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e Challenges
e Complexity: Non-linear constraints of AC power systems,
energy storage, (combined heat & power) generators, etc.
e Uncertainty: Intermittent renewable energy, dynamic market
prices, fluctuating demands (e.g. EVs, datacenters)
@ Goal: How to optimize the management of energy
demands and resources efficiently and intelligently?
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@ Circular motion of dynamo generator =
Periodic current and voltage
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o Expressed by complex numbers:
V= |V|€th, I = |I|ei(wt+¢)
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@ Circular motion of dynamo generator =
Periodic current and voltage
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o Expressed by complex numbers:
V= |V|6th, I = |I|ei(wt+¢)

@ Power: S =V x I* (also a complex number)
o Active power: Re(S)
o Reactive power: Im(S)
o Apparent power: |S| = \/Re(5)? + Im(S)?2
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o Active power (Re(S))
o Deliver useful work at loads (unit: Watt)
e Demands: positive active power
e Supplies: negative active power

e Reactive power (Im(S))
o Contribute to electricity flows (unit: VAR):
e Inductors: positive reactive power
e Capacitors: negative reactive power




AC Electrical Systems 101 Ot of AC

Power Sys

Sid Chau

o Active power (Re(S))
o Deliver useful work at loads (unit: Watt)
e Demands: positive active power
e Supplies: negative active power

e Reactive power (Im(S))
o Contribute to electricity flows (unit: VAR):
e Inductors: positive reactive power
e Capacitors: negative reactive power

e Power factor (PF = Rleéf))

o Normalized measure of reactive power
e Power electronic standards usually require limited reactive
power in most domestic appliances (PF > 0.8)

Compressors/Pumps  Motors  Machining
Power factor 0.75-0.8 0.5-0.8  0.4-0.65




Power Networks 101

e Voltage at node i: V;

o Impedance between i & j: z; ;

o Current from i to j: I, ;

o Transmitted power from i to j: S; ;
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o Electric networks: set of no
e Voltage at node i: V;
o Impedance between i & j: z; ;
o Current from i to j: I, ;
o Transmitted power from i to j: S; ;
e Direct Current (DC) electric systems:
o (Vi,I; ,%;,5:;) are real numbers (R)
e Alternating Current (AC) electric systems:
o (Vi,I;;,%;,5:;) are complex numbers (C)

A
? Bus 31 Bus 32
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o Ohm'’s Law: For each edge (i,j) € &,

Sid Chau

Vi—=Vj =zl

e Kirchhoff’'s Current Law: For each node ¢ € V,

Y L;=0.

JEV:(i,5)EE
o Electric Power Formula: For each edge (i,7) € &,

Sij=Vil};.

Ly
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Vi—=Vj =zl

e Kirchhoff’'s Current Law: For each node ¢ € V,

Y L;=0.

JEV:(i,5)EE
o Electric Power Formula: For each edge (i,j) € &,

Sij=Vil};.

Definition (Branch Flow Model)

Sij = 2Ll + Z Sil, for all j € V,
l:(5,)e€

V="V = 20 for all (i,j) € &,

Sij = Vili, for all (i,7) € £.
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Definition (Branch Flow Model with Angle Relaxation)

Let v; = |V;|? and £; ; = |I; j|>. Omit the phase angles:

Sig=zigli;+ > S for all j €V,
l:(j,))eE

vi — v = 2Re(2];Si5) — |2i41*i5,  forall (4,5) €€,

|Si317 = vili 5, for all (i, ;) € €.

@ Angle relaxation reduces complex-valued variables, and
hence is more tractable

o Always possible to recover (V;, I; ;) from (v;, ¢; j), when it is
a tree network [Low et al.]

