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ABSTRACT
In the era of dynamic smart grid with fluctuating demands
and uncertain renewable energy supplies, it is crucial to
continuously optimize the operational cost and performance
of electric power grid, while maintaining its state within the
stable operating limits. Nonetheless, a major part of electric
power grid consists of alternating current (AC) electric
power systems, which exhibit complex behavior with non-
linear operating constraints. The optimization of AC electric
power systems with dynamic demands and supplies is a very
challenging problem for electrical power engineers.
The hardness of optimization problems of AC electric power
systems stems from two issues: (1) non-convexity involv-
ing complex-valued entities of electric power systems, and
(2) combinatorial constraints involving discrete control vari-
ables. Without proper theoretical tools, heuristic methods
or general numerical solvers had been utilized traditionally
to tackle these problems, which do not provide theoretical
guarantees of the achieved solutions with respect to the
true optimal solutions. There have been recent advances in
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1–139. DOI: 10.1561/3100000017.
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applying convex relaxations to tackle non-convex problems
of AC electric power systems. On the other hand, discrete
combinatorial optimization is rooted in theoretical computer
science, which typically considers linear constraints, instead
of those non-linear constraints in AC electric power systems.

To bridge power systems engineering and theoretical com-
puter science, this monograph presents a comprehensive
study of combinatorial optimization of AC electric power
systems with (inelastic) discrete demands. The main idea
of this monograph is to draw on new extensions of dis-
crete combinatorial optimization with linear constraints,
like knapsack and unsplittable flow problems. We present
approximation algorithms and inapproximability results for
various settings from (1) basic single-capacitated AC elec-
tric power systems, to (2) constant-sized AC electric grid
networks with power flows, and (3) scheduling of AC electric
power. This monograph aims to establish a foundation for
the inter-disciplinary problems of power systems engineering
and theoretical computer science.



1
Introduction

1.1 Need for Optimization in Smart Power Grid

The electric power grid has been an indispensable part of our society,
empowering the economic and social activities in every aspect of our
daily lives. Our society is consuming a tremendous amount of energy at
an increasing rate. There has been a drastic surge in global energy con-
sumption. As a result, the power grid needs to undergo transformations
to meet the new challenges for a more sustainable society:

• Deregulation of Power Industry: Replacing the monopolized in-
dustry of power grid in generation, transmission and distribution
by decentralized operators with heterogeneous requirements.

• Decarbonization and Incorporation of Renewable Energy: Transi-
tioning from fossil fuel energy to environment-friendly but uncer-
tain renewable energy supplies.

• Demand Responsiveness: Shifting the traditional power grid that
is engineered for peak demands to be more demand responsive,
such that grid operators and end users can react to variable grid
resources by dynamic pricing and electricity markets.

3



4 Introduction

• Inefficiency Elimination: Reducing the energy loss in power gen-
eration and transmission by employing technologies, such as Com-
bined Heat-and-Power (CHP) generation and Flexible AC Trans-
mission Systems (FACTS).

• Disruption Protection: Enabling more robust control against out-
age and power failures by incorporating autonomous microgrids
and emergence demand response management.

These transformations will create a smarter power grid with improved
energy-efficiency, responsiveness and stability. In particular, there is a
need for continuous optimization in smart grid that can react rapidly
to dynamic situations in presence of fluctuating demands and uncertain
renewable energy. In the past, the operations of power grid relied on
careful a-priori planning, under the assumptions of static demands
and predictable circumstances. In the era of dynamic smart grid, self-
optimization with adaptive control is more crucial to its operations.

There are several factors for consideration in the optimization of
power grid operations:
• Scale: Power grid is connected to an increasing number of users
and loads, with growing presence of electric vehicles and smart
appliances. These demands have to be optimally coordinated and
regulated in a large-scale manner.

• Time: The fluctuations of renewable energy supplies and de-
mands under dynamic pricing occur more significantly in a shorter
timescale. Power grid needs to adapt to intermittency rapidly.

• Performance: A variety of performance objectives ought to be con-
sidered by different parties among energy suppliers, transmitters,
distributors, regulators and residential/commercial end users.

• Stability: The stability operating constraints of the power grid
need be adhered and validated from time to time to ensure reliable
operations.

Therefore, it is critical to continuously optimize the power grid under
various performance objectives in a scalable and responsive manner,
while maintaining its state within the stable operating limits.
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However, a power grid is a large complex system. In particular, a
major part of the power grid is composed of alternating current (AC)
electric power systems, which exhibit complex behavior with non-linear
operating constraints. The effective management and control operations
of AC electric power systems involve very challenging problems that
baffle electrical power engineers. The hardness of optimization problems
in AC electric power systems stems mainly from two issues:

1. Non-Convex Constraints involving complex-valued variables and
parameters of AC electric power systems.

2. Combinatorial Constraints involving discrete control variables for
the operation of power systems.

Traditionally, heuristic methods or general numerical solvers had
been utilized for the combinatorial optimization problems of AC electric
power systems, without proper theoretical analyses on the performance,
efficiency and optimality of the results. Some of these methods return
inefficient algorithms that are not scalable in larger systems, or fail to
provide guarantees on the deviation of output solutions from the true
optimal solutions.

Combinatorial optimization has been extensively studied in theoret-
ical computer science, with diverse applications in operations research
and engineering science beyond computing systems. Hence, it is imper-
ative to draw on the related tools from theoretical computer science to
study the problems arising from smart grid. In particular, there are re-
cent advances in approximation algorithms with provable approximation
ratios that can be applied in combinatorial power systems problems.

This monograph aims to establish an interdisciplinary bridge be-
tween power systems engineering and theoretical computer science by
relating the practical and challenging problems in electric power systems
with the modern theoretical tools from computer science. The proper
understanding of these hard problems in electric power systems can
advance the frontiers of both communities. Particularly, this monograph
is tailored for these two groups of audience:

• For Power System Engineers, it introduces the concepts and results
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of approximation algorithms, and applies them to solve electric
power systems problems.

• For Computer Scientists, it provides an exposition of a class of
challenging combinatorial problems in electric power systems.

Before presenting the approximation algorithms for AC power sys-
tems in the subsequent chapters, this section first explains the basics
of AC electric power systems, and then some standard terminology of
approximation algorithms in the literature.

1.2 Basics of AC Electric Power Systems

First, we give an example scenario of power consumption scheduling
problem as illustrated in Fig. 1.1. There are multiple households and
electric vehicles connecting to the power grid with dynamic renewable
energy supplies. In each household, there are electric appliances that can
only be controlled by switching on or off. For charging electric vehicles,
there are currently three main categories of charging infrastructure
standards: Level 1 charging with cord-set singe-phase connections to a
regular household outlet, Level 2 wall-mount three-phase connections,
and Level 3 DC fast charging. It is worth noting that none of these
current popular charging standards allows continuously controllable
charging power at an arbitrary rate. To ensure reliable charging, there
requires a delicate control system for the supplied charging power. Hence,
the charging power normally varies within a limited discrete set of nearly
constant values (Gan et al., 2012). The scheduling of power consumption
with discrete controls is a natural combinatorial optimization problem
that is studied in this monograph.

1.2.1 Notations

This section presents the basics of electric power systems. More details
of electric power systems can be found in a standard power systems
textbook (e.g., Grainger and Stevenson, 1994). An electric power system
is characterized by an electric network with nodes (also called buses) and
edges (also called lines). A power flow in an electric network is described
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Variable Supply

 

Background demand

Figure 1.1: An illustration of power consumption scheduling problem.

by physical quantities such as current, voltage and power. We represent
an electric network by a connected graph G = (V, E), where V denotes
a set of nodes and E denotes a set of edges. We index the nodes in V by
{0, 1...,m}, where m , |V| . Node 0 usually carries a special meaning
(called slack bus). If G represents an electric distribution network, then
node 0 usually denotes the generation source or the feeder to the main
grid. Let V+ , V\{0}. We fix an arbitrary orientation on the edges, and
think of G as a directed graph. For convenience, we choose an orientation
such that G forms a directed acyclic graph where the “power flow” from
node 0 to the rest of nodes in V+1. Thus, in the rest of monograph, we
assume that the orientation of a directed edge (i, j) designates that the
current or power flows from i to j.

For node i ∈ V, we denote its voltage by Vi. For each edge e =
(i, j) ∈ E , we denote its current from i to j by Ii,j , its transmitted
power by Si,j , and its impedance by zi,j . In direct current (DC) electric
systems, all quantities belong to the set of real numbers (denoted by R);
whereas in alternating current (AC) electric systems, these quantities

1Such orientation can always be obtained by first finding a spanning tree T on V
and rooting it at node 0, then orienting all edges of T away from 0, with end points
on directed paths in T , and then orienting all other edges arbitrarily.
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belong to the set of complex numbers (denoted by C). Usually, the
voltage V0 at node 0 is normalized as V0 = 1.

For a complex number ν ∈ C, we denote the magnitude of ν by
|ν|, the phase angle (or argument) that ν makes with the real axis
by ∠ν, and the complex conjugate of ν by ν∗. We sometimes write
νR , Re(ν) for the real part and νI , Im(ν) for the imaginary part of
ν. For ν, ν ′ ∈ C, we write ν ≤ ν ′ to mean νR ≤ ν ′R and νI ≤ ν ′I.

There are several basic laws governing the relationships of the
quantities Vi, Ii,j , zi,j , Si,j in an electric network:

• Ohm’s Law: For each (i, j) ∈ E ,

Vi − Vj = zi,jIi,j . (1.1)

• Kirchhoff’s Current Law: For node i ∈ V,∑
(i,j)∈E

Ii,j = 0. (1.2)

• Electric Power Formula: For each (i, j) ∈ E ,

Si,j = ViI
∗
i,j . (1.3)

Additionally, by convention, the following skew symmetry relation holds:

Ii,j = −Ij,i. (1.4)

Each node i ∈ V is associated with a power injection/extraction
si, which represents the net power injecting to or extracting from
the electric network at node i. The real part Re(si) represents the
so-called active power, while the imaginary part Im(si) represents
the reactive power. The apparent power is defined as the magnitude
|si| =

√
(Re(si))2 + (Im(si))2 of si. For power injection (i.e., power gen-

eration), Re(si) ≤ 0; whereas for power extraction (i.e., power demands
or loads), Re(si) ≥ 0. We note the sign of power injection/extraction is
sometimes reversed in the power systems literature. For an inductor,
Im(si) ≥ 0; whereas for a capacitor, Im(si) ≤ 0. Note that transmis-
sion lines are usually resistive or inductive, namely, Re(zi,j) ≥ 0 and
Im(zi,j) ≥ 0. The power factor of a power demand si is defined as
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PF(si) , Re(si)
|si| . As required by common power electronic standards

(e.g., National Electrical Code, 2005), most appliances and equipment
have a bounded power factor PF(si) ≥ 0.8, (roughly, ∠si ≤ π

4 ).

1.2.2 Power Flow Model

A power flow model summarizes the state of power flows, considering
Kirchhoff’s current law with respect to the power injection/extraction.
There are several ways of describing a power flow model.

Bus Injection Model

The Bus Injection Model (BIM) considers the power injection (or ex-
traction), sj , at each node (i.e., bus) j ∈ V+:

sj =
∑

(i,j)∈E
VjI
∗
i,j −

∑
(j,l)∈E

VjI
∗
j,l, ∀j ∈ V, (1.5)

Vi − Vj = zi,jIi,j , ∀(i, j) ∈ E . (1.6)

Branch Flow Model

Alternatively, the Branch Flow Model (BFM) (Baran and Wu, 1989a;
Baran and Wu, 1989b) considers the transmitted power (Si,j) through
each edge (i, j) ∈ E :

sj =
∑

(i,j)∈E

(
Si,j − zi,j |Ii,j |2

)
−

∑
(j,l)∈E

Sj,l, ∀j ∈ V, (1.7)

Vi − Vj = zi,jIi,j , ∀(i, j) ∈ E , (1.8)
Si,j = ViI

∗
i,j , ∀(i, j) ∈ E . (1.9)

For completeness, set s0 = −
∑

(0,i)∈E S0,i. Note that the power flows
are interpreted as from node 0 toward the rest of nodes2 in V+.

The Branch Flow Model provides a convenient way to simplify the
notations. One can drop the phase angles, and replace Vi = |Vi|e∠Vi and

2BFM can be also expressed using the opposite orientation toward node 0:
sj =

∑
(l,j)∈E

(
Sl,j − zl,j |Il,j |2

)
−
∑

(j,i)∈E Sj,i. As shown in Low (2014a), there is a
bijection between the models of the two orientations, since Sj,i = −Si,j + zi,j |Ii,j |2
and Ii,j = −Ij,i.
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Ii,j = |Ii,j |e∠Ii,j by simply |Vi| and |Ii,j |, respectively. This gives us a
relaxed model as follows.

Branch Flow Model with Angle Relaxation

Let vi = |Vi|2 and `i,j = |Ii,j |2. The Branch Flow Model with angle
relaxation omits the phase angles:

sj =
∑

(i,j)∈E

(
Si,j − zi,j`i,j

)
−

∑
(j,l)∈E

Sj,l, ∀j ∈ V, (1.10)

vi − vj = 2Re(z∗i,jSi,j)− |zi,j |2`i,j , ∀(i, j) ∈ E , (1.11)
|Si,j |2 = vi`i,j , ∀(i, j) ∈ E . (1.12)

BFM with angle relaxation can be derived from BIM as follows. We
rewrite (1.3) by taking the complex conjugate of both sides:

Ii,j =
S∗i,j
V ∗i
⇒ `i,j = |Ii,j |2 = |Si,j |

2

|Vi|2
= |Si,j |

2

vi
, (1.13)

which is equivalent to (1.12). Substituting (1.9) in (1.8), we obtain

Vj = Vi − Ii,jzi,j = Vi −
S∗i,j
V ∗i

zi,j . (1.14)

Taking the magnitude square of both sides in (1.14), and using (1.13)3:

vj = |Vj |2 = |Vi|2 + |S
∗
i,j

V ∗i
zi,j |2 − 2Re(V ∗i

S∗i,j
V ∗i
zi,j)

= v2
i + `i,j |zi,j |2 − 2Re(z∗i,jSi,j), (1.15)

which is equivalent to (1.12).
As shown in Farivar and Low (2013a) and Farivar and Low (2013b),

it is always possible to recover (Vi, Ii,j)(i,j)∈E from (vi, `i,j)(i,j)∈E , when
G is a tree network.

In the rest of monograph, unless otherwise stated, we assume that
G is a tree network, and hence, we will use BFM with angle relaxation
(or simply called Branch Flow Model) for brevity.

3Using the relation |a + b|2 = (a + b)∗(a + b) = |a|2 + |b|2 + a∗b + b∗a =
|a|2 + |b|2 + 2Re(a∗b) = |a|2 + |b|2 + 2Re(b∗a), for complex numbers a, b ∈ C.
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Simplified DistFlow Model

In BFM with angle relaxation, if we assume zi,j`i,j → 0, for example,
because of negligible zi,j at each edge, then we obtain a simplified model
called DistFlow model:

sj =
∑

(i,j)∈E
Si,j −

∑
(j,l)∈E

Sj,l, ∀j ∈ V, (1.16)

vi − vj = 2Re(z∗i,jSi,j), ∀(i, j) ∈ E , (1.17)
|Si,j |2 = vi`i,j , ∀(i, j) ∈ E . (1.18)

The DistFlow model provides an “upper bound” for the power flow in
BFM, because it ignores the power consumed on transmission lines.

1.2.3 Optimal Power Flow Problem

The optimal power flow (OPF) problem is a fundamental problem in
power systems engineering, which was introduced in 1962 (Carpen-
tier, 1962; Carpentier, 1979), and since then has received considerable
attention (see Frank et al. (2012a) and Frank et al. (2012b) for a survey).

