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Big Picture

Challenges
Complexity: Non-linear constraints of AC power systems,
energy storage, (combined heat & power) generators, etc.
Uncertainty: Intermittent renewable energy, dynamic market
prices, fluctuating demands (e.g. EVs, datacenters)

Goal: How to optimize the management of energy
demands and resources efficiently and intelligently?
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AC Electrical Systems 101

Circular motion of dynamo generator ⇒
Periodic current and voltage

Expressed by complex numbers:
V = |V |eiωt, I = |I|ei(ωt+ϕ)

Power: S = V × I∗ (also a complex number)

Active power: Re(S)
Reactive power: Im(S)
Apparent power: |S| =

√
Re(S)2 + Im(S)2
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AC Electrical Systems 101

Active power (Re(S))
Deliver useful work at loads (unit: Watt)
Demands: positive active power
Supplies: negative active power

Reactive power (Im(S))

Contribute to electricity flows (unit: VAR):
Inductors: positive reactive power
Capacitors: negative reactive power

Power factor (PF = Re(S)
|S| )

Normalized measure of reactive power
Power electronic standards usually require limited reactive
power in most domestic appliances (PF ≥ 0.8)

Compressors/Pumps Motors Machining
Power factor 0.75-0.8 0.5-0.8 0.4-0.65
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Power Networks 101

Electric networks: set of nodes (V), set of edges (E)
Voltage at node i: Vi

Impedance between i & j: zi,j
Current from i to j: Ii,j
Transmitted power from i to j: Si,j

Direct Current (DC) electric systems:
(Vi, Ii,j , zi,j , Si,j) are real numbers (R)

Alternating Current (AC) electric systems:
(Vi, Ii,j , zi,j , Si,j) are complex numbers (C)
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Power Flow Model
Basic electricity laws:

Ohm’s Law: For each edge (i, j) ∈ E ,

Vi − Vj = zi,jIi,j .

Kirchhoff’s Current Law: For each node i ∈ V,∑
j∈V:(i,j)∈E

Ii,j = 0.

Electric Power Formula: For each edge (i, j) ∈ E ,

Si,j = ViI
∗
i,j .

Definition (Branch Flow Model)

Si,j = zi,j |Ii,j |2 +
∑

l:(j,l)∈E

Sj,l, for all j ∈ V,

Vi − Vj = zi,jIi,j , for all (i, j) ∈ E ,
Si,j = ViI

∗
i,j , for all (i, j) ∈ E .
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Power Flow Model

Definition (Branch Flow Model with Angle Relaxation)

Let vi = |Vi|2 and ℓi,j = |Ii,j |2. Omit the phase angles:

Si,j = zi,jℓi,j +
∑

l:(j,l)∈E

Sj,l, for all j ∈ V,

vi − vj = 2Re(z∗i,jSi,j)− |zi,j |2ℓi,j , for all (i, j) ∈ E ,
|Si,j |2 = viℓi,j , for all (i, j) ∈ E .

Angle relaxation reduces complex-valued variables, and
hence is more tractable

Always possible to recover (Vi, Ii,j) from (vi, ℓi,j), when it is
a tree network [Low et al.]

Assume a tree (radial) distribution network
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Control Variables & Operating Constraints

Each user k ∈ N can control individual demand sk

Some have discrete (inelastic) power demands (I ⊆ N )

A discrete demand is either completely satisfied or dropped
E.g., equipment is either switched on with a fixed power
consumption rate or completely off
sk = s̄kxk, where xk ∈ {0, 1}

Others have continuous (elastic) demands (F ⊆ N )

sk ≤ sk ≤ s̄k

Operating Constraints of Power Systems:

Power Capacity Constraints: |Si,j | ≤ Si,j

Current Thermal Constraints: ℓi,j ≤ ℓi,j
Voltage Constraints: vj ≤ vj ≤ vj
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Optimal Power Flow Problem (OPF)

Definition (Optimal Power Flow Problem)

(OPF) max
s0,s,x,S,v,ℓ

f(s0, s)

subject to ℓi,j =
|Si,j |2
vi

, ∀(i, j) ∈ E ,

Si,j =
∑
k∈Uj

sk +
∑

l:(j,l)∈E

Sj,l + zi,jℓi,j , ∀(i, j) ∈ E ,

vj = vi + |zi,j |2ℓi,j − 2Re(z∗i,jSi,j), ∀(i, j) ∈ E ,
vj ≤ vj ≤ vj , ∀j ∈ V+,

|Si,j | ≤ Si,j , |Sj,i| ≤ Si,j , ∀(i, j) ∈ E ,
ℓi,j ≤ ℓi,j , ∀(i, j) ∈ E ,
sk ≤ sk ≤ s̄k, ∀k ∈ F ,

sk = s̄kxk, xk ∈ {0, 1}, ∀k ∈ I,
vj ∈ R+, ∀j ∈ V+, ℓi,j ∈ R+, Si,j ∈ C, ∀(i, j) ∈ E .
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Hardness of OPF