@ Assume a tree (radial) distribution network
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@ Each user £ € N can control individual demand sy,

e Some have discrete (inelastic) power demands (Z C N)

e A discrete demand is either completely satisfied or dropped

e E.g., equipment is either switched on with a fixed power
consumption rate or completely off

o s, = 5rxg, where 7 € {0,1}

@ Others have continuous (elastic) demands (F C N)
o 5, < Sk < S
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@ Each user £ € N can control individual demand sy,

e Some have discrete (inelastic) power demands (Z C N)

e A discrete demand is either completely satisfied or dropped

e E.g., equipment is either switched on with a fixed power
consumption rate or completely off

o s, = 5rxg, where 7 € {0,1}

@ Others have continuous (elastic) demands (F C N)
® S < Sk < Sk
@ Operating Constraints of Power Systems:
o Power Capacity Constraints: |S; ;| < S;
o Current Thermal Constraints: {; j < {;
o Voltage Constraints: v; < v; <U;
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Definition (Optimal Power Flow Problem) e
(OPF) max f(SO, S) retFrfiversy

50,8,2,9,0,0

subject to /; ; = ‘S‘ "

ZJ—ZSkJr Z 51 T Zijlig
kel l:(j,0)e€
v = v + |25 5 — 2Re(2; ;555),
Y < v; < vy,
155,41 < Sigs 1S4l < Sij,
Oz < Ui
S < Sk < Sk,
= {0 1}
eRYVj eVt ¢, eRT. S, €C,




Hardness of OPF i

Power Sys

Sid Chau

@ Non-Convex Constraints involving complex-valued
variables and parameters of AC electric power systems
|Si41°
V4

o Combinatoric Constraints involving binary control decision
variables for the operations of power systems
o E.g. sp =5kxk, xr € {0,1}
@ Even without combinatoric constraints, checking feasibility
of OPF (with voltage & capacity constraints) is NP-hard
o Ref. [ Lehmann et al.] [Verma]
@ Need to relax some constraints

° E.g. E@j =

e Namely, considering a less restrictive optimization problem




Convex Relaxation of OPF
Definition (Convex Relaxed OPF)

(cOPF)

subject to

f(507 8)

\5, /‘“

max
80,8,2,5,v,0

bij 2

Sij =

keu; (4, eE
vj = vi + |24 fm‘ -
v; < v; <y,

185,51 < Sij, 1S54l < Sij,

bij < bij,
Sp < Sk < Sg,
S = Sl W E {0 1}

v; ERT,Vj eVt 4 e RT

2Re(z

ZSA+ Z Sl+47j7]

1.151])

95 € C,

V(i,j) € €,

V(i j) €€,

V(i ) € €,
Vi e VT,
v(i,j) € €,
v(i,j) € €,
Vk € F,
Vk e 7,
Y(i,5) € &
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@ Second Order Cone Problem: Easier convex problem with Sid Chau

polynomial-time algorithms

@ Exactness: Solution of COPF = Solution of OPF

o Under certain sufficient conditions [Low et al.] [Huang et al.]
e Conversion is polynomial-time
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@ Second Order Cone Problem: Easier convex problem with Sid Chau
polynomial-time algorithms

@ Exactness: Solution of COPF = Solution of OPF

o Under certain sufficient conditions [Low et al.] [Huang et al.]
e Conversion is polynomial-time

Al: z. > 0,Ve € &, naturally holds in distribution networks
A2: v; <wg <y, V5 € VF

C2: Given a solution s, it satisfies

> Re(zfysk) 20 Vi€V, (h1) € £ U{(,]) € €}
kEN;

where J\/J is the set of attached users within subtree from
node j, and &; is the set of edges of subtree node j
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Assuming A1,A2,C2, an optimal solution to COPF,

F*= (s§, s*,x*,5*,v*,£*) can be converted to an optimal
solution to OPF Fr= (85, 8%, %, 5%, 0* ,0*), in polynomial-time,
by solving the following convex problem.

( COPF[F*]) min Y £
50,5,0,0
ect
subject to constraints of COPF
s=s"

f(s0,8") = f(s5,57)
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Assuming A1,A2,C2, an optimal solution to COPF,

F*= (s§, s*,x*,5*,v*,£*) can be converted to an optimal
solution to OPF Fr= (85, 8%, %, 5%, 0* ,0*), in polynomial-time,
by solving the following convex problem.

( COPF[F*]) min Y £
50,5,0,0
ecé

subject to constraints of COPF
s=s"

F(s0,8%) 2 £(sb, ")

How to solve COPF with discrete demands?
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@ Solve OPF by studying simplified problems
e Complex-demand Knapsack Problem (CKP)

e Single-capacitated AC system without impedance
e Demands are complex numbers

e Knapsack Problem (KP)
o Classical computer science problem

e Packing discrete items subject to capacity constraint
e Demands are non-negative real numbers




What is Knapsack Problem?