Let G = (V, E) be a radial (tree) electric distribution network. Node
0 is called the root. Since G is a tree, |V+| = |E| = m. We consider a
particular tree topology in which a single feeder is attached to the root
0, via a single edge (0, 1). See an illustration in Fig. 1.2. Hence (1.10)
in BFM (with angle relaxation) becomes

Si,j = sj + zi,j`i,j +
∑

(j,l)∈E
Sj,l, ∀(i, j) ∈ E , (1.19)

S0,1 = −s0. (1.20)

Control Variables

Instead of assigning a single power injection/extraction to each node,
we consider a general setting where a set of users are attached to each
node. We assume that the power demand of each user can be controlled
individually. Let N = [n] , {1, . . . , n} be the set of all users, where
|N | = n. Denote the set of users attached node j by Uj ⊆ N . Let
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1

2 3 4

Figure 1.2: An illustration of the considered tree topology.

Gi = (Vi, Ei) be the subtree rooted at node i. Let the set of users within
subtree Gj be Nj , ∪j∈VjUj .

By a slight abuse of notation, the demand for user k is represented
by sk ∈ C. In this monograph, we consider only consumer users, such
that Re(sk) ≥ 0 (but Im(sk) may be negative) ∀k ∈ N . Hence, it follows
that the total power injection Re(s0) ≤ 0.

Among the users, some have discrete power demands, denoted by
I ⊆ N . A discrete demand sk, for k ∈ I, takes values from a discrete
set Sk ⊆ C. We assume that 0 ∈ Sk, for all k ∈ I, so that a discrete
demand can be completely shut off. A special case is the binary case
Sk , {0, sk}, where a demand sk can be either completely satisfied
at level sk ∈ C or dropped, e.g., a piece of equipment that is either
switched on with a fixed power consumption rate or completely off.

The rest of the users, denoted by F , N\I, have continuous
demands, defined by convex sets Sk, for k ∈ F ; a typical example
is a set defined by box constraints: Sk , {sk ∈ C : sk ≤ sk ≤ sk}, for
given lower and upper bounds sk and sk.

Operating Constraints of Power Systems

Recall that Si,j is the power flowing from node i toward j. Note that
Si,j is not symmetric, namely, |Si,j | is not equivalent to |Sj,i|, the power
flowing in the opposite direction. There are the following common
operating constraints of power systems:
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• Power Generation Constraint: |s0| ≤ s0.

• Power Capacity Constraints: |Si,j | ≤ Si,j , |Sj,i| ≤ Si,j , ∀(i, j) ∈ E .

• Current Thermal Constraints: `i,j ≤ `i,j , ∀(i, j) ∈ E .

• Voltage Constraints: vj ≤ vj ≤ vj , ∀j ∈ V+.

In the above constraints, vj , vj ∈ R+ are the minimum and maximum
allowable voltage magnitude squares at node j, and Si,j , `i,j ∈ R+ are
the maximum allowable apparent power and current on edge (i, j),
respectively. By (1.20), the power generation constraint is implicitly
captured by power capacity constraints as |s0| = |S0,1| ≤ S0,1.

Note that reverse power constraint |Sj,i| ≤ Si,j can be reformulated
as |Si,j − zi,j`i,j | ≤ Si,j .

Objective Functions

In the following, a subscript is omitted from a variable to denote
its vector form, for example, S , (Si,j)(i,j)∈E , ` , (`i,j)(i,j)∈E , s ,
(sk)k∈N , v , (vj)j∈V+ .

The goal of OPF is to find an assignment for the demand vector s
that optimizes a certain non-negative objective function. We consider two
versions of objective functions: (1) a concave objective that represents
the benefit (or utility) of power flow, and (2) a convex objective that
represents the cost (or disutility) of power flow.

For utility based objective, we denote the objective function by:

f(s0, s) = f0
(
− Re(s0)

)
+
∑
k∈N

fk
(
Re(sk)

)
, (1.21)

where f0 : R+ → R+ is non-negative and non-increasing (note that
Re(s0) ≤ 0), and fk is non-negative and non-decreasing (a user’s utility
increases as more power is allocated to the user, while the generator’s
utility decreases as more power is generated).

For cost based objective, we denote the objective function by:

h(s0, s) = h0
(
− Re(s0)

)
+
∑
k∈N

hk
(
Re(sk)

)
, (1.22)
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where h0 : R+ → R+ is non-negative and non-decreasing, and fk is
non-negative and non-increasing (thus modeling the fact that each user
prefers maximum demand).

Note that for finding an optimal solution, both versions are equiva-
lent, as one can set f0(−Re(s0)) = C − h0(−Re(s0)) and fk(Re(sk)) =
C − hk(Re(sk)), for k ≥ 1, where C is a sufficiently large constant.
Nonetheless, there is a significant difference in terms of finding an
approximation solution. See Section 1.3.1 for details.

Problem Formulation

We formulate OPF using BFM (with angle relaxation). The goal of
OPF is to maximize the utility objective function f(s0, s) (or minimize
the cost objective function h(s0, s)) subject to the operating constraints
of power systems.

The inputs are the voltage, current and transmitted power limits[
v0, (vj , vj)j∈V+ , (Si,j , `i,j , zi,j)(i,j)∈E , (Sk)k∈N

]
, whereas the outputs are

the control decision variables and power flow states, (s0, s, S, v).
The maximization version of OPF is defined by the mixed inte-

ger programming problem (OPF) with Cons. (1.23)-(1.31). To define
the minimization version of OPF (denoted by OPFmin), one replaces
maxs0,s,S,v,` f(s0, s) by mins0,s,S,v,` h(s0, s).

Note that there are two sources of non-convexity in this formulation:
the quadratic equality constraints (1.23) and the discrete constraints
for k ∈ I in (1.30).

1.3 Basics of Combinatorial Optimization

This monograph employs combinatorial optimization techniques to
provide efficient approximation algorithms for AC electric power systems
with discrete demands. The area of approximation algorithms is well-
studied in theoretical computer science (see, e.g., Vazirani, 2010). In
the following, we recall some standard terminology from this area.
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(OPF) max
s0,s,S,v,`

f(s0, s)

subject to `i,j = |Si,j |
2

vi
, ∀(i, j) ∈ E , (1.23)

Si,j =
∑
k∈Uj

sk +
∑

l:(j,l)∈E
Sj,l + zi,j`i,j , ∀(i, j) ∈ E , (1.24)

S0,1 = −s0, (1.25)
vj = vi + |zi,j |2`i,j − 2Re(z∗i,jSi,j), ∀(i, j) ∈ E , (1.26)
vj ≤ vj ≤ vj , ∀j ∈ V+, (1.27)
|Si,j | ≤ Si,j , |Sj,i| ≤ Si,j , ∀(i, j) ∈ E , (1.28)
`i,j ≤ `i,j , ∀(i, j) ∈ E , (1.29)
sk ∈ Sk, ∀k ∈ N , (1.30)
vj ∈ R+, ∀j ∈ V+, `i,j ∈ R+, Si,j ∈ C, ∀(i, j) ∈ E . (1.31)

1.3.1 Approximation Solutions

Consider a maximization problem A with non-negative objective func-
tion f(·), let F be a feasible solution to A and F ? be an optimal solution
to A. f(F ) refers to the objective value of F . Let Opt(A) = f(F ?) be
the objective value of F ?. It is common to measure the quality of a
proposed feasible solution F by the approximation ratio α between the
objective of this solution and that of an optimal solution F ?.

Definition 1.1. For α ∈ (0, 1), an α-approximation to maximization
problem A is a feasible solution F such that

f(F ) ≥ α ·Opt(A).

A (polynomial-time) algorithm that, for any given instance of the
problem, produces a feasible solution achieving this ratio is called an
α-approximation algorithm.

Similarly, for a minimization problem B with non-negative cost
function h(·), let H be a feasible solution to and H? be an optimal
solution to B. h(H) refers to the cost of H. Let Opt(B) = h(H?) be
the cost of H?.
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Definition 1.2. For α′ > 1, an α′-approximation to minimization prob-
lem B is a feasible solution H such that

c(H) ≤ α′ ·Opt(B).

A (polynomial-time) algorithm that, for any given instance of the
problem, produces a feasible solution achieving this ratio is called an
α′-approximation algorithm.

Note that given a minimization problem B, one can define a max-
imization problem A, by setting f(·) = C − h(·), for some constant
C such that f(·) is non-negative. Although both problems are equiva-
lent in the sense of finding an optimal solution, algorithms for finding
α-approximation solutions may be very different in the two cases. In
combinatorial optimization, there are numerous such examples of min-
imization and maximization versions of the same problems having
completely different approximation algorithms and approximation ra-
tios. One example is the minimum and maximum traveling salesman
problems (see, e.g., Vazirani, 2010).

1.3.2 Resource-augmented Approximation Solutions

A more relaxed definition of an approximation solution is (α, β)-approxi-
mation, which also allows violation of certain constraints, parametrized
by β. Consider a maximization problem A with a multivariate constraint
function g(·). Suppose that a feasible solution F to A is required to
satisfy g ≤ g(F ) ≤ g.

Definition 1.3. For α ∈ (0, 1) and β ≥ 1, an (α, β)-approximation
solution to maximization problem A is a solution F such that

f(F ) ≥ α ·Opt(A),
1
β · g ≤ g(F ) ≤ β · g.

A (polynomial-time) algorithm that, for any given instance of the
problem, produces an (α, β)-approximation solution is called an (α, β)-
approximation algorithm.
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Definition 1.4. For α′ > 1 and β ≥ 1, an (α′, β)-approximation solution
to minimization problem B is a solution H such that

h(H) ≤ α′ ·Opt(B),
1
β · g ≤ g(H) ≤ β · g.

A (polynomial-time) algorithm that, for any given instance of the
problem, produces an (α, β)-approximation solution is called an (α, β)-
approximation algorithm.

Note that α-approximation is (α, 1)-approximation.

1.3.3 Polynomial-time Approximation Scheme (PTAS)

In particular, a polynomial-time approximation scheme (PTAS) is a
(1− ε)-approximation algorithm to a maximization problem, or a (1+ ε)-
approximation algorithm to a minimization problem, for any ε > 0. The
running time of a PTAS is polynomial in the input size for every fixed
ε > 0, but the exponent of the polynomial might depend on 1/ε. Namely,
a PTAS allows a parametrized approximation ratio in the running time.

A resource-augmented PTAS is a (1− ε, 1 + ε)-approximation algo-
rithm for a maximization problem, and a (1 + ε, 1 + ε)-approximation
algorithm for a minimization problem, for any ε > 0. Again the running
time of such a PTAS is polynomial in the input size for every fixed
ε > 0.

1.3.4 Fully Polynomial-time Approximation Scheme (FPTAS)

An even stronger notion is a fully polynomial-time approximation scheme
(FPTAS), which is the same as a PTAS but requires the running time
to be polynomial in both input size and 1/ε.

Similarly, we define a resource augmented FPTAS, as a (1− ε, 1 + ε)-
approximation algorithm for a maximization problem, and a (1+ε, 1+ε)-
approximation algorithm for a minimization problem, for any ε > 0,
with the running time being polynomial in the input size and 1/ε. We
will refer to these as (1 − ε, 1 + ε)-FPTAS and (1 + ε, 1 + ε)-FPTAS,
respectively.
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1.3.5 Quasi Polynomial-time Approximation Scheme (QPTAS)

A weaker notion of a PTAS is a quasi-polynomial-time approximation
scheme (QPTAS), which has time complexity npolylog(n) for each fixed
ε > 0, where n is the input size.

The notions of α-approximation, (α, β)-approximation, PTAS, FP-
TAS and QPTAS can be applied to OPF.

1.3.6 Polytopes and Linear Programming

A convex polytope P in Rn is the set of points satisfying a finite number
of linear inequalities: P = {x ∈ Rn | Ax ≤ b}, for a given matrix A ∈
Rm×n and vector b ∈ Rm. Given a set of points P = {p1, . . . , pr} ⊆ Rn,
the convex hull of P , denoted by cvxhull(P ) is the set of all convex
combinations of points in P :

cvxhull(P ) ,
{ r∑
i=1

λipi |
r∑
i=1

λi = 1, λi ≥ 0 ∀i
}
. (1.32)

By the well-known Minkowski-Weyl theorem (see, e.g., Schrijver,
1986), any polytope P ⊆ Rn can be represented as the convex hull of the
set of its extreme points, also called vertices or basic feasible solutions
(BFSs) of P.

Linear programming (LP) is the problem of maximizing or mini-
mizing a linear objective function subject to linear constraints. Linear
programs (LPs) can be solved efficiently (in polynomial-time assuming
rational input of finite precision), see Bertsimas and Tsitsiklis (1997)
for an introduction to LP.

The following lemma will be used in our approximation algorithms.

Lemma 1.1 (see, e.g., Bertsimas and Tsitsiklis, 1997; Schrijver, 1986).
Consider the following LP:

(LP) max
x∈[0,1]n

cTx (1.33)

subject to Ax ≤ b, (1.34)

where A is an m× n matrix and b is an m-dimensional vector. Then
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1. there is an optimal basic feasible solution;

2. any basic feasible solution x? has at mostm fractional components.
Namely,

∣∣∣{i ∈ {1, ..., n} | x?i ∈ (0, 1)
}∣∣∣ ≤ m.

1.3.7 Second Order Cone Programming

A Second-order cone program (SOCP) is a convex optimization problem
in which a linear objective function is maximized or minimized subject
to `2-norm constraints of the following form:

(SOCP) max
x∈Rn

cTx (1.35)

subject to ‖Aix+ bi‖2 ≤ dTi x+ fi, ∀i ∈ {1, ...,m}, (1.36)

where Ai ∈ Rni×n, bi ∈ Rni , c, di ∈ Rn and fi ∈ R.
There are also efficient polynomial-time algorithms for solving (ap-

proximately) SOCPs; (see, e.g., Boyd and Vandenberghe, 2004). In
fact, such algorithms can find a near-feasible solution x′ that satisfies
the constraints within an absolute error δ > 0 (that is, ‖Aix+ bi‖2 ≤
dTi x + fi + δ), such that cTx′ ≥ Opt? − δ, in polynomial time in the
input size (including the bit complexity) and log 1

δ , where Opt? is the
optimal objective value of (SOCP).

In many cases, it is possible to convert such an approximately feasible
solution x′ to an exactly feasible solution without losing much in the
approximation guarantee; see, for example, Section 2.3.1. For simplicity
in this monograph, unless otherwise stated, we will assume that the
convex programming solver returns an exact optimal solution.

1.4 Organization

This monograph covers approximation algorithms and inapproximability
results for various settings of AC electric systems in the following
chapters:

• (Chapter 2) Basic single-capacitated AC electric power systems
to establish the foundation of a more sophisticated electric grid.
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• (Chapter 3) Constant-sized AC electric grid networks with power
flows and common operating constraints of power systems.

• (Chapter 4) Scheduling of AC electric power that involves temporal
optimization with heterogeneous users’ preferences.

Moreover, we provide hardness results in Chapter 5 for the above
settings to show that our approximation algorithms are among the
best achievable in theory. We also provide simulation studies of our
algorithms in several practical case studies in Chapter 6. Finally, we
conclude this monograph with an outline of several on-going extensions
and future work in Chapter 7.

1.5 Notes

The optimal power flow (OPF) problem was introduced in 1962 (Carpen-
tier, 1962; Carpentier, 1979), and since then has been studied extensively
(see Frank et al. (2012a) and Frank et al. (2012b) for a survey). There
are several formulations of OPF, with subtle differences. For example,
Gan et al. (2015) and Huang et al. (2017) adopt the opposite flow
orientation from leaves to root. Also, Huang et al. (2017) implicitly con-
siders power capacity constraints in one direction only. Our formulation
explicitly considers bi-directional power capacity constraints. Although
Gan et al. (2015) considers the possibility of discrete power injections,
it provides efficient algorithm for finding the optimal solutions only in
the continuous case, under some assumptions. For the minimization
version of OPF, Gan et al. (2015) and Huang et al. (2017) consider only
non-increasing objective functions for the exactness of convex relaxation.
However, convex objective function is required for solving OPF.
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Single-capacitated AC Electric Power Systems

Undoubtedly, OPF is a hard problem. Rather than tackling such a
hard problem in its complete form, we first tackle a simplified setting,
considering a single power capacity constraint, called Complex-demand
Knapsack Problem (CKP). For simplicity in this chapter, we only con-
sider a discrete set of demands N = I and assume the binary case. That
is, we assume |I| = n, and Sk = {0, sk} for all k ∈ I.

