \in \mathcal{N}$

. 9

Combin. Opt. of AC Power Sys

Sid Chau

Overview Preliminary CKP OPF Simulation Summary

Definition (Quadratic Relaxation)

$$\begin{split} \max_{x_k} \; \sum_{k \in \mathcal{N}} u_k x_k \\ \text{subject to } \left(\sum_{k \in \mathcal{N}} s_k^{\mathrm{R}} \cdot x_k \right)^2 + \left(\sum_{k \in \mathcal{N}} s_k^{\mathrm{I}} \cdot x_k \right)^2 \leq C^2, \\ x_k \in [0, 1], \; \forall k \in \mathcal{N} \end{split}$$

• The relaxation is *conve*x because $s_k^{\mathrm{R}}, s_k^{\mathrm{I}} \ge 0$ for all k

- Fix some subsets $I_1, I_0 \subseteq \mathcal{N}$
- Quadratic Relaxation with *partial guessing* of variables $\{x_k\}$:

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \displaystyle \underset{x_k}{\max} \; \sum_{k \in \mathcal{N}} u_k x_k \\ \end{array} \\ \text{subject to} \; \left(\sum_{k \in \mathcal{N}} s_k^{\mathrm{R}} \cdot x_k \right)^2 + \left(\sum_{k \in \mathcal{N}} s_k^{\mathrm{I}} \cdot x_k \right)^2 \leq C^2, \\ x_k \in [0,1], \; \forall k \in \mathcal{N} \backslash (I_0 \cup I_1) \\ x_k = 0, \; \forall k \in I_0 \\ x_k = 1, \; \forall k \in I_1 \end{array}$$

Combin. Opt. of AC Power Sys

Sid Chau

- (DOIZI

- Fix some subsets $I_1, I_0 \subseteq \mathcal{N}$
- Quadratic Relaxation with *partial guessing* of variables $\{x_k\}$:

Definition (RCKP[I₁, I₀])

$$\max_{x_k} \sum_{k \in \mathcal{N}} u_k x_k$$
subject to $\left(\sum_{k \in \mathcal{N}} s_k^{\mathrm{R}} \cdot x_k\right)^2 + \left(\sum_{k \in \mathcal{N}} s_k^{\mathrm{I}} \cdot x_k\right)^2 \le C^2,$
 $x_k \in [0, 1], \ \forall k \in \mathcal{N} \setminus (I_0 \cup I_1)$
 $x_k = 0, \ \forall k \in I_0$
 $x_k = 1, \ \forall k \in I_1$

- Carefully selection of I_1, I_0 :
 - $|I_1| \leq \frac{4}{\epsilon}$ (depending on ϵ)
 - $I_0 = \{k \in \mathcal{I} \setminus I_1 \mid u_k > \min_{k' \in I_1} u_{k'}\}$
 - Intuition: I₀, I₁ are some users with large utilities

Sid Chau

СКР

• Let x' be an optimal solution to $\mathrm{RCKP}[I_1, I_0]$

Definition $(LP[x', I_1 \cup I_0])$

$$\begin{split} \max_{x_k} \sum_{k \in \mathcal{N}} u_k x_k \\ \text{subject to} \ \sum_{k \in \mathcal{N}} s_k^{\mathrm{R}} \cdot x_k &\leq \sum_{k \in \mathcal{N}} s_k^{\mathrm{R}} \cdot x'_k, \\ \sum_{k \in \mathcal{N}} s_k^{\mathrm{I}} \cdot x_k &\leq \sum_{k \in \mathcal{N}} s_k^{\mathrm{I}} \cdot x'_k, \\ x_k \in [0, 1], \ \forall k \in \mathcal{N} \backslash (I_0 \cup I_1) \\ x_k &= x'_k, \ \forall k \in I_1 \cup I_0 \end{split}$$