MY HOBBY:

EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

¢ CHOTCHRIES RESTAURA VT

O APPENZERS—~
NXED FROT 2.5
FRENCH FRIES 275
SIDE SALAD 335
HoT WiNGs 3.55
MOZZAREUA STIOS 420
SAMPLER PLATE 5.80
—— SANDWICHES ~—
BACERE NE L 6T

WED LKE EXACTLY $15. 05
WORTH OF APPETIZERS, PLEASE.
| L EXACTLY? UM .
HERE, THESE PAPERS ON THE KNAPEACK,
FROBLEM MIGHT HELP YOU OUT

LISTEN, I HAVE SIX OTHER
TABLES TO GET TD =

—AS FRST AS PUSSIBLE, (F (DURSE. WANT
SOMETHING ON TRAVELING SALESHAN? /

\
LYLhR
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Knapsack Problem = Complex-demand Knapsack Problem

|I . @ @ Allocating power
subject to capacity

constraint




(1D) Knapsack Problem (KP) Opr o1 AC

o N ={1,...,n}: aset of users (or items) l:ov:ecrhsvs
e st positive real-valued demand of k-th user (e.g. weight)

o wuy: utility of k-th user when s} is satisfied (e.g. value)

o (' real-valued capacity

@ 1. decision variable of allocation

o xp = 1, if k-th user's demand is satisfied
o 71 = 0, otherwise

Definition (1DKP)

subject to




(1D) Knapsack Problem (KP) Opr o1 AC

o N ={1,...,n}: aset of users (or items) l:ov:ecrhsvs
e st positive real-valued demand of k-th user (e.g. weight)

o wuy: utility of k-th user when s} is satisfied (e.g. value)

o (' real-valued capacity

@ 1. decision variable of allocation

o xp = 1, if k-th user's demand is satisfied
o 71 = 0, otherwise

Definition (1DKP)

subject to

e 1DKP is NP-Hard, but can be approximately solved
efficiently
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@ s;, is complex-valued demand of k-th user (s, = sk + isl) Sid Chau
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I Sk
st A
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@ s;, is complex-valued demand of k-th user (s, = sk + isl) Sid Chau
Im
[ Sk
A9
) | Re
Definition (CKP) Definition (1DKP)
max U T max URTE
z€{0,1} kzj;/ z,€{0,1} ICEZ/\/'
subject to subject to

‘ZskmklgC ZskakgC

keN keEN
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@ But efficient approximation solutions exist
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@ But efficient approximation solutions exist
@ Denote a solution by (Z)ken € {0,1}"
@ Denote an optimal solution by (z})renr

o Let u(x) =Y, upxy be the objective value of =
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e NP-Hard Problems can't be solved exactly S Chan
@ But efficient approximation solutions exist
@ Denote a solution by (Z)ken € {0,1}"

@ Denote an optimal solution by (z})renr
°

Let u(z) = >, upzy be the objective value of =

Given a € (0,1] and 3 > 1, a bi-criteria («, [3)-approximation to
CKP is (Zk)ken satisfying:

u(z) > a-u(z”)

‘Zski'k) <B-C,
keN
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°
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e PTAS (« =1 —¢, = 1): Running time is polynomial in n
for any fixed €
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e NP-Hard Problems can't be solved exactly S Chan
@ But efficient approximation solutions exist
@ Denote a solution by (Z)ken € {0,1}"

@ Denote an optimal solution by (z})renr
°

Let u(z) = >, upzy be the objective value of =

Given a € (0,1] and 3 > 1, a bi-criteria («, [3)-approximation to
CKP is (Zk)ken satisfying:

u(z) > a-u(z”)

‘Zski'k) <B-C,
keN

e PTAS (« =1 —¢, = 1): Running time is polynomial in n
for any fixed €
e FPTAS: PTAS with running time also polynomial in 1/¢
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\/

o Let ¢ be the maximum angle between any two demands
@ The (in)approximability is dependent on ¢

o CKP is rotational invariant
e When all demands are rotated by the same angle




Results for CKP

CKPI0, Z]:
e PTAS (1 —¢,1)-approx
o No FPTAS unless P=NP

A
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CKPI0, Z]:
e PTAS (1 —¢,1)-approx
o No FPTAS unless P=NP