2.1 Preliminaries of the Knapsack Problem

We define the Complex-demand Knapsack Problem (CKP) as follows.

(CKP) max
x

∑
k∈I

ukxk

subject to
∣∣∣∑
k∈I

skxk
∣∣∣ ≤ S, (2.1)

xk ∈ {0, 1}, ∀k ∈ I. (2.2)

In essence, CKP is a one-link setting of OPF, with negligible line
impedance and the absence of voltage constraints. The objective function
is u(x) ,

∑
k ukxk, where uk ∈ R+ is the respective utility of user k, if

her/his demand sk is completely satisfied.

21
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For X ⊆ I, let u(X) ,
∑
k∈X uk and s(X) ,

∑
k∈X sk. CKP can

be reformulated as maxX u(X) subject to |s(X)| ≤ S.
CKP is related to the well-known class of knapsack problems. First,

define the 1-Dimensional Knapsack Problem (1-KP) as follows.

(1-KP) max
x

∑
k∈I

ukxk

subject to
∑
k∈I

ŝkxk ≤ S, (2.3)

xk ∈ {0, 1}, ∀k ∈ I, (2.4)

where ŝk ∈ R+ is a positive real number for each k ∈ I.
Evidently, 1-KP is a subproblem of CKP, when we set Im(sk) = 0

for all k. 1-KP is known to be NP-complete, and so is CKP.
1-KP can be generalized to be multi-dimensional. Define the m-

Dimensional Knapsack Problem (m-KP) as follows.

(m-KP) max
x

∑
k∈I

ukxk

subject to
∑
k∈I

ŝrkxk ≤ S
r
, ∀r ∈ {1, ...,m}, (2.5)

xk ∈ {0, 1}, ∀k ∈ I, (2.6)

where Sr is the capacity for the r-th dimension. Each m-KP is a linear
integer program, and m-KP is a special case of (m+ 1)-KP for all m.

We note that there is an FPTAS for 1-KP. On the other hand, for
m ≥ 2, there is no FPTAS for m-KP unless P=NP, but there is a
PTAS for every fixed m. See Kellerer et al. (2010) for a comprehensive
treatment of knapsack problems.

Next, we also define the minimization version of CKP as follows.

(CKPmin) min
x

∑
k∈I

ck(1− xk)

subject to
∣∣∣∑
k∈I

skxk
∣∣∣ ≤ S, (2.7)

xk ∈ {0, 1}, ∀k ∈ I. (2.8)

In this chapter, we will provide approximation algorithms for CKP
and CKPmin.
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We note that CKP is rotationally invariant, that is, the problem
remains the same when the arguments of all demands are rotated by
the same angle. Thus, we may, without loss of generality, assume that
one of the demands, say s1, is aligned along the positive real axis, and
define a class of sub-problems for CKP, by restricting the maximum
phase angle (i.e., the argument) that any other demand makes with s1.
In particular, we will write CKP[φ1, φ2] for the restriction of problem
CKP subject to φ1 ≤ maxk∈I ∠sk ≤ φ2, where ∠sk ∈ [0, π] is the angle
that sk makes with s1. We remark that in realistic settings of power
systems, the active power demand is positive (i.e., sR

k ≥ 0), but the
power factor (i.e., sR

k
|sk|) is bounded by a certain threshold (see, e.g.,

National Electrical Code, 2005), which is equivalent to restricting the
arguments of complex-valued demands within a certain range.

From a computational point of view, we will need to specify how
the inputs are described. Throughout this monograph, we will assume
that each of the demands is given by its real and imaginary components,
represented as rational numbers.

2.2 Greedy Approximation Algorithm

In this section, we present a greedy algorithm for (maximizing) CKP[0, π2 ],
which is based on a similar greedy algorithm for 1-KP. The basic idea
is to first sort the demands in a non-increasing order, according to the
efficiency ratio defined by uk

|sk| . Then we pack the demands greedily in
this order whenever feasible without exceeding the capacity S. Call
such a solution X. Then we find the single demand with the highest
utility (maxk∈I{uk}), breaking ties arbitrarily. Lastly, we output the
solution with the higher utility between X and the highest utility de-
mand. This naturally generalizes the greedy algorithm for 1-KP, which
only considers each sk as a real number. The greedy algorithm is called
GreedyRatio, which is presented in Algorithm 1.

Evidently, GreedyRatio outputs a feasible solution in O(n logn)
time. Let φ = maxk∈I{∠sk} be the maximum phase angle that a
demand makes with the real axis. More precisely, GreedyRatio provides
a solution that in the worst possible case is at least 1

2 cos φ2 - factor of the
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Algorithm 1 GreedyRatio[(uk, sk)k∈I , S]
1: Sort I by the efficiency ratios, such that

u1
|s1|
≥ u2
|s2|
≥ ... ≥ un

|sn|
(2.9)

2: X ← ∅
3: for k ∈ I do
4: if

∣∣∑
k′∈X sk′ + sk

∣∣ ≤ S then
5: X ← X ∪ {k}
6: end if
7: end for
8: Set j ← arg maxk∈Iuk
9: if u(X) ≥ uj then

10: return X

11: else
12: return {j}
13: end if

optimal solution for CKP[0, π2 ], as described in the following theorem.

Theorem 2.1. GreedyRatio is a
(1

2 cos φ2
)
-approximation algorithm for

CKP[0, π2 ] that runs in O(n logn) time.

Proof. Denote by uGR the utility of the output solution of GreedyRatio.
Let X? ⊆ I be an optimal solution of CKP[0, π2 ], and the Opt ,∑
k∈X? uk be the corresponding total utility.
Consider the complex-valued demands are substituted in CKP[0, π2 ]

by its real-valued magnitude and the binary decision variable xk is
relaxed to be non-negative real values instead of only integers values (i.e.,
(xk)k∈I ∈ [0, 1]n), as formulated in the following linear programming
problem:

(LP1) max
xk∈[0,1]

∑
k∈I

ukxk (2.10)

subject to
∑
k∈I
|sk|xk ≤ S (2.11)
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Denote by X?
lp ⊆ I an optimal solution of LP1 and by OptL ,∑

k∈X?
lp
uk the corresponding total utility. In chapter 2 of Kellerer et al.

(2010) it was shown that the optimal solution to LP1 problem can be
determined easily, since the problem admits the greedy choice property.
In other words, a global optimum of the problem can be achieved by
choosing a series of locally optimal choices. The greedy choice for LP1
problem is to select demands in the sorted order defined by Eqn. (2.9).
Assume at some iteration t adding the next demand to X that causes
capacity constraint violation, that is

t−1∑
k=1
|sk| ≤ S and

t∑
k=1
|sk| > S. (2.12)

The greedy execution is stopped at this point and the remaining

capacity S −
t−1∑
k=1
|sk| is occupied by the corresponding fractional part

of the t-th user’s power demand. Observe that the preceding greedy
strategy is the adapted version of GreedyRatio algorithm for the relaxed
CKP[0, π2 ] problem with continuous decision variable (xk)k∈I ∈ [0, 1]n

and complex-valued demands. Let p̂ ,
t−1∑
k=1

uk and umax , maxk∈N uk.

It was also shown in Kellerer et al. (2010) that

Optlp , p̂+ (S −
t−1∑
k=1
|sk|)

ut
|st|
≤ p̂+ umax. (2.13)

Evidently, uGR ≥ p̂. This gives

Optlp ≤ uGR + umax. (2.14)

On the other hand, by Lemma 2.2 below it follows that

cos φ2 ·
∑
i∈X?

|si| ≤
∣∣∣ ∑
i∈X?

si
∣∣∣ ≤ S , (2.15)

since φ is restricted to be at most π
2 . Note that the subset X? becomes

a feasible solution to LP1 if the relaxed decision variable is set to
xi = cos φ2 for ∀i ∈ X? and xi = 0 otherwise. This implies that

Optlp ≥ cos φ2 · u(X?) = cos φ2 ·Opt. (2.16)
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In GreedyRatio, uGR ≥ umax, and hence by Eqns. (2.14) and (2.16)
it follows that

uGR ≥ 1
2 cos φ2 ·Opt. (2.17)

Lemma 2.2. Given a set of 2D vectors {νi ∈ R2}ni=1∑n
i=1 |νi|∣∣∣∣∑n
i=1 νi

∣∣∣∣ ≤ sec φ
2 ,

where φ is the maximum angle between any pair of vectors and 0 ≤
φ ≤ π

2 .

Proof. If φ = 0 then the statement is trivial, therefore we assume
otherwise. We prove (

∑n

i=1 |νi|)
2

|
∑n

i=1 νi|
2 ≤ 2

cosφ+1 by induction (notice that

sec φ
2 =

√
2

cosφ+1). First, we expand the left-hand side by∑n
i=1 |νi|2 + 2

∑
1≤i<j≤n |νi| · |νj |∑n

i=1 |νi|2 + 2
∑

1≤i<j≤n |νi| · |νj |
(

sin(φi) sin(φj) + cos(φi) cos(φj)
)

=
∑n
i=1 |νi|2 + 2

∑
1≤i<j≤n |νi| · |νj |∑n

i=1 |νi|2 + 2
∑

1≤i<j≤n |νi| · |νj | cos(φi − φj)
, (2.18)

where φi is the angle that νi makes with the x axis.
Consider the base case: n = 2. Eqn. (2.18) becomes

|ν1|2 + |ν2|2 + 2|ν1| · |ν2|
|ν1|2 + |ν2|2 + 2|ν1| · |ν2| cosφ = f

( |ν2|
|ν1|

)
, (2.19)

where g(x) , 1+x2+2x
1+x2+2x cosφ . The first derivative is given by

g′(x) = (1 + x2 + 2x cosφ)(2x+ 2)− 1 + x2 + 2x)(2x+ 2 cosφ)
(1 + x2 + 2x cosφ)2

(2.20)
Note that g′(x) is zero only when x = 1. Hence, g(1) is an extremum
point. We compare g(1) with g(x) at the boundaries x ∈ {0,∞}:

g(1) = 2
cosφ+ 1 ≥ g(0) = lim

x→∞
g(x) = 1 (2.21)
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Therefore, g(x) has a global maximum of 2
cosφ+1 .

Next, we proceed to the inductive step. We assume∑r−1
i=1 |νi|∣∣∑r−1
i=1 νi

∣∣ ≤
√

2
cosφ+ 1 ,

where r ∈ {1, . . . , n}. Without loss of generality, we assume φ2 ≥ φ3 ≥
· · · ≥ φn ≥ φ1. Rewrite Eqn. (2.18) as

(
∑r
i=1 |νi|)2∑r

i=1 |νi|2 + 2
∑

1≤i<j<r
|νi||νj | cos(φi − φj) + 2|νr|

∑
1≤i<r
|νi| cos(φi − φr)

(2.22)
Let g(φr) be the denominator of Eqn. (2.22). We take the second

derivative of g(φr):

g′′(φr) = −2|νr|
∑

1≤i<r
|νi| cos(φi − φr) (2.23)

Notice that cos(φi − φr) ≥ 0, therefore the second derivative is always
negative. This indicates that all local extrema in [0, φr−1] of g(φn) are
local maxima. Hence, the minimum occurs at the boundaries:

min
φr∈[0,φr−1]

g(φr) ∈ {g(0), g(φr−1)} (2.24)

If φr ∈ {0, φr} , then there must exist at least a pair of vectors in
{νi}ri=1 with the same angle. Combining these two vectors into one,
we can obtain an instance with r − 1 vectors. Hence, by the inductive
hypothesis, the same bound holds up to r vectors.

2.3 PTAS

Although the greedy algorithm is fast, it cannot provide a close-to-
optimal solution. In this section, we present PTAS for maximizing and
minimizing CKP[0, π2 ]. First, we consider maximizing CKP[0, π2 ].

2.3.1 Maximizing CKP

We provide a (1 − ε)-approximation for CKP[0, π2 ], called CKP-PTAS,
which is presented in Algorithm 2.
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Define a convex relaxation of CKP (denoted by rCKP), such that
xk ∈ {0, 1} is replaced by xk ∈ [0, 1] for all k ∈ I. We define another
convex relaxation that will be used in the PTAS denoted by rCKP[I1, I0]
which is equivalent to rCKP, subject to partial substitution such that
xk = 1, for all k ∈ I1 and xk = 0, for all k ∈ I0, where I1, I0 ⊆ I such
that I1 ∩ I0 = ∅:

(rCKP[I1, I0]) max
xk∈[0,1]

∑
k∈I

ukxk (2.25)

subject to
(∑
k∈I

sR
k · xk

)2
+
(∑
k∈I

sI
k · xk

)2
≤ S2

, (2.26)

xk = 1, ∀k ∈ I1, (2.27)
xk = 0, ∀k ∈ I0. (2.28)

The above relaxation is a SOCP, since Cons. (2.26) can be written as∥∥∥∥∥
(
sR

1 · · · sR
n

sI
1 · · · sI

n

)
x

∥∥∥∥∥
2

≤ S.

As mentioned in Section 1.3.7, this relaxation can be solved approxi-
mately in polynomial time using standard convex programming algo-
rithms (see e.g., Boyd and Vandenberghe, 2004). In fact, such algo-
rithms can find a feasible solution x′ to the convex relaxation such that
u(x′) ≥ Opt? − δ, in time polynomial in the input size (including the
bit complexity) and log 1

δ , where Opt? is the optimal objective value
of rCKP[I1, I0]. Notice that Opt? ≥ Opt ≥ ū , maxk uk, and hence
setting δ to ε

2 · ū assures that u(x′) ≥ (1− ε
2) ·Opt?.

Given a feasible solution x? to rCKP[I1, I0], a restricted set of
demands R ⊆ I, and vectors S1

, S
2 ∈ R+m, we define the following

linear programming relaxation, denoted by LP[S1
, S

2
, x?, R]:

(LP[S1
, S

2
, x?, R]) max

xk∈[0,1]

∑
k∈I

ukxk (2.29)

subject to
∑
k∈I

sR
k · xk ≤ S

1
, (2.30)

∑
k∈I

sI
k · xk ≤ S

2
, (2.31)

xk = x?k, ∀k ∈ R. (2.32)
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CKP-PTAS proceeds as follows. We guess I1 ⊆ I to be the set of
largest-utility 4

ε demands in the optimal solution; this defines an excluded
set of demands I0 ⊆ I \ I1 whose utilities exceed one of the utilities
in I1 (Step 4). For each such I1 and I0, we solve the convex program
rCKP[I1, I0] and obtain a (1 − ε

2)-approximation x′ (note that the
feasibility of the convex program is guaranteed by the conditions in
Step 3). The real and imaginary projections over all time slots of solution
x′, denoted by LR ∈ Rm+ and LI ∈ Rm+ , are used to define the linear
program LP[LR, LI, x′, I1∪I0] over the restricted set of demands I1∪I0.
We solve the linear program in Step 7, and then round down the solution
corresponding to demands k ∈ I in Step 9. Finally, we return a solution
x̂ that attains the maximum utility among all the obtained solutions.

Algorithm 2 CKP-PTAS[(uk, sk)k∈I , S, ε]
1: umax ← 0
2: for each set I1 ⊆ I such that |I1| ≤ 4

ε do
3: if

∣∣∣∑k∈I1 sk
∣∣∣ ≤ S then

4: I0 ← {k ∈ I \ I1 | uk > min(k′)∈I1 uk′}
5: x′ ← (Near) optimal solution of rCKP[I1, I0]

. Obtain a (1− ε
2)-approximation

6: LR ←
∑
k∈I s

R
k · x′k; LI ←

∑
k∈I s

I
k · x′k

7: x
′′ ← Optimal BFS of LP[LR, LI, x′, I1 ∪ I0]

. Round down the LP solution
8: if umax < u

(
(bx′′kc)k∈I

)
then

9: x̂← (bx′′kc)k∈I
10: umax ← u(x̂)
11: end if
12: end if
13: end for
14: return x̂

Theorem 2.3. For any fixed ε, CKP-PTAS obtains a (1−ε)-approximation
for CKP[0, π2 ] in polynomial time.