Non-Convex Constraints involving complex-valued
variables and parameters of AC electric power systems

E.g. ℓi,j =
|Si,j |2

vi

Combinatoric Constraints involving binary control decision
variables for the operations of power systems

E.g. sk = s̄kxk, xk ∈ {0, 1}
Even without combinatoric constraints, checking feasibility
of OPF (with voltage & capacity constraints) is NP-hard

Ref. [ Lehmann et al.] [Verma]

Need to relax some constraints

Namely, considering a less restrictive optimization problem
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Convex Relaxation of OPF

Definition (Convex Relaxed OPF)

(cOPF) max
s0,s,x,S,v,ℓ

f(s0, s)

subject to ℓi,j ≥ |Si,j |2
vi

, ∀(i, j) ∈ E ,

Si,j =
∑
k∈Uj

sk +
∑

l:(j,l)∈E

Sj,l + zi,jℓi,j , ∀(i, j) ∈ E ,

vj = vi + |zi,j |2ℓi,j − 2Re(z∗i,jSi,j), ∀(i, j) ∈ E ,
vj ≤ vj ≤ vj , ∀j ∈ V+,

|Si,j | ≤ Si,j , |Sj,i| ≤ Si,j , ∀(i, j) ∈ E ,
ℓi,j ≤ ℓi,j , ∀(i, j) ∈ E ,
sk ≤ sk ≤ s̄k, ∀k ∈ F ,

sk = s̄kxk, xk ∈ {0, 1}, ∀k ∈ I,
vj ∈ R+, ∀j ∈ V+, ℓi,j ∈ R+, Si,j ∈ C, ∀(i, j) ∈ E .
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Convex Relaxation of OPF

Second Order Cone Problem: Easier convex problem with
polynomial-time algorithms

Exactness: Solution of cOPF ⇒ Solution of OPF

Under certain sufficient conditions [Low et al.] [Huang et al.]
Conversion is polynomial-time

Assumptions

A1: ze ≥ 0, ∀e ∈ E , naturally holds in distribution networks

A2: vj < v0 < vj ,∀j ∈ V+

C2: Given a solution s, it satisfies∑
k∈Nj

Re(z∗h,lsk) ≥ 0 ∀j ∈ V+, (h, l) ∈ Ej ∪ {(i, j) ∈ E}

where Nj is the set of attached users within subtree from
node j, and Ej is the set of edges of subtree node j
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Convex Relaxation of OPF

Theorem

Assuming A1,A2,C2, an optimal solution to cOPF,
F ⋆= (s⋆0, s

⋆, x⋆, S⋆, v⋆, ℓ⋆) can be converted to an optimal
solution to OPF, F̂ ⋆= (ŝ⋆0, s

⋆, x⋆, Ŝ⋆, v̂⋆, ℓ̂⋆), in polynomial-time,
by solving the following convex problem:

( ĉOPF[F ⋆]) min
s0,S,v,ℓ

∑
e∈E

ℓe

subject to constraints of cOPF

s = s⋆

f(s0, s
⋆) ≥ f(s⋆0, s

⋆)

Question

How to solve cOPF with discrete demands?
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Main Ideas

Solve OPF by studying simplified problems

Complex-demand Knapsack Problem (CKP)

Single-capacitated AC system without impedance
Demands are complex numbers

Knapsack Problem (KP)

Classical computer science problem
Packing discrete items subject to capacity constraint
Demands are non-negative real numbers
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What is Knapsack Problem?
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Complex-demand Knapsack Problem (CKP)

Knapsack Problem ⇒ Complex-demand Knapsack Problem
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(1D) Knapsack Problem (KP)
N = {1, . . . , n}: a set of users (or items)

sRk : positive real-valued demand of k-th user (e.g. weight)

uk: utility of k-th user when sRk is satisfied (e.g. value)