A

CKP[§,7m —¢l:
o £ =1/poly(n)
o Bi-criteria FPTAS (1, 1+¢)-approx

o No (a, 1)-approximation unless
P=NP

A




Results for CKP

CKPI0, Z]:
e PTAS (1 —¢,1)-approx
o No FPTAS unless P=NP

CKP[§,7m —¢l:
o £ =1/poly(n)
o Bi-criteria FPTAS (1, 1+¢)-approx
o No (a, 1)-approximation unless
P=NP

CKP[§, 7 —¢l:
o ¢ = 1/super-pol(n)
o No («, 5)-approximation unless
P=NP
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A

A

A
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m

(1, 1+¢)-approx

No (o, 1)-approx \

< f . N Re
N\

No (a, B)-approx v PTAS
Strongly NP-hard

v

@ Other results: Greedy Algorithm
e Running time O(nlogn)
o Constant factor approximation algorithm (a = 4 cos %)
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@ Assume ¢ € [0, 5] (i.e. bounded power factor > 0.75)
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Im

C Re
@ Assume ¢ € [0, 5] (i.e. bounded power factor > 0.75)
@ Basic Ideas:
@ Fix partial solution by guessing
@ Solve convex relaxation with fractional solution
© Round the obtained fractional solution to integral solution
© Enumerate all possible partial guessing and find the best
solution




PTAS for CKP[0, Z]

@ Recall integer quadratic formulation:

max E Uk Tk
Tk

keN

2
subject to (Z s?wm) + (Z st -

keN keN
xp € {0,1}, Vk e N
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@ Recall integer quadratic formulation:

max E Uk Tk
Tk

keN

2 2
subject to ( Z SE . xk> + ( Z s}c . xk) < C?

keN keN
xp € {0,1}, Vk e N

Sid Chau

Definition (Quadratic Relaxation)

max E Uk T
Tk

keN

2 2
subject to ( Z sl,j . xk> + ( Z s}c . azk> < C?,

keN keN
xp €10,1], Vk e N

@ The relaxation is convex because s?, S}C >0 for all k
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@ Fix some subsets I, Iy C N SH e

e Quadratic Relaxation with partial guessing of variables {z}:
Definition (RCKP[Iy, Iy])

max g UK Tk
Tk

keN
2 2
subject to ( Z sk xk> 4 ( Z sk IL’k) <2,
keN keN
zi € [0,1], Vk e N\({op U 1)
xr =0, Vk € I

=1 Vke
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@ Fix some subsets I, Iy C N SH e

e Quadratic Relaxation with partial guessing of variables {z}:
Definition (RCKP[Iy, Iy])

max g UK Tk
Tk

keN
subject to ( Z sk xk>2 + ( Z sk :L’k>2 <2,
keN keN
zi € [0,1], Vk e N\({op U 1)
xr =0, Vk € I
=1 Vke

o Carefully selection of Iy, I:
o |I1| <2 (depending on €)
o In={k eI\l | up > ming ey, ugp}
e Intuition: Iy, I; are some users with large utilities
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Definition (LP[2', I; U Iy))

max Z ULT L
Tk

keN
subject to E .S’E' cxp < g SE - T,
keN keN
E Qi cxp < g si . T2
keN keN

xk € 10,1], Vk e N\(Io U I1)
xk:xﬁg, Vk e I U I
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o Let 2/ be an optimal solution to RCKP[I4, I i Chm

Definition (LP[z', I; U I))

max Z ULT L
Tk

keN
subject to E .S’E' cxp < g SE - T,
keN keN
E Qi cxp < g *i . fr2
keN keN

xk € 10,1], Vk e N\(Io U I1)
xk:xﬁg, Vk e I U I

@ Because of basic solution of LP, at most 2 coordinates in
optimal basic solution to LP[z/, I; U Iy] are fractional
e Basic solutions are vertices in the polytope of feasible
solution set
e Rounding fractional components down to integral
components has limited deviation from optimal
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Algorithm PTAS-CKP