Proof. One can easily see that the running time of CKP-PTAS is polyno-
mial in size of the input, for any given ε. We now argue that the solution
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x̂ is (1−ε)-approximation for CKP[0, π2 ]. Let x? be the optimal solution
for CKP[0, π2 ] of utility Opt , u(x?). Define I? , {k ∈ I | x?k = 1}. By
the feasibility of x?, in Step 5 CKP-PTAS obtains

u(x′) ≥ (1− ε
2) ·Opt? ≥ (1− ε

2) ·Opt, (2.33)

where Opt? is the optimal value of rCKP[I1, I0] for some I1 equal to
the highest 4

ε utility demands in I?, and I0 ∩ I? = ∅. If |I?| ≤ 4
ε , then

obviously x̂ = x
′′ = x′ and u(x′) ≥ (1− ε

2)Opt.
Now suppose |I?| > 4

ε . We observe x′ is a feasible solution for
LP[LR, LI, x′, I1 ∪ I0] (namely, Cons. (2.30)-(2.32) are tight when x′ is
substituted). Therefore, the optimal solution x′′ of LP[LR, LI, x′, I1∪I0]
satisfies

u(x′′) ≥ u(x′). (2.34)

By Lemma 1.1, LP[LR, LI, x′, I1 ∪ I0] has an optimal basic feasible
solution (BFS) with at most 2 fractional components, and for any

fractional component k ∈ I \ (I1 ∪ I0), uk ≤ mink′∈I1 uk′ ≤
∑

k′∈I1
uk′

|I1| .
Therefore, rounding down x′′ gives

u(x̂) ≥ u(x′′)− 2
∑
k∈I1 uk

|I1|
≥ (1− ε

2)u(x′′)

≥ (1− ε
2)2 ·Opt ≥ (1− ε) ·Opt, (2.35)

where (2.35) follows by Eqns. (2.33)-(2.34). It remains to show that x̂
is feasible. Since x̂ is obtained by rounding down x′′ ,(∑

k∈I
sR
k · x̂k

)2
+
(∑
k∈I

sI
k · x̂k

)2
(2.36)

≤
(∑
k∈I

sR
k · x

′′
k

)2
+
(∑
k∈I

sI
k · x

′′
k

)2

≤(LR)2 + (LI)2 =
(∑
k∈I

sR
k x
′
k

)2
+
(∑
k∈I

sI
kx
′
k

)2
≤ S2

, (2.37)

where (2.37) follow by the feasibility of x′′ and x′ respectively. Hence,
Cons. (2.1) is satisfied. Finally, since all fractional components of x′′ in
Step 9 are rounded down, Cons. (2.2) are also satisfied.
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Remark 2.1. The above proof shows that we do not need to solve
LP[LR, LI, x′, I1 ∪ I0]; starting from x′, we only need to get a BFS with
the same (or better) objective value, which can be reduced to solving
systems of linear equations (Schrijver, 1986).

2.3.2 Minimizing CKP

Lastly, we consider minimizing CKP[0, π2 ]. Define the minimizing ver-
sions of rCKP[I1, I0] and LP[S1

, S
2
, x?, R] as follows.

(rCKPmin[I1, I0]) min
xk∈[0,1]

∑
k∈I

ck(1− xk) (2.38)

subject to
(∑
k∈I

sR
k · xk

)2
+
(∑
k∈I

sI
k · xk

)2
≤ S2

, (2.39)

xk = 1, ∀k ∈ I1, (2.40)
xk = 0, ∀k ∈ I0. (2.41)

(LPmin[S1
, S

2
, x?, R]) min

xk∈[0,1]

∑
k∈I

ck(1− xk) (2.42)

subject to
∑
k∈I

sR
k · xk ≤ S

1
, (2.43)

∑
k∈I

sI
k · xk ≤ S

2
, (2.44)

xk = x?k, ∀k ∈ R.. (2.45)

The PTAS is presented in Algorithm 3. For x ∈ [0, 1]n, we write
c(x) ,

∑
k∈I ck(1− xk).

Theorem 2.4. For any fixed ε > 0, CKP-PTASmin obtains a (1 + ε)-
approximation for CKPmin[0, π2 ] in polynomial time.

Proof. The proof follows a similar approach as in Theorem 2.3, but via
the LPs CKP-PTASmin[(ck, sk)k∈I , S, ε] and (LPmin[S1

, S
2
, x?, R]). As

before, we guess I1 ⊆ I to be the set of largest-cost 4
ε demands in the

optimal solution; this defines an excluded set of demands I0 ⊆ I \ I1
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Algorithm 3 CKP-PTASmin[(ck, sk)k∈I , S, ε]
1: cmin ←∞
2: for each set I1 ⊆ I such that |I1| ≤ 4

ε do
3: if

∣∣∣∑k∈I1 sk
∣∣∣ ≤ S then

4: I1 ← {k ∈ I \ I0 | ck > min(k′)∈I1 ck′}
5: x′ ← (Near) optimal solution of rCKPmin[I1, I0]

. Obtain a (1 + ε
4)-approximation

6: LR ←
∑
k∈I s

R
k · x′k; LI ←

∑
k∈I s

I
k · x′k

7: x
′′ ← Basic feasible solution of LP[LR, LI, x′, I1 ∪ I0]

. Round down the LP solution
8: if cmin > c

(
(bx′′kc)k∈I

)
then

9: x̂← (bx′′kc)k∈I
10: cmin ← c(x̂)
11: end if
12: end if
13: end for
14: return x̂

whose utilities exceed one of the utilities in I1 (Step 4). Then we proceed
as in CKP-PTAS. As in (2.35), rounding down x′′ in gives

c(x̂) ≤ c(x′′) + 2
∑
k∈I1 ck

|I1|
≤ (1 + ε

2)c(x′′)

≤ (1 + ε
2)(1 + ε

4) ·Opt ≤ (1 + ε) ·Opt,

where the third inequality follows from the definition of x′ in Step 5 of
the algorithm.

2.4 Resource-augmented FPTAS

In the previous section, we have restricted our attention to the setting
where all demands lie in the positive quadrant in the complex plane
(i.e., CKP[0, π2 ]). In this section, we extend our study to the second
quadrant (CKP[0, π− ε]) for any ε > 0, that is, we assume ∠sk ≤ π− ε
for all k ∈ I.
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We note that Chapter 5 shows that CKP[0, π] is inapproximable and
there is no (α, 1)-approximation for CKP[0, π− ε]. Therefore, we can at
best obtain a resource-augmented approximation, and furthermore the
running time should depend on the maximum angle φ , maxk ∠sk. For
convenience, we let θ = max{φ− π

2 , 0}. (see Fig. 2.1 for an illustration).

Figure 2.1: All demands lie in the shaded area. We measure θ = φ− π
2 from the

imaginary axis.

We present a (1, 1+ε)-approximation for CKP[0, π−ε] in CKP-bFPTAS
that is polynomial in both 1

ε and n (i.e., FPTAS). We assume that tan θ
is bounded polynomial P (n) ≥ 1 in n. As we shall also see in Chapter 5,
without such an assumption, a resource-augmented FPTAS is unlikely
to exist.

Let I+ , {k ∈ I | sR
k ≥ 0} and I− , {k ∈ I | sR

k < 0} be
the subsets of users with demands in the first and second quadrants
respectively. Consider any solution X ⊆ I to CKP[0, π − ε] and define
X+ , {k | sR

k ≥ 0, k ∈ X} and X− , {k | sR
k < 0, k ∈ X} as the

subsets of users with demands having non-negative and negative real
components respectively.

The basic idea of CKP-bFPTAS is to guess the total projections of the
optimal solution on the real and imaginary axes, denoted by X∗+ and
X∗−, respectively. We can use tan θ to upper bound the total projections
for any feasible subset X as follows.∑
k∈X

sI
k ≤ S,

∑
k∈X−

−sR
k ≤ S tan θ,

∑
k∈X+

sR
k ≤ S(1 + tan θ). (2.46)
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We then solve two separate 2-KP problems (one for each quadrant)
to find subsets of demands that satisfy the individual guessed total
projections. But since 2-KP is generally NP-hard, we need to round-up
the demands to get a problem that can be solved efficiently by dynamic
programming. We show that the violation of the optimal solution to the
rounded problem with respect to to the original problem is small in ε.

Next, we describe the rounding in detail. First, we define L ,
εS

n(P (n)+1) , such that the new rounded-up demands ŝk are defined by:

ŝk = ŝR
k + iŝI

k ,


⌈
sR
k
L

⌉
· L+ i

⌈
sI
k
L

⌉
· L, if dR

k ≥ 0,⌊
sR
k
L

⌋
· L+ i

⌈
sI
k
L

⌉
· L, otherwise.

(2.47)

Let ξ+ (and ξ−), ζ+ (and ζ−) be respectively the guessed real and
imaginary absolute total projections of the rounded demands in X?

+
(and X?

−). Then the possible values of ξ+, ξ−, ζ+ and ζ− are integer
mutiples of L:

ξ+ ∈ A+ ,

{
0, L, 2L, . . . ,

⌈
S(1 + P (n))

L

⌉
· L
}
, (2.48)

ξ− ∈ A− ,

{
0, L, 2L, . . . ,

⌈
S · P (n)

L

⌉
· L
}
, (2.49)

ζ+, ζ− ∈ B ,

{
0, L, 2L, . . . ,

⌈
S

L

⌉
· L.

}
(2.50)

The next step is to solve the rounded instance exactly. Assume an
arbitrary order on I = {1, ..., n}. We use recursion to define a 3D table,
with each entry U(k, c1, c2) as the maximum utility obtained from a
subset of users {1, 2, . . . , k} ⊆ I with demands {ŝ1, ŝ2, ..., ŝk} that can
fit exactly (i.e., satisfies the capacity constraint as an equation) within
capacity c1 on the real axis and c2 on the imaginary axis. We denote by
2-KP-DP[·] the algorithm for solving 2-KP by dynamic programming.

Theorem 2.5. For any fixed ε > 0, Algorithm CKP-bFPTAS returns a
(1, 1 + 3ε)-approximation for CKP[0, π − ε] in time polynomial in both
n and 1

ε .
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Algorithm 4 CKP-bFPTAS ([(uk, sk)k∈I , S, ε]

1: X̂ ← ∅.
2: for all sk and k ∈ I do
3: Set ŝk ← ŝR

k + iŝI
k as defined by Eqn. (2.47)

4: end for
5: for all ξ+ ∈ A+, ξ− ∈ A−, ζ+, ζ− ∈ B do
6: if (ξ+ − ξ−)2 + (ζ+ + ζ−)2 ≤ (1 + 2ε)2S

2 then
7: F+ ← 2-KP-DP({uk, ŝkL }k∈I+ ,

ξ+
L ,

ζ+
L )

8: F− ← 2-KP-DP({uk, −ŝkL }k∈I− ,
ξ−
L ,

ζ−
L )

9: if u(F+ ∪ F−) > u(X̂) then
10: X̂ ← {F+ ∪ F−}
11: end if
12: end if
13: end for
14: return X̂

Proof. First, the running time is proportional to the number of guesses,
upper bounded by O( 1

ε4n
4P (n)6). For each guess, 2-KP-DP constructs

a table of size at most O( 1
ε2n

3P (n)4). Since we assumed P (n) is poly-
nomial in n, the total running time is polynomial in n and 1

ε .
To show the approximation ratio of 1, we note CKP-bFPTAS enu-

merates over all possible rounded projections subject to the capacity
constraint in CKP and that 2-KP-DP returns the exact optimal solution
for each rounded problem. In particular, by Lemma 2.6 one of the
choices would be the rounded projections for the optimum solution X?.
It remains to show that the violation of the returned solution is small
in ε. This is given in Lemma 2.7 below, which shows that the solution
X̂ to the rounded problem violates the capacity constraint by only a
factor at most (1 + 3ε).

For any set X ⊆ I, we write

D+(X) ,
∑
k∈X+

sR
k , D−(X) ,

∑
k∈X−

−sR
k , DI(X) ,

∑
k∈X

sI
k,

D̂+(X) ,
∑
k∈X+

ŝR
k , D̂−(X) ,

∑
k∈X−

−ŝR
k , D̂I(X) ,

∑
k∈X

ŝI
k
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Algorithm 5 2-KP-DP [(uk, ŝk)k∈I′ , S
1
, S

2]

1: Create a 3D table of size |I ′| × (S1 + 1)× (S2 + 1), with each entry
U(k, c1, c2) according to:

U(1, c1, c2) ,
{
u1 if ŝR

1 = c1 and ŝI
1 = c2

−∞ otherwise (2.51)

U(k, 0, 0) , 0 and U(k, c′1, c′2) , −∞ for all c′1 < 0 or c′2 < 0
(2.52)

U(k, c1, c2) , max
{
uk + U(k − 1, c1 − ŝR

k , c2 − ŝI
k), U(k − 1, c1, c2)

}
(2.53)

2: Create a 3D table of size |I ′| × S
1 × S

2, with each each entry
I(k, c1, c2) according to:

I(1, c1, c2) ,
{
{1} if U(1, c1, c2) = u1
∅ otherwise (2.54)

I(k, c1, c2) ,


I(k − 1, c1, c2),

if U(k, c1, c2) = U(k − 1, c1, c2)
I(k − 1, c1 − ŝR

k , c2 − ŝI
k) ∪ {k},

if U(k, c1, c2) = uk + U(k − 1, c1 − ŝR
k , c2 − ŝI

k)
(2.55)

3: return I(n, S1
, S

2).

Then by (2.47) and the fact that x ≤ tdxt e ≤ x+ t for any x, t such that
t > 0, we have

max{D̂+(X)− L|X|, 0} ≤ D+(X) ≤ D̂+(X),
max{D̂−(X)− L|X|, 0} ≤ D−(X) ≤ D̂−(X),
max{D̂I(X)− L|X|, 0} ≤ DI(X) ≤ D̂I(X). (2.56)

Lemma 2.6. For any optimal solution X? to CKP[0, π− ε], L , εS
nP (n)
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and ε > 0, we have( ∑
k∈X?

ŝR
k

)2
+
( ∑
k∈X?

ŝI
k

)2
≤ S2(1 + 2ε)2. (2.57)

Proof. Using (2.56),( ∑
k∈X?

ŝR
k

)2
+
( ∑
k∈X?

ŝI
k

)2
(2.58)

=
(
D̂+(X?)− D̂−(X?)

)2
+ D̂2

I (X?)

=D̂2
+(X?) + D̂2

−(X?)− 2D̂+(X?)D̂−(X?) + D̂2
I (X?)

≤(D+(X?) + nL)2 + (D−(X?) + nL)2 − 2D+(X?)D−(X?) + (DI(X?) + nL)2

=(D+(X?)−D−(X?))2 +D2
I (X?) + 2nL(D+(X?) +D−(X?) +DI(X?))

+ 3n2L2

=
( ∑
k∈X?

sR
k

)2
+
( ∑
k∈X?

sI
k

)2
+ 2nL

( ∑
k∈X?

|sR
k |+

∑
k∈X?

sI
k

)
+ 3n2L2

≤S2 + 4nL(P (n) + 1)S + 3n2L2 = S
2 + 4εS2 + 3ε2S2

1 + P (n))2

≤S2(1 + 4ε+ ε2) ≤ S2(1 + 2ε)2. (2.59)

Lemma 2.7. Let X̂ be the solution returned by CKP-bFPTAS. Then
|
∑
k∈X̂ sk| ≤ (1 + 3ε)S.