Combin. Opt. of AC Power Sys

Sid Chau

• Let x' be an optimal solution to $\mathrm{RCKP}[I_1, I_0]$

Definition $(LP[x', I_1 \cup I_0])$

$$\begin{split} \max_{x_k} \sum_{k \in \mathcal{N}} u_k x_k \\ \text{subject to} \ \sum_{k \in \mathcal{N}} s_k^{\mathrm{R}} \cdot x_k &\leq \sum_{k \in \mathcal{N}} s_k^{\mathrm{R}} \cdot x'_k, \\ \sum_{k \in \mathcal{N}} s_k^{\mathrm{I}} \cdot x_k &\leq \sum_{k \in \mathcal{N}} s_k^{\mathrm{I}} \cdot x'_k, \\ x_k \in [0, 1], \ \forall k \in \mathcal{N} \backslash (I_0 \cup I_1) \\ x_k &= x'_k, \ \forall k \in I_1 \cup I_0 \end{split}$$

- Because of basic solution of LP, at most 2 coordinates in optimal basic solution to $LP[x', I_1 \cup I_0]$ are fractional
 - Basic solutions are vertices in the polytope of feasible solution set
 - Rounding fractional components down to integral components has limited deviation from optimal

Combin. Opt. of AC Power Sys

Sid Chau

Algorithm PTAS-CKP

• Pick a guess of partial solution by choosing I_1, I_0

- Each guess sets variables x_k in I_1 be 1 and I_0 be 0
- Solve optimal solution of $\mathrm{RCKP}[I_1, I_0]$, called x'
- Solve basic optimal solution of $\operatorname{LP}[x', I_1 \cup I_0]$, called x''
- Round fractional components of x'' down to 0:

$$\hat{x}_k = \lfloor x_k'' \rfloor, \quad \forall k \in \mathcal{N}$$

• Return the solution \hat{x} with the highest utility among all guesses

Combin. Opt. of AC Power Sys

Sid Chau

Algorithm $\operatorname{PTAS-CKP}$

• Pick a guess of partial solution by choosing I_1, I_0

- Each guess sets variables x_k in I_1 be 1 and I_0 be 0
- Solve optimal solution of ${
 m RCKP}[I_1,I_0]$, called x'
- Solve basic optimal solution of $\operatorname{LP}[x', I_1 \cup I_0]$, called x''
- Round fractional components of x'' down to 0:

$$\hat{x}_k = \lfloor x_k'' \rfloor, \quad \forall k \in \mathcal{N}$$

• Return the solution \hat{x} with the highest utility among all guesses

Theorem

For any $\epsilon > 0$, PTAS-CKP obtains $(1 - \epsilon, 1)$ -approximation in polynomial time.

Combin. Opt. of AC Power Sys

Sid Chau

Convex Relaxation of OPF

Definition (Convex Relaxed OPF)

$$\begin{array}{ll} \text{(cOPF)} & \max_{s_0,s,x,S,v,\ell} f(s_0,s) \\ \text{subject to} & \hline \ell_{i,j} \geq \frac{|S_{i,j}|^2}{v_i} \\ & S_{i,j} = \sum_{k \in \mathcal{U}_j} s_k + \sum_{l:(j,l) \in \mathcal{E}} S_{j,l} + z_{i,j}\ell_{i,j}, & \forall (i,j) \in \mathcal{E}, \\ & v_j = v_i + |z_{i,j}|^2 \ell_{i,j} - 2 \text{Re}(z_{i,j}^*S_{i,j}), & \forall (i,j) \in \mathcal{E}, \\ & \frac{v_j}{2} \leq v_j \leq \overline{v}_j, & \forall j \in \mathcal{V}^+, \\ & |S_{i,j}| \leq \overline{S}_{i,j}, |S_{j,i}| \leq \overline{S}_{i,j}, & \forall (i,j) \in \mathcal{E}, \\ & \ell_{i,j} \leq \overline{\ell}_{i,j}, & \forall (i,j) \in \mathcal{E}, \\ & s_k \leq s_k \leq \overline{s}_k, & \forall k \in \mathcal{F}, \\ & s_k = \overline{s}_k x_k, & x_k \in \{0,1\}, & \forall k \in \mathcal{I}, \\ & v_j \in \mathbb{R}^+, \forall j \in \mathcal{V}^+, \ \ell_{i,j} \in \mathbb{R}^+, S_{i,j} \in \mathbb{C}, & \forall (i,j) \in \mathcal{E}. \end{array}$$

Combin. Opt. of AC Power Sys

Sid Chau

Hardness Results for OPF

• OPF_V: OPF with voltage constraints only $(\underline{v}_j \leq v_j \leq \overline{v}_j)$

Theorem

Unless P=NP, there is no (α, β) -approximation for OPF_V (even when $|\mathcal{E}| = 1$), for any α and β that have polynomial number of bits in n.