@ Pick a guess of partial solution by choosing I, I

Each guess sets variables xj, in I; be 1 and I be 0
Solve optimal solution of RCKP[I, Iy], called =’

Solve basic optimal solution of LP[z/, I; U Iy], called z”
Round fractional components of z” down to 0:

Sid Chau

Ty = I_.’L‘%J, Yk e N

@ Return the solution Z with the highest utility among all
guesses
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Algorithm PTAS-CKP

@ Pick a guess of partial solution by choosing I, I

Each guess sets variables xj, in I; be 1 and I be 0
Solve optimal solution of RCKP[I, Iy], called =’

Solve basic optimal solution of LP[z/, I; U Iy], called z”
Round fractional components of z” down to 0:

Ty = I_.’L‘%J, Yk e N

@ Return the solution Z with the highest utility among all
guesses

For any e > 0, PTAS-CKP obtains (1 — €, 1)-approximation in
polynomial time.
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Definition (Convex Relaxed OPF) Sid Chau
(cOPF) max  f(so,s)
80,8,2,5,v,0
subject to | /; ; > ‘5’ "“ ! V(i,j) € €,
Si,j:ZSAJF Z Sl+47j7] v(i)j)G‘(:?
keu; (4, eE

v; = v; + ‘ZIJ’ Ei,j = QR,G(ZL]‘SY',J‘), \V/(Z,j) €€,

v; < v <, vj e VT,

1Si.4] < Sigs 1S4l < Sij, v(i,j) € €,

Ei,j < z’L’,ja V(Z7]) € ga

S < sk < S, Vk e F,

S = Sl W E {0 1} Vk el

v; ERT,Vj eVt £, eRY S, ;€C, V(i,j) €&
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e OPFy: OPF with voltage constraints only (v; < v; < ;)

Theorem

Unless P=NP, there is no («, 3)-approximation for OPFy

(even when |E| = 1), for any o and [ that have polynomial
number of bits in n.
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e OPFy: OPF with voltage constraints only (v; < v; < ;)

Theorem

Unless P=NP, there is no («, 3)-approximation for OPFy
(even when |E| = 1), for any o and [ that have polynomial
number of bits in n.

Remark
To obtain approximation algorithms, one has to relax some
constraints
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e OPF¢: OPF with capacity constraints only (|S; ;| < S; ;)

Unless P=NP, there exists no («, 3 )-approximation for OPF ¢
in general networks, even in purely resistive electric networks (i.e.
Im(z; ;) =0 for all (i,7) € € and Im(sy,) = 0 for all k € N).
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e OPF¢: OPF with capacity constraints only (|S; ;| < S; ;)

Theorem

Unless P=NP, there exists no («, 3 )-approximation for OPF ¢
in general networks, even in purely resistive electric networks (i.e.
Im(z; ;) =0 for all (i,7) € € and Im(sy,) = 0 for all k € N).

Remark

To obtain approximation algorithms, one has to consider acyclic
networks (i.e. trees)
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@ OPF with discrete demands is hard to solve

@ Some assumptions are required to facilitate the solutions

Assumptions

Al: z. > 0,Ve € &, naturally holds in distribution networks
A2: v; <wy <7;,Vj € Y+
A3: Re(zis;) > 0,VkeZ,ec &

o Namely, the phase angle difference between any z. and sj
for k € 7 is at most 3

e This assumption holds, if discrete demands do not have large
negative reactive power

Ad: ‘zgk — Ly < Zforany kK €T

o Namely, discrete demands have similar power factors
o It can also be restated as Re(55sk) > 0




Basic ldeas of PTAS for OPF

(Rotated)
Convex OPF
with discrete demands
Relaxation with ' ‘Approximaﬂon
Partial Guessing Solution
(Rotated) (Rotated) (Rotated) (Rotated)
Convex OPF Convex OPF
Convex OPF . . Convex OPF y .
. . with partial . . with partial
with partial with partial
continuous guessed f discrete guessed
discrete | Rounding discrete

demands

Non-convex OPF

with discrete demands

Exact Convex Relaxation

Convex OPF
with discrete demands

‘ Rotation
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demands

demands

demands
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Sk | 5ei®
[
% z
R K
S