Proof. As in (2.59),( ∑
k∈X̂

sR
k

)2
+
( ∑
k∈X̂

sI
k

)2

=
(
D+(X̂)−D−(X̂)

)2
+D2

I (X̂)

=D2
+(X̂) +D2

−(X̂)− 2D+(X̂)D−(X̂) +D2
I (X̂). (2.60)

If both D̂+(X̂) and D̂−(X̂) are less than nL, then the right-hand side
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of (2.60) can be bounded by

D̂2
+(X̂) + D̂2

−(X̂) + D̂2
I (X̂)

≤D̂2
+(X̂) + D̂2

−(X̂)− 2D̂+(X̂)D̂−(X̂) + 2n2L2 + D̂2
I (X̂)

=(D̂+(X̂)− D̂−(X̂))2 + D̂2
I (X̂) + 2n2L2. (2.61)

Otherwise, we bound the right-hand side of (2.60) by

D̂2
+(X̂) + D̂2

−(X̂)− 2(D̂+(X̂)− nL)(D̂−(X̂)− nL) + D̂2
I (X̂)

=(D̂+(X̂)− D̂−(X̂))2 + D̂2
I (X̂) + 2nL(D̂+(X̂) + D̂−(X̂))− 2n2L2.

(2.62)

Since X̂ = F+ ∪ F− is obtained from feasible solutions F+ and F− to
2-KP-DP({uk, ŝkL }k∈I+ ,

ξ+
L ,

ζ+
L ) and 2DKP({uk, −ŝkL }k∈I− ,

ξ−
L ,

ζ−
L ), respec-

tively, and ξ+, ξ−, ζ+, ζ− satisfy the condition in Step 6, it follows from
(2.60)-(2.62) that( ∑

k∈X̂

sR
k

)2
+
( ∑
k∈X̂

sI
k

)2

≤
( ∑
k∈X̂

ŝR
k

)2
+
( ∑
k∈X̂

ŝI
k

)2
+ 2nL

∑
k∈X̂−

|ŝR
k |+ 2n2L2

=(ξ+ − ξ−)2 + (ζ+ + ζ−)2 + 2nLξ− + 2n2L2

≤
(
(1 + 2ε)2S

2 + 2n ε

n(P (n) + 1)S
2 + 2n2 ε2

n2(P (n) + 1)2

)
S

2

≤
(
(1 + 2ε)2 + ε+ ε2

2
)
S

2 ≤ (1 + 3ε)2S
2
.

Many techniques for maximizing CKP[0, π − ε] can be applied
to minimizing CKPmin[0, π − ε] by slight modifications. By a similar
approach, we can obtain the following result.

Theorem 2.8. There is an algorithm CKP-bFPTASmin that, for any fixed
ε > 0, returns a (1, 1 + O(ε))-approximation for CKPmin[0, π − ε] in
time polynomial in both n and 1

ε .
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2.5 Notes

Classical knapsack problems have been well studied in the literature.
See Kellerer et al. (2010) for a comprehensive treatment of knapsack
problems. Complex-demand Knapsack Problem (CKP) is a non-trivial
generalization of the classical knapsack problem. CKP was initially
studied in Yu and Chau (2013) in the context of smart grid, although
it was also considered in Woeginger (2000) called 2-weight knapsack
problem in a different context. Yu and Chau (2013) presented a 1

2 -
approximation algorithm. The greedy algorithm in Section 2.2 was
given in Karapetyan et al. (2018). Chau et al. (2014) and Chau et
al. (2016) gave the PTAS and resource-augmented FPTAS for CKP.
However, the PTAS presented in Chau et al. (2014) and Chau et al.
(2016) relies on a complicated geometrical argument that allows also for
implementing truthful mechanisms for CKP. The PTAS based on linear
programming approach presented here is due to Elbassioni and Nguyen
(2015). It was shown in Woeginger (2000) and Yu and Chau (2013),
independently, that there exists no FPTAS for CKP[0, π2 ]. Details of
this will be given in Chapter 5.



3
Constant-Sized AC Electric Power Networks

Based on the results on single-capacitated AC electric power systems
presented in the previous chapter, we next extend to the more general
settings of constant-sized radial AC electric power networks. We consider
the number of links in the distribution network (i.e., |V+| = |E| = m)
to be a constant, but we allow the number of users n to be a scalable
parameter which is a part of the input to the problem. The running
time of our algorithms will be polynomial in n.

3.1 Preliminaries of OPF

3.1.1 Assumptions

OPF with combinatorial constraints is hard to solve. Hence, we need to
make some (natural) assumptions to facilitate our algorithms:

A0: f0(−sR
0 ) (resp., h0(−sR

0 )) is non-increasing (resp., non-decreasing)
in −sR

0 ∈ R+.

A1: ze ≥ 0,∀e ∈ E , which naturally hold in distribution networks.

A2: v0 < vj , ∀j ∈ V+, which is also assumed in Huang et al. (2017).
Typically in a distribution network, v0 = 1 (per unit), vj = (.95)2

40
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and vj = (1.05)2; in other words, 5% deviation from the nominal
voltage is allowed.

A3: Re(z∗esk) ≥ 0,∀sk ∈ Sk, k ∈ I, e ∈ E . Intuitively, A3 requires that
the phase angle difference between any ze and sk ∈ Sk for k ∈ I
is at most π

2 . This assumption holds, if the discrete demands do
not have large negative reactive power.

A4:
∣∣∠sk − ∠sk′

∣∣ ≤ π
2 for any sk ∈ Sk, sk′ ∈ Sk′ , k, k′ ∈ N . Intuitively,

A4 requires that the demands have "similar“ power factors. A4
can also be stated as Re(s∗ksk′) ≥ 0.

Assumptions A3 and A4 are motivated, from a theoretical point of
view, by the inapproximability results which will be presented in Chap-
ter 5 (if either assumption does not hold, then the problem cannot be
approximated within any polynomial factor unless P=NP). Assumption
A3 also holds in reasonable practical settings, see e.g., Huang et al.
(2017). As we will see in Section 3.1.3, by performing an axis rotation,
we may assume by A4 that sk ≥ 0. Clearly, under this and assumption
A1, the reverse power constraint in (1.28) is implied by the forward
power constraint (|Se| ≤ Se). It will also be observed below that under
assumptions A1, A2 and A3, the voltage upper bounds in (1.27) can be
dropped.

3.1.2 Tree Formulation for OPF

For convenience, we give another formulation of OPF, based the recursive
“unfolding” of Eqns. (1.24)-(1.26). We start with the following simple
lemma.

Lemma 3.1. Let F ,
(
s0, s, v, `, S

)
be a vector satisfying (1.24)-(1.26).

Then

Si,j =
∑
k∈Nj

sk +
∑

e∈Ej∪{(i,j)}
ze`e, ∀(i, j) ∈ E . (3.1)
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vj = v0 − 2
∑
k∈N

Re
( ∑

(h,t)∈Pk∩Pj

z∗h,tsk
)
−

(
2

∑
(h,t)∈Pj

Re
(
z∗h,t

∑
e∈Et

ze`e
)

+
∑

(h,t)∈Pj

|zh,t|2`h,t
)
, ∀j ∈ V+. (3.2)

Proof. The first equation is obtained by rewriting Si,j , recursively using
Eqn. (1.24), substituting from the leaves. To see the second equation,
rewrite Cons. (1.26) by recursively substituting vj , for j, moving away
from the root, and then substituting for Sh,t using (3.1):

vj = v0 − 2
∑

(h,t)∈Pj

Re(z∗h,tSh,t) +
∑

(h,t)∈Pj

|zh,t|2`h,t

= v0 − 2
∑

(h,t)∈Pj

Re
(
z∗h,t

( ∑
k∈Nt

sk +
∑

e∈Et∪{(h,t)}
ze`e

))
+

∑
(h,t)∈Pj

|zh,t|2`h,t,

= v0 − 2
∑
k∈N

Re
( ∑

(h,t)∈Pk∩Pj

z∗h,tsk
)
− 2

∑
(h,t)∈Pj

Re
(
z∗h,t

∑
e∈Et

ze`e
)

− 2
∑

(h,t)∈Pj

|zh,t|2`h,t +
∑

(h,t)∈Pj

|zh,t|2`h,t, (3.3)

where the last statement follows from exchanging the summation oper-
ators, and using z∗eze = |ze|2.

It follows from Lemma 3.1, that we may equivalently formulate
OPF as

(tOPF) min
s0,s,v,`,S

f(s0, s),

subject to (1.23), (3.1), (1.25), (3.2), (1.27)− (1.31).

We shall refer to this as the tree formulation of OPF.

Lemma 3.2. Formulations OPF and tOPF are equivalent.

Proof. Given a feasible solution F ,
(
s0, s, v, `, S

)
of OPF, Lemma 3.1

shows that F is also feasible for tOPF. Conversely, let F ,
(
s0, s, v, `, S

)
be a feasible solution of tOPF, we show by that F satisfies (1.24) and
(1.26). Consider first (1.24). Note by (3.1) that, for (i, j) ∈ E ,
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Si,j −
∑

l:(j,l)∈E
Sj,l =

∑
k∈Nj

sk +
∑

e∈Ej∪{(i,j)}
ze`e

−

 ∑
l:(j,l)∈E

∑
k∈Nl

sk +
∑

e∈El∪{(j,l)}
ze`e


=
∑
k∈Uj

sk + zi,j`i,j .

Consider next (1.26). Then (3.2) implies that, for (i, j) ∈ E ,

vj − vi = 2
∑
k∈N

Re
( ∑

(h,t)∈Pk∩Pi

z∗h,tsk
)
− 2

∑
k∈N

Re
( ∑

(h,t)∈Pk∩Pj

z∗h,t

)
sk

+
(
2

∑
(h,t)∈Pi

Re
(
z∗h,t

∑
e∈Et

ze`e
)

+
∑

(h,t)∈Pi

|zh,t|2`h,t
)

−
(
2

∑
(h,t)∈Pj

Re
(
z∗h,t

∑
e∈Et

ze`e
)

+
∑

(h,t)∈Pj

|zh,t|2`h,t
)

= −2
∑
k∈Nj

Re
( ∑

(h,t)∈Pk∩(Pj\Pi)
z∗h,tsk

)
−
(
2

∑
(h,t)∈Pj\Pi

Re
(
z∗h,t

∑
e∈Et

ze`e
)

+
∑

(h,t)∈Pj\Pi

|zh,t|2`h,t
)

= −2
∑
k∈Nj

Re(z∗i,jsk)−
(
2Re

(
z∗i,j

∑
e∈Ej

ze`e
)

+ |zi,j |2`i,j
)

= −2
∑
k∈Nj

Re(z∗i,jsk)− 2
(
Re
(
z∗i,j

∑
e∈Ej∪{(i,j)}

ze`e
))

+ |zi,j |2`i,j

= −2Re
(
z∗i,j
( ∑
k∈Nj

sk +
∑

e∈Ej∪{(i,j)}
ze`e

))
+ |zi,j |2`i,j

= −2Re
(
z∗i,jSi,j

)
+ |zi,j |2`i,j .

where the last equality follows from (3.1).

3.1.3 Rotational Invariance of OPF

We note that if we rotate all complex quantities in the OPF problem
(namely, ze,Sk) by a fixed angle φ, then the problem structure remains



44 Constant-Sized AC Electric Power Networks

the same. For a set S ⊆ C, we write Skeiφ , {skeiφ : sk ∈ S}. Define
the objective function in the rotated space by fφ(s0, s) , f

(
s0e

iφ, s
)
.

Formally, rotated OPF is defined as follows.
(OPFφ) max

s0,s,S,v,`
fφ(s0, s)

subject to (1.23), (1.25), (1.27)− (1.31)

Si,j =
∑
k∈Uj

ske
iφ +

∑
l:(j,l)∈E

Sj,l + zi,je
iφ`i,j , ∀(i, j) ∈ E

(3.4)
vj = vi + |zi,j |2`i,j − 2Re(z∗i,je−iφSi,j), ∀(i, j) ∈ E (3.5)
sk ∈ Skeiφ, ∀k ∈ N . (3.6)

Lemma 3.3. Problems OPFφ and OPF are equivalent.
Proof. One can easily show that a feasible solution F = (s0, s, v, `, S)
of (OPFφ) can be mapped to a feasible solution F ′ = (s′0, s′, v, `, S′) to
OPF, such that S′i,j , Si,je

−iφ, s′0 , s0e
−iφ are rotated by φ, and vise

versa. Moreover, the two objective functions are equal.

Lemma 3.3 allows us to replace assumptions A0 and A4 by the
following assumptions:
A0′: f0(−sR

0 cosφ− sI
0 sinφ) is non-increasing in sR

0 , s
I
0.

A4′: sk ≥ 0 for all sk ∈ Sk, k ∈ N . This is because all demand sets
satisfying A4 are now in the first quadrant after the rotation by φ.

Note that assumption A1 continues to hold for OPFφ, assuming the
original OPF problem satisfies A3: zeeiφ ≥ 0,∀e ∈ E . This is because
of A3, namely, Re(z∗esk) ≥ 0, ∀k ∈ N , e ∈ E , such that the phase angle
difference between ze and sk is at most π

2 . Note also that A1 and A4′
already imply A3.

From now on, we consider for convenience the rotated problem
OPFφ, which we simply denote by OPT, where

φ , max
{

max
k∈I
{−∠sk}, 0

}
∈ [0, π2 ]

Namely, φ is the minimum angle needed to rotate all the demand sets
from the fourth quadrant to the first quadrant (see Fig. 3.1). We also
simply drop φ from the definitions of fφ(·) and hφ(·).
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Figure 3.1: Angle φ is the minimum angle of rotation to rotate (sk)k∈I into the
first quadrant.

3.2 SOCP Relaxation of OPF

This section presents a brief review of SOCP relaxations of OPF. The
idea of relaxing OPF to a convex optimization problem can significantly
improve the solvability of OPF. Convex optimization problems can
be solved (almost exactly) efficiently by polynomial-time algorithms.
Under certain conditions, convex relaxations can be shown to obtain
an optimal solution for OPF. A SOCP relaxation of OPF is obtained
by replacing Cons. (1.23) by `i,j ≥ |Si,j |2

vi
, and replacing the discrete

constraints in (1.30) by sk ∈ S̃k , conv.hull{Sk} for all k ∈ N :

(cOPF) max
s0,s,S,v,`

f(s0, s),

subject to (1.24)− (1.29), (1.31)

`i,j ≥
|Si,j |2

vi
, ∀(i, j) ∈ E , (3.7)

sk ∈ S̃k, ∀k ∈ N . (3.8)

To see that this is indeed an SOCP relaxation, note that Cons. (3.7)
can be written as ∥∥∥∥∥

 2SR
i,j

2SI
i,j

`i,j − vi

∥∥∥∥∥
2

≤ `i,j + vi
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Note that the constraint sk ∈ S̃k, for k ∈ I, can be written as a
subsystem of linear constraints:

sk =
∑
q∈Sk

xk,qq, (3.9)

∑
q∈Sk

xk,qq = 1, ∀k ∈ I, (3.10)

xk,q ≥ 0, ∀q ∈ Sk, ∀k ∈ I. (3.11)

Using (3.9)-(3.11), we can rewrite cOPF as follows.

(cOPF) max
s0,s,S,v,`

f0(s0) +
∑
k∈F

fk(sk) +
∑
k∈I

∑
q∈Sk

xk,qfk(q),

subject to (1.24)− (1.29), (1.31), (3.7), (3.10)− (3.11)
sk ∈ Sk, ∀k ∈ F . (3.12)

For a given ŝ ∈ Cn such that sk ∈ S̃k, we denote by OPF[ŝ] (resp.,
cOPF[ŝ] the restriction of OPF (resp., cOPF) where we set s = ŝ. The
convex relaxation cOPF[ŝ] is called (efficiently) exact, if every optimal
solution F ? of cOPF[ŝ] can be converted to an optimal solution of
OPF[ŝ], in a polynomial number of steps. This definition is adopted
from Huang et al. (2017), Gan et al. (2015), Low (2014a), and Low
(2014b), but also with an emphasis on efficient computation.