C: real-valued capacity
xk: decision variable of allocation

xk = 1, if k-th user’s demand is satisfied
xk = 0, otherwise

Definition (1DKP)

max
xk∈{0,1}

∑
k∈N

xkuk

subject to ∑
k∈N

sRk xk ≤ C

1DKP is NP-Hard, but can be approximately solved
efficiently
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Complex-demand Knapsack Problem (CKP)

sk is complex-valued demand of k-th user (sk = sRk + isIk)

Definition (CKP)

max
xk∈{0,1}

∑
k∈N

ukxk

subject to∣∣∣ ∑
k∈N

skxk

∣∣∣ ≤ C

Definition (1DKP)

max
xk∈{0,1}

∑
k∈N

ukxk

subject to∑
k∈N

sRk xk ≤ C
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Approximation Algorithms
NP-Hard Problems can’t be solved exactly

But efficient approximation solutions exist

Denote a solution by (x̂k)k∈N ∈ {0, 1}n
Denote an optimal solution by (x∗k)k∈N
Let u(x) ≜

∑
k ukxk be the objective value of x

Definition

Given α ∈ (0, 1] and β ≥ 1, a bi-criteria (α, β)-approximation to
CKP is (x̂k)k∈N satisfying:

u(x̂) ≥ α · u(x∗)∣∣∣ ∑
k∈N

skx̂k

∣∣∣ ≤ β · C,

PTAS (α = 1− ϵ, β = 1): Running time is polynomial in n
for any fixed ϵ

FPTAS: PTAS with running time also polynomial in 1/ϵ
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Results for CKP

Let ϕ be the maximum angle between any two demands

The (in)approximability is dependent on ϕ

CKP is rotational invariant

When all demands are rotated by the same angle
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Results for CKP

CKP[0, π2 ]:

PTAS (1− ϵ, 1)-approx
No FPTAS unless P=NP

CKP[π2 , π − ε]:

ε = 1/poly(n)
Bi-criteria FPTAS (1, 1+ϵ)-approx
No (α, 1)-approximation unless
P=NP

CKP[π2 , π − ε]:

ε = 1/super-pol(n)
No (α, β)-approximation unless
P=NP
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Results for CKP

Other results: Greedy Algorithm

Running time O(n log n)
Constant factor approximation algorithm (α = 1

2 cos
ϕ
2 )
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PTAS for CKP[0, π2 ]

Assume ϕ ∈ [0, π2 ] (i.e. bounded power factor ≥ 0.75)

Basic Ideas:
1 Fix partial solution by guessing
2 Solve convex relaxation with fractional solution
3 Round the obtained fractional solution to integral solution
4 Enumerate all possible partial guessing and find the best

solution
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PTAS for CKP[0, π2 ]
Recall integer quadratic formulation:

max
xk

∑
k∈N

ukxk

subject to
( ∑

k∈N
sRk · xk

)2
+

( ∑
k∈N

sIk · xk
)2

≤ C2,

xk ∈ {0, 1}, ∀k ∈ N

Definition (Quadratic Relaxation)

max
xk

∑
k∈N

ukxk

subject to
( ∑

k∈N
sRk · xk

)2
+
( ∑

k∈N
sIk · xk

)2
≤ C2,

xk ∈ [0, 1], ∀k ∈ N

The relaxation is convex because sRk , s
I
k ≥ 0 for all k
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PTAS for CKP[0, π2 ]

Fix some subsets I1, I0 ⊆ N
Quadratic Relaxation with partial guessing of variables {xk}:

Definition (rCKP[I1, I0])

max
xk

∑
k∈N

ukxk

subject to
( ∑

k∈N
sRk · xk

)2
+
( ∑

k∈N
sIk · xk

)2
≤ C2,

xk ∈ [0, 1], ∀k ∈ N\(I0 ∪ I1)

xk = 0, ∀k ∈ I0

xk = 1, ∀k ∈ I1

Carefully selection of I1, I0:

|I1| ≤ 4
ϵ (depending on ϵ)

I0 = {k ∈ I\I1 | uk > mink′∈I1 uk′}
Intuition: I0, I1 are some users with large utilities
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PTAS for CKP[0, π2 ]
Let x′ be an optimal solution to rCKP[I1, I0]

Definition (LP[x′, I1 ∪ I0])

max
xk

∑
k∈N

ukxk

subject to
∑
k∈N

sRk · xk ≤
∑
k∈N

sRk · x′k,∑
k∈N

sIk · xk ≤
∑
k∈N

sIk · x′k,

xk ∈ [0, 1], ∀k ∈ N\(I0 ∪ I1)

xk = x′k, ∀k ∈ I1 ∪ I0

Because of basic solution of LP, at most 2 coordinates in
optimal basic solution to LP[x′, I1 ∪ I0] are fractional