Combin. Opt. of AC Power Sys

Sid Chau

Hardness Results for OPF

• OPF_V: OPF with voltage constraints

s only
$$(\underline{v}_j \leq v_j \leq \overline{v}_j)$$

Theorem

Unless P=NP, there is no (α, β) -approximation for OPF_V (even when $|\mathcal{E}| = 1$), for any α and β that have polynomial number of bits in $n_{.}$

Remark

To obtain approximation algorithms, one has to relax some constraints

Sid Chau

Hardness Results for OPF

• OPF_C: OPF with capacity constraints only $(|S_{i,j}| \leq \overline{S}_{i,j})$

Theorem

Unless P=NP, there exists no (α, β) -approximation for OPF_{C} in general networks, even in purely resistive electric networks (i.e. $Im(z_{i,j}) = 0$ for all $(i, j) \in \mathcal{E}$ and $Im(s_k) = 0$ for all $k \in \mathcal{N}$). Combin. Opt. of AC Power Sys

Sid Chau

Hardness Results for OPF

• OPF_C: OPF with capacity constraints only $(|S_{i,j}| \leq \overline{S}_{i,j})$

Theorem

Unless P=NP, there exists no (α, β) -approximation for OPF_{C} in general networks, even in purely resistive electric networks (i.e. $Im(z_{i,j}) = 0$ for all $(i, j) \in \mathcal{E}$ and $Im(s_k) = 0$ for all $k \in \mathcal{N}$).

Remark

To obtain approximation algorithms, one has to consider acyclic networks (i.e. trees)

Combin. Opt. of AC Power Sys

Sid Chau

Assumptions on OPF

- OPF with discrete demands is hard to solve
- Some assumptions are required to facilitate the solutions

Assumptions

- A1: $z_e \geq 0, \forall e \in \mathcal{E}$, naturally holds in distribution networks
- A2: $\underline{v}_j < v_0 < \overline{v}_j, \forall j \in \mathcal{V}^+$

A3: $\operatorname{Re}(z_e^*\overline{s}_k) \ge 0, \forall k \in \mathcal{I}, e \in \mathcal{E}$

- Namely, the phase angle difference between any z_e and s_k for $k\in \mathcal{I}$ is at most $\frac{\pi}{2}$
- This assumption holds, if discrete demands do not have large negative reactive power

A4:
$$\left| \angle \overline{s}_k - \angle \overline{s}_{k'} \right| \leq rac{\pi}{2}$$
 for any $k, k' \in \mathcal{I}$

- Namely, discrete demands have similar power factors
- It can also be restated as $\operatorname{Re}(\overline{s}_k^*\overline{s}_{k'}) \geq 0$

Sid Chau

Basic Ideas of PTAS for OPF

Combin. Opt. of AC Power Sys

Sid Chau

Rotational Invariance

Combin. Opt. of AC Power Sys

Sid Chau

Overview Preliminary CKP OPF Simulation Summary

• If complex-valued parameters z_e and s_k are rotated by the same angle (say ϕ)

• And objective func $f(s_0,s)$ is counter-rotated by ϕ in s_0

Rotational Invariance

Combin. Opt. of AC Power Sys

Sid Chau

Overview Preliminary CKP OPF Simulation Summary

- If complex-valued parameters z_e and s_k are rotated by the same angle (say ϕ)
- And objective func $f(s_0,s)$ is counter-rotated by ϕ in s_0
- Then there is a bijection between the rotated OPF and original OPF

$$\left(z_e, s_k, f(s_0, s)\right) \Leftrightarrow \left(z_e e^{\mathbf{i}\phi}, s_k e^{\mathbf{i}\phi}, f(s_0 e^{-\mathbf{i}\phi}, s)\right)$$