There are several sufficient conditions of exactness1, which are
imposed on a given (optimal) solution F of cOPF:

C1: The solution F = (s0, s, v, `, S) of (cOPF) satisfies the following
linear system (in (Ŝi,j)(i,j)∈E) and (v̂j)j∈V+):

Ŝi,j =
∑
k∈Uj

sk +
∑

l:(j,l)∈E
Ŝj,l ∀(i, j) ∈ E , (3.13)

v̂i − v̂j = 2Re(z∗i,jŜi,j) ∀(i, j) ∈ E , (3.14)
Re(z∗h,lŜi,j) ≥ 0, ∀(i, j) ∈ E , (h, l) ∈ Ej , (3.15)
v̂j ≤ vj ∀j ∈ V+. (3.16)

Note that Eqns. (3.13) and (3.14) correspond to Eqns. (1.16)
and (1.17) in the DistFlow model.

1It should be noted that another sufficient condition for exactness was given in
gan2015exact, but we will not consider here.
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C2: The solution F = (s0, s, v, `, S) of (cOPF) satisfies∑
k∈Nj

Re(z∗h,lsk) ≥ 0 ∀j ∈ V+, (h, l) ∈ Ej ∪ {(i, j)}. (3.17)

Note that (3.17) is equivalent to (3.13) and the following slightly modi-
fied version of (3.15):

Re(z∗h,lŜi,j) ≥ 0, ∀(i, j) ∈ E , (h, l) ∈ Ej ∪ {(i, j)}. (3.18)

In Huang et al. (2017), it is shown that C1 is a sufficient condition for
exactness of OPF considering uni-directional power capacity constraints
from a leaf to the root2. In order to attain exactness of OPF with bi-
directional power capacity constraints, a stronger condition ought to be
considered. In addition to (3.15), it is also required that Re(z∗i,jŜi,j) ≥ 0,
which gives (3.18). Note that by (3.18) and A2, and the recursive
substitution of v̂j from the root in (3.14) (as in Lemma 3.2), Cons. (3.16)
is already satisfied as

v̂j = v0 − 2
∑
e∈Pj

Re(z∗e Ŝe) ≤ v0 < vj ,

where Pj denotes the unique path from the root 0 to node j.
Note also that A3 implies C2 when N = I (as A3 applies to only

discrete demands, whereas C2 applies to all the demands and edges
within a subtree).

In proving the sufficient condition for exactness of the SOCP relax-
ation of OPF, we will make use of the following lemma.

Lemma 3.4. Let F ,
(
s0, s, v, `, S

)
and F ′ ,

(
s′0, s

′, v′, `′, S′
)
be two

vectors satisfying (1.24) (or equivalently(3.1)), such that s = s′ and
` ≤ `′ (component wise). Suppose also that F satisfies C2. Then under
assumption A1, Si,j ≤ S′i,j and |Si,j | ≤ |S′i,j | for all (i, j) ∈ E , and
vj ≥ v′j for all j ∈ V+.

Proof. Write ∆`e , `e − `′e ≤ 0, ∆Se , Se − S′e, and ∆|Se|2 , |Se|2 −
|S′e|2, for e ∈ E . Let Sj ,

∑
k∈Nj sk, Li,j ,

∑
e∈Ej∪{(i,j)} ze`e, and

2The sufficient condition in Huang et al. (2017) is stated in a slightly different
way, because their problem formulation adopts an opposite flow orientation.
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L′i,j ,
∑
e∈Ej∪{(i,j)} ze`

′
e. Note by (3.1) that S̃i,j = Sj+Li,j and, similarly,

S′i,j = Sj + L′i,j . It follows that, for all (i, j) ∈ E ,

∆Si,j = Li,j − L′i,j =
∑

e∈Ej∪{(i,j)}
ze∆`e ≤ 0, (3.19)

where the inequality follows by assumption A1. This implies that Si,j ≤
S′i,j . Furthermore,

∆|Si,j |2 = |Si,j |2 − |S′i,j |2 (3.20)
= (SR

i,j)2 − (S′Ri,j)2 + (SI
i,j)2 − (S′Ii,j)2 (3.21)

= ∆SR
i,j(SR

i,j + S′Ri,j) + ∆SI
i,j(SI

i,j + S′Ii,j) (3.22)

=
∑

e∈Ej∪{(i,j)}
zR
e ∆`e

(
2SR

j + LR
i,j + L′Ri,j

)
+

∑
e∈Ej∪{(i,j)}

zI
e∆`e

(
2SI

j + LI
i,j + L′Ii,j

)
(3.23)

=
∑

e∈Ej∪{(i,j)}
2∆`eRe(z∗eSj) +

∑
e∈Ej∪{(i,j)}

∆`eRe(z∗eLi,j)

+
∑

e∈Ej∪{(i,j)}
∆`eRe(z∗eL′i,j) ≤ 0, (3.24)

where the Inequality follows by A1, C2 and ∆`e ≤ 0. Therefore |Si,j | ≤
|S′i,j |. Finally, using (3.2), we get by A1 that

vj − v′j = −
(
2

∑
(h,t)∈Pj

Re
(
z∗h,t

∑
e∈Et

ze∆`e
)

+
∑

(h,t)∈Pj

|zh,t|2∆`h,t
)
≥ 0.

Corollary 3.5. Let F ,
(
s0, s, v, `, S

)
be a vector satisfying (1.24), (1.25)

and (1.26) (or equivalently(3.1), (1.25) and (3.2)), and |Si,j | ≤ Si.j , for
all (i, j) ∈ E . Suppose also that F satisfies C2. Then under assumptions
A1 and A2, F also satisfies vj ≤ vj , for all j ∈ V+, and |Si,j − zi,j`i,j | ≤
Si,j , for all (i, j) ∈ E .

Proof. The first claim is immediate from (3.2) and assumptions A1,
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A2 and C2 as

vj = v0 − 2
∑

(h,t)∈Pj

∑
k∈Nt

Re
(
z∗h,tsk

)
−

(
2

∑
(h,t)∈Pj

Re
(
z∗h,t

∑
e∈Et

ze`e
)

+
∑

(h,t)∈Pj

|zh,t|2`h,t
)
. (3.25)

The second claim follows from Lemma 3.4 as F ′ ,
(
s0, s, v, `

′, S′
)
with

`′t,h ,

{
0 if (t, h) = (i, j)
`t,h otherwise,

satisfies S′i,j = Si,j − zi,j`i,j .

Theorem 3.6. Let F ′′ = (s′′0, s′, v′, `′′, S′′) be a feasible solution of
cOPF[s′] satisfying C2. Under assumptions A0, A1, and A2, there
a feasible solution F ′ = (s′0, s′, v′, `′, S′) of cOPF[s′] that satisfies
`i,j = |S′i,j |

2

v′i
for all (i, j) ∈ E , and f(F ′) ≥ f(F ′′). Given F ′′, then such

a solution F ′ can be found in polynomial time.

Proof. The proof follows essentially the same lines as in Gan et al.
(2015), Low (2014a), Low (2014b), and Huang et al. (2017). We consider
the following convex program3:

(cOPF′[s′]) min
s0,s,v,`,S

∑
e∈E

`e,

subject to (1.24)− (1.27), (1.31), (3.7)
`i,j ≤ `′′i,j , ∀(i, j) ∈ E (3.26)
sk = s′k, ∀k ∈ N . (3.27)

Clearly, cOPF′[s′] is feasible as F ′′ satisfies all its constraints. Hence, it
has an optimal solution F ′ = (s′0, s′, v′, `′, S′), which we claim to satisfy
the statement of the theorem. First, we observe that F ′ is an optimal

3As mentioned in Section 1.3.7, typical convex programming solvers return a
solution that is feasible within an absolute error ε > 0, where the running time
depends on log 1

ε
. For simplicity, we assume that the convex program can be solved

exactly.
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solution for cOPF[s′] (minimizing
∑
e∈E `e among all such solutions).

Indeed, Ineq. (3.26) implies that

`′e ≤ `′′e ≤ `e for all e ∈ E . (3.28)

It follows by Lemma 3.4 and the feasibility of F ′′ for cOPF[s′] that,
for all (i, j) ∈ E ,

S′i,j ≤ S′′i,j and |S′i,j | ≤ |S′′i,j | ≤ Si,j . (3.29)

In particular, for (i, j) = (0, 1), we obtain

−s′R0 = S′R0,1 ≤ S′′R0,1 = −s′′R0 , (3.30)

implying by A0 that f0(−s′R0 ) ≥ f0(−s′′R0 ) and hence by (3.27), f(s′0, s′) ≥
f(s′′0, s′).

Note also that, since F ′ satisfies (1.24)-(1.26), we have by Corol-
lary 3.5 that |S′i,j − zi,j`′i,j | ≤ Si,j , for all (i, j) ∈ E . We conclude the
feasibility of F ′ for cOPF[s′].

Next, suppose, for the sake of contradiction, that there exists an
edge (h, t) such that `′h,t >

|S′h,t|
2

v′
h

. We construct a feasible solution
F̃ = (s̃0, s

′, ṽ, ˜̀, S̃) for cOPF′[s′] such that
∑
e∈E

˜̀
e <

∑
e∈E `

′
e, leading

to a contradiction to the optimality of F ′ for cOPF′[s′].
To obtain F̃ = (s̃0, s

′, ṽ, ˜̀, S̃) from F ′, we set ˜̀
i,j ←

|S′i,j |
2

v′i
, then

obtain S̃ and ṽ by substituting ` ← ˜̀ in Eqns. (3.1) and (3.2). To
complete the proof, we show the feasibility of F̃ .

By the way we constructed F̃ , all equality constraints of cOPF′[s′]
are satisfied (via Lemma 3.2), and by the feasibility of F ′ for cOPF[s′]
(in particular, Ineq. (3.7)), we also have

˜̀
i,j =

|S′i,j |2

v′i
≤ `′i,j ≤ `′′i,j for all (i, j) ∈ E . (3.31)

It follows by Lemma 3.4 and the feasibility of F ′ that

S̃i,j ≤ S′i,j and |S̃i,j | ≤ |S′i,j |, ∀(i, j) ∈ E , (3.32)
ṽj ≥ v′j ≥ vj , ∀j ∈ V+. (3.33)
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Note also that, since F̃ satisfies (1.24)-(1.26) and C2, we have by
Corollary 3.5 that ṽj ≤ vj for all j ∈ V+. Moreover, by Ineqs. (3.32)
and (3.33), ˜̀

i,j = |S′i,j |
2

v′i
≥ |S̃i,j |

2

ṽi
, hence, F̃ is feasible for cOPF′[s′].

Finally by the first inequality in (3.31) and the fact that `′h,t >
|Sh,t|2
vh

= ˜̀
h,t, we have

∑
e∈E

˜̀
e <

∑
e∈E `

′
e, contradicting the optimality

of F ′ for cOPF′[s′].

Corollary 3.7. Let F ′ ,
(
s′0, s

′, v′, `′, S′
)
be a feasible solution to cOPF

and I ′ ⊆ I, ŝ ∈ (
⋃
k∈I Sk)I

′ be a given subset and a vector of discrete
demands such that∑

k∈I′
fk(ŝk) ≥

∑
k∈I

fk(s′k)− εf(s′0, s′), for some ε > 0,

(3.34)∑
k∈I′

Re
( ∑

(h,l)∈Pk∩Pj

z∗h,lŝk
)
≤
∑
k∈N

Re
( ∑

(h,l)∈Pk∩Pj

z∗h,ls
′
k

)
, ∀j ∈ V+,

(3.35)∑
k∈Nj∩I′

ŝk ≤
∑

k∈Nj∩I′
s′k, ∀j ∈ V+. (3.36)

Then under assumptions A0′, A1, A2, A3 and A4′, we can find in
polynomial time a feasible solution F̂ =

(
ŝ0, ŝ, x̂, Ŝ, v̂, ˆ̀

e
)
to OPF such

that f(F̂ )(1− ε) ≥ f(F ′).

Proof. For k ∈ N \ I ′, set ŝk = s′k. We construct a feasible solution
F̂ ′ = (ŝ′0, ŝ, Ŝ′, v̂′, ˆ̀′) for cOPF[ŝ] by setting ˆ̀′ = `′ and substituting ŝ,
ˆ̀′ in (3.1) and (3.2) to obtain Ŝ′ and v̂′, respectively.

We next show the feasibility of F̂ ′. Clearly, by the definition of ˆ̀′,
ˆ̀′
i,j ≤ `i,j . Write ∆Se , Ŝ′e − S′e, and ∆|Se|2 , |Ŝ′e|2 − |S′e|2, for e ∈ E .
Let S′j ,

∑
k∈Nj s

′
k, Ŝ′j ,

∑
k∈Nj ŝ

′
k, and L′i,j ,

∑
e∈Ej∪{(i,j)} ze`

′
e. Note

by (3.1) that S′i,j = S′j + L′i,j and, Ŝ′i,j = Ŝ′j + L′i,j . It follows by (3.36)
that

∆Si,j = Ŝ′j − S′i ≤ 0. (3.37)

In particular, for (i, j) = (0, 1), we obtain

−ŝ′R0 = Ŝ′R0,1 ≤ S′R0,1 = −s′R0 , (3.38)
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implying by A0 that f0(−ŝ′R0 ) ≥ f0(−s′R0 ) and hence, f(ŝ′0, ŝ′) ≥ (1−
ε)f(s′0, s′). Furthermore, since Ŝ′i,j , S′i,j ≥ 0 by A1, A4’ and (3.1), it
follows that

∆|Si,j |2 = |Ŝ′i,j |2 − |S′i,j |2 (3.39)
= (Ŝ′Ri,j)2 − (S′Ri,j)2 + (Ŝ′Ii,j)2 − (S′Ii,j)2 (3.40)
= ∆SR

i,j(Ŝ′Ri,j + S′Ri,j) + ∆SI
i,j(ŜI

i,j + S′Ii,j) ≤ 0. (3.41)

Therefore, by the feasibility of S′,

|Ŝ′i,j | ≤ |S′i,j | ≤ Si,j . (3.42)

Note also that, since F̂ ′ satisfies (3.1) and (3.2) (or equivalently,
(1.24) and (1.25)), we have by Corollary 3.5 that |S′i,j − zi,j`′i,j | ≤ Si,j ,
for all (i, j) ∈ E and v̂′j ≤ vj , for all j ∈ V+. Moreover, (3.2) and (3.35)
imply that

v̂′j ≥ v′j ≥ vj . (3.43)

By (3.42), (3.43), one obtains ˆ̀′
i,j = `′i,j ≥

|S′i,j |
2

v′i
≥ |Ŝ′i,j |

2

v̂′i
, hence ˆ̀

i,j

satisfies Cons. (3.7).
Finally we invoke Theorem 3.6 to convert F̂ ′ = (ŝ′0, ŝ, Ŝ′, v̂′, ˆ̀′) to

a feasible solution F̂ ′ = (ŝ0, ŝ, Ŝ, v̂, ˆ̀) of OPF[ŝ] satisfying f(F̂ ) ≥
f(F̂ ′) ≥ (1− ε)f(F ′).

Remark 3.1. Similar results as in Theorem 3.6 and Corollary 3.7 can
be obtained for the minimization version OPFmin, where the objective
function f is replaced by h and the assumption on h0 in A0 is used.

3.3 PTAS

Based on SOCP relaxation of OPF, this section presents a (1 + ε, 1)-
approximation algorithm (PTAS) for OPF. Note that we consider the
number of links in the distribution network (i.e., |V+| = |E| = m) is a
constant.
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3.3.1 Maximizing OPF

We will need here that assumptions A0, A1, A2, A3 and A4 hold. By
Lemma 3.3, we may assume after rotation with an appropriate angle
φ that A0′, A1, A2, A3 and A4′ hold instead. As mentioned earlier, we
will denote for convenience the rotated problem by OPF.