Basic solutions are vertices in the polytope of feasible
solution set
Rounding fractional components down to integral
components has limited deviation from optimal
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PTAS for CKP[0, π2 ]

Algorithm PTAS-CKP

Pick a guess of partial solution by choosing I1, I0
Each guess sets variables xk in I1 be 1 and I0 be 0
Solve optimal solution of rCKP[I1, I0], called x′

Solve basic optimal solution of LP[x′, I1 ∪ I0], called x′′

Round fractional components of x′′ down to 0:

x̂k = ⌊x′′
k⌋, ∀k ∈ N

Return the solution x̂ with the highest utility among all
guesses

Theorem

For any ϵ > 0, PTAS-CKP obtains (1− ϵ, 1)-approximation in
polynomial time.
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Convex Relaxation of OPF

Definition (Convex Relaxed OPF)

(cOPF) max
s0,s,x,S,v,ℓ

f(s0, s)

subject to ℓi,j ≥ |Si,j |2
vi

, ∀(i, j) ∈ E ,

Si,j =
∑
k∈Uj

sk +
∑

l:(j,l)∈E

Sj,l + zi,jℓi,j , ∀(i, j) ∈ E ,

vj = vi + |zi,j |2ℓi,j − 2Re(z∗i,jSi,j), ∀(i, j) ∈ E ,
vj ≤ vj ≤ vj , ∀j ∈ V+,

|Si,j | ≤ Si,j , |Sj,i| ≤ Si,j , ∀(i, j) ∈ E ,
ℓi,j ≤ ℓi,j , ∀(i, j) ∈ E ,
sk ≤ sk ≤ s̄k, ∀k ∈ F ,

sk = s̄kxk, xk ∈ {0, 1}, ∀k ∈ I,
vj ∈ R+, ∀j ∈ V+, ℓi,j ∈ R+, Si,j ∈ C, ∀(i, j) ∈ E .
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Hardness Results for OPF

OPFV: OPF with voltage constraints only (vj ≤ vj ≤ vj)

Theorem

Unless P=NP, there is no (α, β)-approximation for OPFV

(even when |E| = 1), for any α and β that have polynomial
number of bits in n.

Remark

To obtain approximation algorithms, one has to relax some
constraints
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Hardness Results for OPF

OPFC: OPF with capacity constraints only (|Si,j | ≤ Si,j)

Theorem

Unless P=NP, there exists no (α, β)-approximation for OPFC

in general networks, even in purely resistive electric networks (i.e.
Im(zi,j) = 0 for all (i, j) ∈ E and Im(sk) = 0 for all k ∈ N ).

Remark

To obtain approximation algorithms, one has to consider acyclic
networks (i.e. trees)
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Assumptions on OPF

OPF with discrete demands is hard to solve

Some assumptions are required to facilitate the solutions

Assumptions

A1: ze ≥ 0, ∀e ∈ E , naturally holds in distribution networks

A2: vj < v0 < vj , ∀j ∈ V+

A3: Re(z∗esk) ≥ 0,∀k ∈ I, e ∈ E
Namely, the phase angle difference between any ze and sk
for k ∈ I is at most π

2
This assumption holds, if discrete demands do not have large
negative reactive power

A4:
∣∣∣∠sk − ∠sk′

∣∣∣ ≤ π
2 for any k, k′ ∈ I

Namely, discrete demands have similar power factors
It can also be restated as Re(s∗ksk′) ≥ 0
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Basic Ideas of PTAS for OPF
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Rotational Invariance

If complex-valued parameters ze and sk are rotated by the
same angle (say ϕ)

And objective func f(s0, s) is counter-rotated by ϕ in s0

Then there is a bijection between the rotated OPF and
original OPF(

ze, sk, f(s0, s)
)
⇔

(
zee

iϕ, ske
iϕ, f(s0e

−iϕ, s)
)

Therefore, assume all sk, ze are in the first quadrant
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PTAS for OPF

Assume constant-sized network (|V+| = |E| = m)

But number of users (|N | = n) is a scalable parameter

Define a variant of cOPF with partially guessing:

Definition (P1[I0, I1])

max
s0,s,x,S,v,ℓ

f(s0, s)

subject to Constraints of cOPF

sk = skxk, ∀k ∈ I,
xk = 1, ∀k ∈ I1, xk = 0, ∀k ∈ I0,

xk ∈ [0, 1], ∀k ∈ I\(I0 ∪ I1)