@ If complex-valued parameters z. and sj are rotated by the
same angle (say ¢)

@ And objective func f(so, s) is counter-rotated by ¢ in s
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- Se'?
Sk | S i$
S U —

@ If complex-valued parameters z. and sj are rotated by the
same angle (say ¢)

@ And objective func f(so, s) is counter-rotated by ¢ in s

@ Then there is a bijection between the rotated OPF and
original OPF

(Zeu Sk, f(Sﬂu S)) ~ <266i¢5 skei¢)7 f(8067i¢7 S))

@ Therefore, assume all sg, z¢ are in the first quadrant
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@ Assume constant-sized network (|[VT| = |£] = m)
@ But number of users (|NV| = n) is a scalable parameter

@ Define a variant of COPF with partially guessing:

Definition (P1[ly, 1])

i T

subject to Constraints of COPF
Sk = Spxk, Vk € T,
zp=1, Vkel;, xz=0, Vk € Iy,
xr €10,1], Vk € Z\(Ip U I)

o Let optimal solution of P1 be F' = (s(, s, 2/, 5,0/, ')
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o Define f;, = fx(1) for k € Z, and define LP as:
Definition (P2[F"’, Iy U I1])

max g FrZr
2k €[0,1],keT’ &

subject to 0 < Z Re( Z z;;’lsk)

Sid Chau

keN (h,))EPLNP;
< Z Re< Z z;;lsw,Vj evt
keN (h,l)EPLNP;
Z Re(sg) < Z Re(s}), Vi € VT
keN; keN;;
Z Im(sg) < Z Im(s},),Vj € VT
keEN; keN;

Sk = Sk, Vk EN\ (IO UIl)
Sk = S;c, VipU I
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Algorithm PTAS-cOPF

@ Guess partial solution by Iy, Iy, where |I;| < 4?7”

e Each guess sets variables x in I; be 1 and Iy be 0
Solve optimal solution of P1[Iy, Iy], called F’
Solve optimal solution of P2[F’ Iy U I1], called ="
Round fractional components of z” down to 0:

dbp, = LLL’ZJ, Yk e N
@ Return the solution Z with the highest utility among all
guesses
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Algorithm PTAS-cOPF
@ Guess partial solution by Iy, Iy, where |I;| < 4?7”
e Each guess sets variables x in I; be 1 and Iy be 0
Solve optimal solution of P1[Iy, Iy], called F’

Solve optimal solution of P2[F’ Iy U I1], called ="
Round fractional components of z” down to 0:

dbp, = LLL’ZJ, Yk e N
@ Return the solution Z with the highest utility among all
guesses

Assuming A1,A2,A3,A4, for any ¢ > 0, PTAS-cOPF obtains

(1 — €, 1)-approximation in polynomial time for constant-sized
tree electric networks.




Simulation Settings

@ Compare approx algorithm against the optimal solutions

@ Use numerical solver (Gurobi) to obtain optimal solution

38
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Figure: Test electric network from [Singh, Baran]
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o User Types:
@ Residential (R): Users have small power demands ranging
from 500VA to 5KVA
@ Industrial (1): Users have big demands ranging from 300KVA
to 1IMVA with non-negative reactive power
© Mixed (M): Users consist of a mix of industrial and
residential users, with less than 20% industrial users
@ Cost-Demand Correlation:

@ Correlated Setting (C): The objective of each user is a
function of demand:

Fe(skl) = a |sel* + b |si| + ¢

@ Uncorrelated Setting (U): Coefficients in fj of each user are
generated randomly according to |Smax (k)|
e For industrial user, |smax(k)| = IMVA, otherwise
|smax (k)| = 5KVA
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PTAS  —— Numerical (Gurobi)
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o Complex-demand Knapsack Problem (CKP):

o Hardness results
e PTAS algorithm

e Optimal Power Flow with discrete demands (OPF):

e Hardness results
e PTAS algorithm
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o Complex-demand Knapsack Problem (CKP):
o Hardness results
e PTAS algorithm
e Optimal Power Flow with discrete demands (OPF):

e Hardness results
e PTAS algorithm

@ Other results:

Bi-criteria FPTAS
Scheduling problem
Scalable-sized networks
Truthful mechanisms
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