The basic steps of PTAS are illustrated in Fig. 3.2. After convex
relaxation and rotation, we enumerate possible partial guesses for con-
figuring the control variables of a small subset of discrete demands.
For each guess, we solve the remaining subproblem by relaxing the
other discrete control variables to be continuous control variables, and
then rounding the continuous control variables to obtain a feasible solu-
tion. This algorithm can attain a parameterized approximation ratio by
carefully adjusting the number of partial guesses and rounding.

A formal description of the PTAS algorithm (called PTAS-cOPF)
is presented as follows.

1. First, define a partial guess by I1 ⊆ I and vector ŝ ∈ (
⋃
k∈I Sk)I1 .

For each guess, we set sk = ŝk, ∀k ∈ I1 and sk = 0,∀k ∈ I0.

2. Define a variant of cOPF with partially pre-configured and par-
tially relaxed discrete control variables, denoted by P1[I1, ŝ], as
follows.

(P1[I1, ŝ]) max
s0,s,S,v,`

f(s0, s)

subject to (1.24)− (1.29), (1.31), (3.7),
sk = ŝk, ∀k ∈ I1, (3.44)
sk ∈ S̃ ′k , cvxhull(S ′k), ∀k ∈ I ′, (3.45)

where

S ′k , Sk \
{
q ∈ Sk : fk(q) ≤ min

k′∈I1
{fk′(ŝk′)}

}
, (3.46)

and I ′ , I \ I1. Note that P1[I1, ŝ] is an SOCP (and hence is
solvable in polynomial time). We then solve this relaxation to
obtain an optimal solution F ′ =

(
s′0, s

′, S′, v′, `′
)
. Note that F ′

may not satisfy the discrete demand constraints (1.30) in cOPF.
Next, F ′ will be rounded to obtain a feasible solution to cOPF.
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3. Define P2[F ′, I ′] as follows.

(P2[F ′, I ′]) max
xk,q∈[0,1],k∈I′,q∈Sk

∑
k∈I′

∑
q∈Sk

xk,qfk(q) (3.47)

subject to∑
k∈I′

Re
( ∑

(h,l)∈Pk∩Pj

z∗h,lsk
)
≤
∑
k∈I′

Re
( ∑

(h,l)∈Pk∩Pj

z∗h,ls
′
k

)
, ∀j ∈ V+,

(3.48)∑
k∈Nj∩I′

Re(sk) ≤
∑

k∈Nj∩I′
Re(s′k), ∀j ∈ V+, (3.49)

∑
k∈Nj∩I′

Im(sk) ≤
∑

k∈Nj∩I′
Im(s′k), ∀j ∈ V+, (3.50)

sk =
∑
q∈Sk

xk,q · q, ∀k ∈ I ′, (3.51)

∑
q∈Sk

xk,q = 1, ∀k ∈ I ′, (3.52)

xk,q ≥ 0, ∀q ∈ Sk,∀k ∈ I ′. (3.53)

Note that P2[F ′, I ′] is an LP.

4. Suppose (x′′k,q)k∈I′,q∈Sk is an optimal BFS of P2[F ′, I ′]. We define
an integral solution ŝk, for k ∈ I ′, as follows

ŝk =
{
q, if there is a q ∈ Sk such that xk,q = 1
0, otherwise. (3.54)

Note that we use here the assumption that 0 ∈ Sk, for all k ∈ I.

5. Then, obtain the corresponding ŝ0, ŝ, Ŝ, ˆ̀, v̂ by invoking Corol-
lary 3.7 with s′ = ((ŝk)k∈I′ , (s′k)k∈N\I′).

6. The output solution will be the one having the maximal objective
value among all guesses.

The pseudo-codes of PTAS-cOPF are given in Algorithm 6.
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Figure 3.2: Basic steps of PTAS for OPF.

3.3.2 Analysis of Approximation Ratio

In this section, the approximation ratio of PTAS-cOPF will be shown
to be (1− ε), if one sets the size of partial guesses of satisfiable discrete
demands as |I1| ≤ 6m

ε , where m is the number of edges in distribution
network. Therefore, one can adjust the approximation ratio by limiting
the size of I0 in partial guessing.

Remark 3.2. To (practically) speed up PTAS-cOPF, one can first
compute the optimal objective value (denoted by f) of P1 by taking
I1 = ∅, which naturally is a lower bound to that of cOPF. Then we
may run PTAS-cOPF and check the gap between the objective value
of the produced solution and f ; when this gap is sufficiently small, we
can stop. This may allow us to skip a lot of partial enumeration if f is
already close to the solution of PTAS-cOPF (which is often observed
as the case in the experimental evaluation in Chapter 6).

We will use the following corollary of Lemma 1.1 in our derivation
of the approximation ratio of PTAS-cOPF.
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Algorithm 6 PTAS-cOPF
Require: ε, v0, (vj , vj)j∈V+ , (Se, `e, ze)e∈E , (sk, sk)k∈N
Ensure: Solution F̂ = (ŝ0, ŝ, x̂, Ŝ, v̂, ˆ̀) to cOPF
1: fmax ← 0
2: for each set I1 ⊆ I and ŝ ∈ (

⋃
k∈I Sk)I1 such that |I1| ≤ 6m

ε do
3: I ′ ← I\I1
4: S ′k , Sk \

{
q ∈ Sk : fk(q) ≤ mink′∈I1{fk′(ŝk′)}

}
, for k ∈ I ′

5: if P1[I1, ŝ] is feasible then
6: F ′ ← Optimal solution of P1[I1, ŝ]
7: (x′′k,q)k∈I′,q∈Sk ← Optimal BFS of P2[F ′, I ′]
8: (ŝk)k∈I′ ← rounded solution according to (3.54).
9: (ŝ0, ŝ, Ŝ, v̂, ˆ̀)← solution returned by Corollary 3.7
10: if fmax < f(ŝ0, ŝ) then
11: F̂ ← (ŝ0, ŝ, Ŝ, v̂, ˆ̀)
12: fmax ← f(ŝ0, ŝ)
13: end if
14: end if
15: end for
16: return F̂

Lemma 3.8. Let x be a BFS of (P2[F ′, I ′]). Then x has at most 6m
fractional components: |{k ∈ I ′, q ∈ Sk | xk,q ∈ (0, 1)}| ≤ 6m.

Proof. The proof essentially follows an argument from Patt-Shamir
and Rawitz (2010). First, for all k ∈ I ′, substitute sk from (3.51) in
(3.48)-(3.50), and consider the resulting linear system. Let h = |I ′|. By
Lemma 1.1, the number of strictly positive components in x is at most
3m+ h. Furthermore, Cons. (3.52) impose that for each k ∈ I among
those h users, there is a q ∈ Sk such that xk,q > 0. The remaining (at
most) 3m positive variables can appear in at most 3m of Cons. (3.52),
implying that at least max{h− 3m, 0} variables are set to 1. It follows
that the total number variables taking non-integral values is at most
3m+ h−max{h− 3m, 0} ≤ 6m.

Theorem 3.9. With assumptions A1’,A2,A3,A4’, for any fixed ε > 0,
PTAS-cOPF provides a (1− ε, 1)-approximation solution for cOPFφ,
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in time polynomial in n.

Proof. It is easy see that the running time of PTAS-cOPF is polynomial
in n, for any fixed ε > 0. Next, we show that the output solution F̂ is
(1− ε, 1)-approximation for cOPF.

Let F ? = (s?0, s?, S?, v?, `?) be an optimal solution of cOPF. Define
I?1 , {k ∈ I | s?k 6= 0}. There are two cases:

1. If |I?1 | ≤ 6m
ε , then there exists a partial guess I1, such that I1 = I?1

and ŝk = s?k for k ∈ I?1 . Thus, PTAS-cOPF can find an optimal
solution F ? of cOPF by enumerating all possible I1 and ŝk such
that |I1| ≤ 6m

ε .

2. Otherwise, |I?1 | > 6m
ε , then PTAS-cOPF can still find some I1,

which is a subset of satisfiable discrete demands in I?1 with a
number of b6m

ε c highest fk(·):

I1 ⊆ I?1 and |I1| = b6m
ε c and min

k∈I1,q∈Sk
fk(q) > max

k∈I?1 \I1,q∈Sk
fk(q)

(3.55)
Next, we assume I1 satisfying (3.55) and S ′k satisfying (3.46), for
k ∈ I\I1.

Then, we focus on case 2. Let us consider an optimal solution
F ′ = (s′0, s′, S′, v′, `′) of P1[I1, ŝ], where I1 satisfies (3.55) and ŝk = s?k
for k ∈ I1. Since F ? is feasible for P1[I1, ŝ], it follows that

f(s′0, s′) ≥ f(s?0, s?). (3.56)

Next, let us consider an optimal BFS (x′′k,q)k∈I′,q∈Sk of P2[F ′, I ′].
Note that s′ can be extended to a feasible solution to P2[F ′, I ′] (where
Cons. (3.48)-(3.50) are tight) by defining x′ in the obvious way. It follows
that ∑

k∈I′

∑
q∈Sk

x′′k,qfk(q) ≥
∑
k∈I′

fk(s′k). (3.57)

By Lemma 3.8, at most 6m components in (x′′k,q)k∈I′,q∈Sk are frac-
tional. For each fractional component, say x′′k,q, for l ∈ I ′ and q ∈ Sk,
one has by (3.46)

fk(q) ≤ min
k′∈I1

fk′(ŝk′) ≤
1
|I1|

∑
k′∈I1

fk′(ŝk′). (3.58)
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Therefore, by our rounding Step (3.54), we set x′′k,q to 0 for at most
6m components. Thus, by (3.58) and (3.57) and the non-negativity of
f0(·), fk(·),∑

k∈I′
fk(ŝk) ≥

∑
k∈I′

∑
q∈Sk

x′′k,qfk(q)−
6m
|I1|

∑
k∈I1

fk(ŝk)

≥
∑
k∈I′

∑
q∈Sk

x′′k,qfk(q)− ε
∑
k∈I1

fk(ŝk)

≥
∑
k∈I′

fk(s′k)− εf(s′0, s′). (3.59)

Finally, by (3.59) and Corollary 3.7, one obtains that the solution
returned in Step 9 satisfies

f(ŝ0, ŝ) ≥ (1− ε)f(s′0, s′) ≥ (1− ε)f(s?0, s?).

This completes the proof of the theorem.

3.3.3 Minimizing OPF

Lastly, we consider OPFmin, the minimization version of OPF (i.e.,
replacing maxs0,s,S,v,` f(s0, s) in OPF by mins0,s,S,v,` h(s0, s).). The
aforementioned techniques for the maximization version of OPF (i.e.,
PTAS-cOPF) can be adapted with minor modifications to OPFmin.

Define hφ(s0, s) , h
(
s0e
−iφ, s

)
, and cOPFφ

min as the minimizing
version of cOPFφ. As before, we simply drop "φ“ from these definitions.
Define the minimizing versions of P1[I1, ŝ] and P2[F ′, I ′] as follows.

(P1min[I1, ŝ]) min
s0,s,S,v,`

h(s0, s)

subject to (1.24)− (1.29), (1.31), (3.7)
sk = ŝk, ∀k ∈ I1, (3.60)
sk ∈ S̃ ′k , cvxhull(S ′k), ∀k ∈ I ′, (3.61)

where
S ′k , Sk \

{
q ∈ Sk : hk(q) ≤ min

k′∈I1
{hk′(ŝk′)}

}
, (3.62)

and I ′ , I \ I1.
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(P2min[F ′, I ′]) min
xk,q∈[0,1],k∈I′,q∈Sk

∑
k∈I′

∑
q∈Sk

xk,qhk(q)

subject to∑
k∈I′

Re
( ∑

(h,l)∈Pk∩Pj

z∗h,lsk
)
≤
∑
k∈I′

Re
( ∑

(h,l)∈Pk∩Pj

z∗h,ls
′
k

)
, ∀j ∈ V+,

(3.63)∑
k∈Nj∩I′

Re(sk) ≤
∑

k∈Nj∩I′
Re(s′k), ∀j ∈ V+, (3.64)

∑
k∈Nj∩I′

Im(sk) ≤
∑

k∈Nj∩I′
Im(s′k), ∀j ∈ V+, (3.65)

sk =
∑
q∈Sk

xk,q · q, ∀k ∈ I ′, (3.66)

∑
q∈Sk

xk,q = 1, ∀k ∈ I ′, (3.67)

xk,q ≥ 0, ∀q ∈ Sk, ∀k ∈ I ′. (3.68)

By a similar approach, we have the following result.

Theorem 3.10. For any fixed ε > 0, PTAS-cOPFmin returns a (1+ε, 1)-
approximation for OPFmin[0, π − ε] in time polynomial in both n and
1
ε , assuming A0, A1, A2, A3, A4.

3.4 Greedy Approximation Algorithm

Complementing with the PTAS in previous section, this section presents
an alternate approximation algorithm for maximizing OPF, under Dis-
tFlow model, considering all discrete demands. This approximation
algorithm is based on a greedy approximation algorithm for the unsplit-
table flow problem. We then analyze the approximation ratio of our
approximation algorithm. Next, we adapt the algorithm as heuristic for
OPF considering a mix of discrete and continuous demands.
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Algorithm 7 PTAS-cOPFmin

Require: ε, v0, (vj , vj)j∈V+ , (Se, `e, ze)e∈E , (sk, sk)k∈N
Ensure: Solution F̂ = (ŝ0, ŝ, x̂, Ŝ, v̂, ˆ̀) to cOPFmin
1: hmin ←∞
2: for each set I1 ⊆ I and ŝ ∈ (

⋃
k∈I Sk)I1 such that |I1| ≤ 6m

ε do
3: I ′ ← I\I1
4: S ′k , Sk \

{
q ∈ Sk : hk(q) ≤ mink′∈I1{hk′(ŝk′)}

}
, for k ∈ I ′

5: if P1min[I1, ŝ] is feasible then
6: F ′ ← Optimal solution of P1min[I1, ŝ]
7: (x′′k,q)k∈I′,q∈Sk ← Optimal BFS of P2min[F ′, I ′]
8: (ŝk)k∈I′ ← rounded solution according to (3.54).
9: (ŝ0, ŝ, Ŝ, v̂, ˆ̀)← solution returned by Corollary 3.7
10: if hmin > h(ŝ0, ŝ) then
11: F̂ ← (ŝ0, ŝ, x̂, Ŝ, v̂, ˆ̀)
12: hmin ← h(ŝ0, ŝ)
13: end if
14: end if
15: end for
16: return F̂

3.4.1 Preliminaries of the Unsplittable Flow Problem

When the demands are real-valued, our problem is related to the well-
known unsplittable flow problem (UPF): given a tree T = (V, E) with
edge capacities ce for e ∈ E , and a set of paths {P1, . . . ,Pn} where
each path Pk is associated with a demand dk ∈ R+ and a utility uk,
the objective is to choose the maximum-utility subset of paths whose
total demand on each edge does not exceed the capacity. This can be
formally defined as follows.

(UFP) max
x

∑
k∈I

ukxk,

subject to
∑

k: e∈Pk

dkxk ≤ ce, ∀ e ∈ E , (3.69)

xk ∈ {0, 1}, ∀k ∈ N . (3.70)
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In UPF, each demand is associated with an arbitrary path from
a source to a sink, while in our problem all demands share a single
source (or sink). A special case of UPF is when all demands and edge
capacities are uniform is the classical maximum edge-disjoint path
problem (MEDP). Note that MEDP is one of the original Karp’s NP-
complete problems (Karp, 1972).

3.4.2 Simplified OPF

Recall that Pe ⊆ E denotes the path from edge e to the root, and
by Pk ⊆ E the path from node k to the root. Note that `i,j = |Si,j |2

vi

is positive. We assume that `e ≤ ¯̀
e for a constant ¯̀

e independent of
solution (xk)k∈N .