Let optimal solution of P1 be F ′ =
(
s′0, s

′, x′, S′, v′, ℓ′
)
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PTAS for OPF
Define fk ≜ fk(1) for k ∈ I, and define LP as:

Definition (P2[F ′, I0 ∪ I1])

max
xk∈[0,1],k∈I′

∑
k∈I

fkxk

subject to 0 ≤
∑
k∈N

Re
( ∑

(h,l)∈Pk∩Pj

z∗h,lsk

)
≤

∑
k∈N

Re
( ∑

(h,l)∈Pk∩Pj

z∗h,ls
′
k

)
, ∀j ∈ V+

∑
k∈Nj

Re(sk) ≤
∑
k∈Nj

Re(s′k), ∀j ∈ V+

∑
k∈Nj

Im(sk) ≤
∑
k∈Nj

Im(s′k), ∀j ∈ V+

sk = skxk, ∀k ∈ N \ (I0 ∪ I1)

sk = s′k, ∀I0 ∪ I1
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PTAS for OPF

Algorithm PTAS-cOPF

Guess partial solution by I1, I0, where |I1| ≤ 4m
ϵ

Each guess sets variables xk in I1 be 1 and I0 be 0
Solve optimal solution of P1[I1, I0], called F ′

Solve optimal solution of P2[F ′, I0 ∪ I1], called x′′

Round fractional components of x′′ down to 0:

x̂k = ⌊x′′
k⌋, ∀k ∈ N

Return the solution x̂ with the highest utility among all
guesses

Theorem

Assuming A1,A2,A3,A4, for any ϵ > 0, PTAS-cOPF obtains
(1− ϵ, 1)-approximation in polynomial time for constant-sized
tree electric networks.

36 / 42



Combin.
Opt. of AC
Power Sys

Sid Chau

Overview

Preliminary

CKP

OPF

Simulation

Summary

PTAS for OPF

Algorithm PTAS-cOPF

Guess partial solution by I1, I0, where |I1| ≤ 4m
ϵ

Each guess sets variables xk in I1 be 1 and I0 be 0
Solve optimal solution of P1[I1, I0], called F ′

Solve optimal solution of P2[F ′, I0 ∪ I1], called x′′

Round fractional components of x′′ down to 0:

x̂k = ⌊x′′
k⌋, ∀k ∈ N

Return the solution x̂ with the highest utility among all
guesses

Theorem

Assuming A1,A2,A3,A4, for any ϵ > 0, PTAS-cOPF obtains
(1− ϵ, 1)-approximation in polynomial time for constant-sized
tree electric networks.

36 / 42



Combin.
Opt. of AC
Power Sys

Sid Chau

Overview

Preliminary

CKP

OPF

Simulation

Summary

Simulation Settings

Compare approx algorithm against the optimal solutions

Use numerical solver (Gurobi) to obtain optimal solution

Figure: Test electric network from [Singh, Baran]
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Simulation Settings

User Types:
1 Residential (R): Users have small power demands ranging

from 500VA to 5KVA
2 Industrial (I): Users have big demands ranging from 300KVA

to 1MVA with non-negative reactive power
3 Mixed (M): Users consist of a mix of industrial and

residential users, with less than 20% industrial users

Cost-Demand Correlation:
1 Correlated Setting (C): The objective of each user is a

function of demand:

fk(|sk|) = a · |sk|2 + b · |sk|+ c

2 Uncorrelated Setting (U): Coefficients in fk of each user are
generated randomly according to |smax(k)|

For industrial user, |smax(k)| = 1MVA, otherwise
|smax(k)| = 5KVA
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Simulation Results
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Running Time

0

50

100

150

200
CR

PTAS Numerical (Gurobi)

0

20

40

60
CM

100 500 900
1300

1700
2100

2500
2900

3300
0

50

100

150

200
UR

100 500 900
1300

1700
2100

2500
2900

3300
0

50

100

150

200
UM

Number of users

Ru
nn

in
g 

tim
e 

(s
ec

.)

40 / 42



Combin.
Opt. of AC
Power Sys

Sid Chau

Overview

Preliminary

CKP

OPF

Simulation

Summary

Summary

Complex-demand Knapsack Problem (CKP):

Hardness results
PTAS algorithm

Optimal Power Flow with discrete demands (OPF):

Hardness results
PTAS algorithm

Other results:

Bi-criteria FPTAS
Scheduling problem
Scalable-sized networks
Truthful mechanisms
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