• Therefore, assume all s_k, z_e are in the first quadrant

PTAS for OPF

- Assume constant-sized network $(|\mathcal{V}^+| = |\mathcal{E}| = m)$
- But number of users $(|\mathcal{N}| = n)$ is a scalable parameter
- \bullet Define a variant of cOPF with partially guessing:

Definition $(P1[I_0, I_1])$

$$\max_{s_0,s,x,S,v,\ell} \ f(s_0,s)$$

subject to Constraints of
$$\operatorname{\rm cOPF}$$

$$s_k = \overline{s}_k x_k, \ \forall k \in \mathcal{I},$$

$$x_k = 1, \ \forall k \in I_1, \quad x_k = 0, \ \forall k \in I_0,$$

$$x_k \in [0, 1], \ \forall k \in \mathcal{I} \setminus (I_0 \cup I_1)$$

• Let optimal solution of P1 be $F' = \left(s'_0, s', x', S', v', \ell'\right)$

Combin. Opt. of AC Power Sys

Sid Chau

PTAS for OPF • Define $\overline{f}_k \triangleq f_k(1)$ for $k \in \mathcal{I}$, and define LP as: Definition (P2[$F', I_0 \cup I_1$]) $\max_{x_k \in [0,1], k \in \mathcal{I}'} \sum_{k \in \mathcal{I}} \overline{f}_k x_k$ subject to $0 \leq \sum \operatorname{Re} \left(\sum z_{h,l}^* s_k \right)$ $k \in \mathcal{N}$ $(h,l) \in \mathcal{P}_k \cap \mathcal{P}_i$ $\leq \sum \operatorname{Re} \left(\sum z_{h,l}^* s'_k ight), \forall j \in \mathcal{V}^+$ $\overline{k\in\mathcal{N}}$ $(h,l)\in\mathcal{P}_k\cap\mathcal{P}_i$ $\sum \operatorname{Re}(s_k) \le \sum \operatorname{Re}(s'_k), \forall j \in \mathcal{V}^+$ $k \in \mathcal{N}_i$ $k \in \mathcal{N}_{d}$ $\sum \operatorname{Im}(s_k) \leq \sum \operatorname{Im}(s'_k), \forall j \in \mathcal{V}^+$ $k \in \mathcal{N}_i$ $k \in \mathcal{N}_i$ $s_k = \overline{s}_k x_k, \ \forall k \in \mathcal{N} \setminus (I_0 \cup I_1)$ $s_k = s'_k, \ \forall I_0 \cup I_1$

Combin. Opt. of AC Power Sys

Sid Chau

PTAS for OPF

Algorithm PTAS-COPF

• Guess partial solution by I_1, I_0 , where $|I_1| \leq \frac{4m}{\epsilon}$

- Each guess sets variables x_k in I_1 be 1 and I_0 be 0
- Solve optimal solution of $P1[I_1, I_0]$, called F'
- Solve optimal solution of $P2[F', I_0 \cup I_1]$, called x''
- Round fractional components of x'' down to 0:

$$\hat{x}_k = \lfloor x_k'' \rfloor, \quad \forall k \in \mathcal{N}$$

• Return the solution \hat{x} with the highest utility among all guesses

Combin. Opt. of AC Power Sys

Sid Chau

PTAS for OPF

Algorithm PTAS-COPF

• Guess partial solution by I_1, I_0 , where $|I_1| \leq \frac{4m}{\epsilon}$

- Each guess sets variables x_k in I_1 be 1 and I_0 be 0
- Solve optimal solution of $P1[I_1, I_0]$, called F'
- Solve optimal solution of $P2[F', I_0 \cup I_1]$, called x''
- Round fractional components of x'' down to 0:

$$\hat{x}_k = \lfloor x_k'' \rfloor, \quad \forall k \in \mathcal{N}$$

• Return the solution \hat{x} with the highest utility among all guesses

Theorem

Assuming A1,A2,A3,A4, for any $\epsilon > 0$, PTAS-COPF obtains $(1 - \epsilon, 1)$ -approximation in polynomial time for constant-sized tree electric networks.

Combin. Opt. of AC Power Sys

Sid Chau

Simulation Settings

- Compare approx algorithm against the optimal solutions
- Use numerical solver (Gurobi) to obtain optimal solution

Figure: Test electric network from [Singh, Baran]

Combin. Opt. of AC Power Sys

Sid Chau

Simulation Settings

• User Types:

- Residential (R): Users have small power demands ranging from 500VA to 5KVA
- Industrial (I): Users have big demands ranging from 300KVA to 1MVA with non-negative reactive power
- Mixed (M): Users consist of a mix of industrial and residential users, with less than 20% industrial users

• Cost-Demand Correlation:

Correlated Setting (C): The objective of each user is a function of demand:

$$f_k(|s_k|) = a \cdot |s_k|^2 + b \cdot |s_k| + c$$

- Our Control of Cont
 - For industrial user, $|s_{\max}(k)| = 1$ MVA, otherwise $|s_{\max}(k)| = 5$ KVA

Combin. Opt. of AC Power Sys

Sid Chau

Simulation Results

Combin. Opt. of AC Power Sys

Sid Chau

Running Time

Combin. Opt. of AC Power Sys

Sid Chau

Overview Preliminary CKP OPF Simulation

▲□▶▲□▶▲□▶▲□▶ ■ のQの

Summary

• Complex-demand Knapsack Problem (CKP):

- Hardness results
- PTAS algorithm

\bullet Optimal Power Flow with discrete demands ($\rm OPF$):

- Hardness results
- PTAS algorithm

Combin. Opt. of AC Power Sys

Sid Chau

Summary

• Complex-demand Knapsack Problem (CKP):

- Hardness results
- PTAS algorithm

• Optimal Power Flow with discrete demands (OPF):

- Hardness results
- PTAS algorithm
- Other results:
 - Bi-criteria FPTAS
 - Scheduling problem
 - Scalable-sized networks
 - Truthful mechanisms

Combin. Opt. of AC Power Sys

Sid Chau

Overview Preliminary CKP OPF Simulation Summary

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の (4)</p>

Publications

- Related Papers
 - Chau, Elbassioni, Khonji. "Truthful Mechanisms for Combinatorial Allocation of Electric Power in Alternating Current Electric Systems for Smart Grid", ACM Trans. on Economics and Computation (TEAC), 2016
 - Karapetyan, Khonji, Chau, Elbassioni, Zeineldin. "Efficient Algorithm for Scalable Event-based Demand Response Management in Microgrids", IEEE Trans. on Smart Grid (TSG), 2018
 - Khonji, Chau, Elbassioni. "Optimal Power Flow with Inelastic Demands for Demand Response in Radial Distribution Networks", IEEE Trans. on Control of Network Systems (TCNS), 2018
 - Khonji, Chau, Elbassioni. "Combinatorial Optimization of AC Optimal Power Flow with Discrete Demands in Radial Networks", IEEE Trans. on Control of Network Systems (TCNS), 2020
 - Karapetyan, Khonji, Chau, Elbassioni, et al. "A Competitive Scheduling Algorithm for Online Demand Response in Islanded Microgrids", IEEE Trans. on Power Systems (TPS), 2021
 - Khonji, Karapetyan, Chau, Elbassioni. "Complex-demand Scheduling Problem with Application in Smart Grid", Theoretical Computer Science, 2018
 - Karapety, Elbassioni, Khonji, Chau. "Approximations for Generalized Unsplittable Flow on Paths with Application to Power Systems Optimization", Annals of Operations Research, 2022
 - Chau, Elbassioni, Khonji. "Combinatorial Optimization of Alternating Current Electric Power Systems", (Book), Foundations and Trends in Electric Energy Systems, Now Publishers Inc., 2018, ISBN: 978-1-68083-514-4.

https://users.cecs.anu.edu.au/~sid.chau/FnT.html

Combin. Opt. of AC Power Sys

Sid Chau

Overview Preliminary CKP OPF Simulation Summary

Combinatorial Optimization of Alternating Current Electric Power Systems Middle Row Majd Model