We rewrite Cons. (1.24) in OPF by Eqn. (3.1) in the tree formulation.
Note that

|Si,j | ≤
∣∣∣∣ ∑
k∈Nj

skxk

∣∣∣∣+ ∣∣∣∣ ∑
e∈Ei

ze`e

∣∣∣∣ ≤ ∣∣∣∣ ∑
k∈Nj

skxk

∣∣∣∣+ ∣∣∣∣ ∑
e∈Ei

ze ¯̀
e

∣∣∣∣
Let L̂e ,

∣∣∑
e∈Ei ze

¯̀
e

∣∣. Thus, the power capacity constraint Cons. (1.26)
can be implied by the following constraint:∣∣∣∣ ∑

k∈Nj

skxk

∣∣∣∣ =
∣∣∣∣ ∑
k:e∈Pk

skxk

∣∣∣∣ ≤ Se , Se − L̂e

Also, we rewrite Cons. (1.26) by Eqn. (3.2). Let Ve , 1
2(v0 − v) and

Ve , 1
2(v0 − v)−

(∑
(h,t)∈Pj Re

(
z∗h,t

∑
e∈Et ze

¯̀
e
)

+
∑

(h,t)∈Pj |zh,t|
2 ¯̀
h,t

)
.

Thus, voltage constraint Cons. (1.26) can be implied by the following
constraints:

Ve ≤
∑
k∈N

( ∑
e′∈Pk∩Pe

zR
e′s

R
k + zI

e′s
I
k

)
xk ≤ Ve,

We define a simplified version of maximizing OPF (denoted by
sOPF), such that a feasible solution to sOPF is a feasible solution to
OPF.
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(sOPF) max
xk

∑
k∈N

ukxk

subject to
∣∣∣∣ ∑
k:e∈Pk

skxk

∣∣∣∣ ≤ Se, ∀e ∈ E ,

(3.71)

Ve ≤
∑
k∈N

( ∑
e′∈Pk∩Pe

zR
e′s

R
k + zI

e′s
I
k

)
xk ≤ Ve, ∀e ∈ E ,

(3.72)
xk ∈ {0, 1}, ∀k ∈ I,
xk ∈ [0, 1], ∀k ∈ F .

We denote by sOPFC when sOPF considers only power capacity
constraints Cons. (3.71) without Cons. (3.72), whereas by sOPFV
when sOPF considers only voltage constraints Cons. (3.72) without
Cons. (3.71).

3.4.3 Approximation Algorithm for sOPF

In this section, we provide an approximation algorithm (GreedyDisDm)
to sOPF considering only discrete demands (I). This algorithm is
inspired by an O(logn)-approximation algorithm for the unsplittable
flow problem in Chekuri et al. (2006).

GreedyDisDm (Algorithm 8) first normalizes the customers’ utilities
by ūk ,

⌊uk
L

⌋
. Then it partitions customers into groups (Î1, ..., Îd2 logne+1)

according to the ranges of normalized utilities, such that the utilities
of the i-th group are within [2i, 2i+1). For each group, it next calls
GreedysOPF to return a feasible solution for the group of customers.
Finally, GreedyDisDm returns the output solution as the group from
GreedysOPF with the maximum utility.

GreedysOPF (Algorithm 9) first sorts the customers in a non-decreasing
order according to the magnitudes of their demands. Then, it packs
their demands greedily sequentially in that order, if the power capacity
constraints or voltage constraints are not violated. The customers who
can be satisfied are placed in the set M .
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Algorithm 8 GreedyDisDm[(uk, sk)k∈I ]
Require: customers’ utilities (uk) and discrete demands (sk)
1: Let L , umax

n2 and umax = maxk∈I uk
2: Let ūk ,

⌊uk
L

⌋
for each k ∈ I

. Group customers according to the range of their utilities
3: Î1 ← {k ∈ I | ūk ∈ [0, 2)}
4: for i = 2, ..., d2 logne do
5: Îi ← {k ∈ I | ūk ∈ [2i, 2i+1)}
6: end for

. Call GreedysOPF to solve sub-problems with Îi
7: for i = 1, ..., d2 logne do
8: Mi ← GreedysOPF[(sk)k∈Îi ]
9: end for

. Return the group with maximum utility
10: return M such that u(M) = max

i=1,...,d2 logne
u(Mi)

Algorithm 9 GreedysOPF[(sk)k∈Î ]

Require: customers’ discrete demands (sk)
1: Sort customers in Î according to the magnitudes of demands:

|s1| ≤ |s2| ≤ ... ≤
∣∣s|Î|∣∣

2: M ← ∅
3: for each k ∈ Î do
4: if

∣∣∣∣ ∑
k′∈M∪{k}:e∈Pk′

sk′

∣∣∣∣ ≤ Se, ∀e ∈ E and

Ve ≤
∑
e′∈Pe

∑
k′∈M∪{k}:e′∈Pk′

zR
e′s

R
k′ + zI

e′s
I
k′ ≤ Ve, ∀e ∈ E

5: then M ←M ∪ {k}
6: end for
7: return M

Evidently, both GreedyDisDm and GreedysOPF have polynomial
running time in n.
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3.4.4 Analysis of Approximation Ratio

We first present some intuition for GreedyDisDm and GreedysOPF.
GreedyDisDm groups the customers with similar utilities, whereas

GreedysOPF finds a solution that maximizes the number of satisfied
customers greedily. If GreedysOPF can find a solution that is close to
the optimal solution, when all customers have the same utility, then
GreedyDisDm can find a group that approximates the optimal solution
in general.

We denote GreedysOPF by GreedysOPFC when solving sOPFC (i.e.,
Ve → −∞ and Ve → ∞), and by GreedysOPFV when solving sOPFV
(i.e., Se →∞ for all e ∈ E).

In the supplementary materials, we also show that sOPFV with
both upper and lower voltage constraints are also inapproximable by
any efficient algorithm for any approximation gap and any violation
bound polynomial in n. Hence, we drop the lower voltage constraints
(Ve), when we analyzing the approximation ratio of GreedysOPF.

Analysis of GreedysOPF

Although GreedysOPF resembles an O(logn)−1-approximation algo-
rithm for unsplittable flow problem provided in Chekuri et al. (2006),
our proof for the approximation ratio is substantially more involved than
those in Chekuri et al. (2006), because of the presence of complex-valued
demands makes GreedysOPF behave very differently.

To analyze the approximation ratio of GreedysOPF, we first consider
a simple setting where all utilities are identical (i.e., uk = 1 for all
k ∈ I). The objective of sOPF then becomes to maximize the number
of satisfied customers.

We will define the following notations:

• A demand path is a path from a customer to the root. Let η ,
maxe∈E |Pe| be the maximum length of any demand path.

• Let φ , maxk,k′∈I |∠sk − ∠sk′ | be the maximum angle difference
between any pair of demands
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• Let φzs , maxk∈I,e∈Pk |∠sk − ∠ze| be the maximum angle differ-
ence between demands and line impedance along any path to the
root. We assume 0 ≤ φzs <

π
2 .

• Let ρẽ , maxe,e′∈Pẽ
|ze|
|ze′ |

be the maximum ratio of impedance
magnitude between any pair of edges along the path Pẽ.

• Let ρ , maxẽ∈E ρẽ be the maximum of all ratios.

Since 0 ≤ φzs <
π
2 , it necessarily holds that zR

e s
R
k + zI

es
I
k ≥ 0, for all

k ∈ I and e ∈ E . It follows that the left-hand side of Cons. (3.72) on
edge e is at least as large as when e ∈ L is a leaf edge, where L is the
set of all leaf edges defined by:

L , {(i, j) ∈ E | @k ∈ V such that (j, k) ∈ E}

Therefore, it suffices to consider Cons. (3.72) for each e ∈ L:∑
k∈I

( ∑
e′∈Pk∩Pe

zR
e′s

R
k + zI

e′s
I
k

)
xk ≤ Ve, ∀e ∈ L (3.73)

Theorem 3.11. Consider uk = 1 for all k ∈ I.

1. GreedysOPFC is α-approximation for sOPFC, where

α =
(⌊

secφ · sec φ
2
⌋

+ 1
)−1

2. GreedysOPFV is α-approximation for sOPFV, where

α =
(⌊
η · ρ · secφzs

⌋
+ 1

)−1

3. GreedysOPF is α-approximation for sOPF, where

α =
(⌊
η · ρ · secφzs

⌋
+
⌊

secφ · sec φ
2
⌋

+ 2
)−1
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Proof. We first present the basic idea as follows. GreedysOPF first sorts
customers in Î in a non-decreasing order according to the magnitudes
of their demands:

A1︷ ︸︸ ︷
|s1| ≤ |s2| ≤ ... ≤

B1︷ ︸︸ ︷
|st| ≤ ... ≤

A2︷ ︸︸ ︷
|sp| ≤ ... ≤ ... ≤

Bm︷ ︸︸ ︷
|sz| ≤ ...

We index the customers in such an order by a sequence Î = (k1, k2, ..., kr).
GreedysOPF attempts to pack their demands greedily sequentially (by
placing the satisfied customers intoM), if the power capacity constraints
or voltage constraints are not violated. Let the sets of customers who
can be satisfied consecutively be (A1, ..., Am) and the sets of customers
who violate Con. (3.71) or (3.73) be (B1, ..., Bm) (where Bm may be
empty).

Denote the optimal solution by R∗ ⊆ Î, which is the maximal
set of satisfied customers whose inelastic demands are satisfied in the
optimal allocation. We follow an exchange argument by constructing two
sequences of sets (W1, ...,Wr) and (R1, ..., Rr), such that the following
conditions hold:

1. Wj ⊆ R∗ ∩
⋃m
i=1Bi for each j = 1, ..., r.

2. Set Rj , (Rj−1\Wj) ∪ {kj} for each j = 1, ..., r.

3. Finally, we obtain Rr = M .

The size of each |Wj | which will be used to derive the approximation
ratio α.

Formally, we define

Qk(e) ,
∑

e′∈Pk∩Pe
(zR
e′s

R
k + zI

e′s
I
k)

and Cons. (3.73) becomes∑
k∈I

Qk(e)xk ≤ Ve, ∀e ∈ L

Let R1 , (R∗\W1) ∪ {k1}, such that customer k1 ∈ M is added to
R∗, and W1 is removed. Recursively, define Rj , (Rj−1\Wj) ∪ {kj} for
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j = 1, ..., r. For each step j, Wj ⊆ Rj−1 ∩
⋃m
i=1Bi is defined to be any

minimal subset such that Rj is a feasible solution.
Define W (1)

j ⊆Wj and W (2)
j ⊆Wj as follows.

W
(1)
j ,

{
k ∈Wj

∣∣∣∣ ∃e ∈ E , ∣∣∣∣ ∑
k′∈Rj∧e∈Pk′

sk′

∣∣∣∣ ≤ Se

and
∣∣∣∣ ∑
k′∈Rj∪{k}∧e∈Pk′

sk′

∣∣∣∣ > Se
}

(3.74)

W
(2)
j ,

{
k ∈Wj

∣∣∣∣ ∃e ∈ L, ∑
k′∈Rj

Qk′(e) ≤ Ve

and
∑

k′∈Rj∪{k}
Qk′(e) > Ve

}
(3.75)

See Fig. 3.3 for an illustration.

Figure 3.3: A pictorial illustration of the definition of Rj for an instance of 10
customers I = {1, 2, ..., 10}.

The approximation ratio α is equivalent to the following bound:

|M | ≥ α|R∗|

The proof is completed by Lemmas 3.12, 3.13, 3.14.

Lemma 3.12.



68 Constant-Sized AC Electric Power Networks

1. Consider GreedysOPFC for sOPFC.

|M | ≥ |R∗|
bsecφ · sec φ

2 c+ 2

2. Consider GreedysOPFV for sOPFV.

|M | ≥ |R∗|
bη · ρ · secφzsc

3. Consider GreedysOPF for sOPF.

|M | ≥ |R∗|
bη · ρ · secφzsc+ bsecφ · sec φ

2 c+ 2

Proof. By the definition of Wj , we observe the following:

(o1) |Wj | ≤ |W (1)
j |+ |W

(2)
j |.

(o2) If kj ∈ Rj−1, then |Wj | = 0.

(o3) By (o2), (W1, ...,Wr) form a partition over R∗\M .

Consider GreedysOPF for sOPF. By Lemmas 3.13 and 3.14 and (o3),
one can relate |M | to the optimal |R∗| as follows.

|M | = |M ∩R∗|+ |M\R∗|

= |M ∩R∗|+
∑

j∈M\R∗

1
|Wj |

|Wj |

≥ |M ∩R∗|+
∑
j∈M\R∗ |Wj |

bη · ρ · secφzsc+ bsecφ · sec φ
2 c+ 2

= |M ∩R∗|+ |R∗\M |
bη · ρ · secφzsc+ bsecφ · sec φ

2 c+ 2
(by (o3))

≥ |M ∩R∗|+ |R∗\M |
bη · ρ · secφzsc+ bsecφ · sec φ

2 c+ 2

= |R∗|
bη · ρ · secφzsc+ bsecφ · sec φ

2 c+ 2

The cases of GreedysOPFC and GreedysOPFV are special cases of Wj =
W

(1)
j and Wj = W

(2)
j respectively.
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Lemma 3.13. Define W (1)
j as in Eqn. (3.74). We obtain

|W (1)
j | ≤ bsecφ · sec φ

2 c+ 1 (3.76)

Proof. Assume |W (1)
j | > 1. We note that based on the tree topology, all

demand paths share a single source (i.e., the root). When adding demand
skj to Rj−1, Eqn. (3.74) implies that each element of W (1)

j if added to
Rj must cause violation at some (possibly more than one) edges. These
violations occur only along the path Pkj . Denote by E ⊆ Pkj the set
of edges at which violations occur (after adding some k ∈W (1)

j to Rj).
Define e◦ ∈ E to be the closest edge to the root satisfies e◦ ∈ Pk for all
k ∈W (1)

j because all demands share the same source (see Fig. 3.4(a)).
This property allows us to bound |W (1)

j |.

(a) (b)

Figure 3.4: (a) The dotted lines illustrate the demand paths in Rj\{kj} (green),
W

(1)
j (red), and kj (blue). The paths of W (1)

j and kj intersect at edge e◦. Adding
any demand from W

(1)
j (red) to Rj (green and blue) will violate the pwoer capacity

constraints at Se◦ and Se′ . (b) The horizontal and vertical axes correspond to the
real and imaginary components of complex-valued demands respectively. The circular
lines visualize Cons. (3.71) at edges e◦ and e′ respectively. The dotted green arrow
corresponds to

∑
k∈Rj\{kj}

sk, the solid blue is skj , the solid red is
∑

k∈W (1)
j
\{k◦} sk,

and the dotted red arrows is sk◦ (which is replicated to illustrate the violation).
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More specifically, define customer k◦ ∈W (1)
j , such that∣∣∣∣∣ ∑

k:k∈Rj ,e◦∈Pk

sk + sk◦

∣∣∣∣∣ > Se◦

See Fig. 3.4(b) for an illustration. Note that∣∣∣∣∣ ∑
k:k∈Rj∧e◦∈Pk

sk + sk◦

∣∣∣∣∣ > Se◦ ≥
∣∣∣∣∣ ∑
k:k∈Rj∪W (1)

j \{kj}
∧e◦∈Pk

sk

∣∣∣∣∣ (3.77)

Claim 1. Given kj ∈ Ai for some i, then Wj ∩
⋃i−1
l=1 Bl = ∅. Thus, for

any kj ∈M , we have

|skj | ≤ |sk| for all k ∈Wj (3.78)

We prove Claim 1 as follows. First, since Rj−1 ⊇ ∪i−1
l=1Al, it follows

that Rj−1 ∩Bl = ∅ for all l ≤ i− 1, because Rj−1 is a feasible solution.
Therefore, Wj ⊆

⋃m
l=iBl and Wj ∩

⋃i−1
l=1 Bl = ∅. Then, Eqn. (3.78)

follows from the non-decreasing order of demands |s1| ≤ |s2| ≤ ....
Hence, we obtain

|skj | ≤

∑
k∈W (1)

j \{k◦}
|sk|

|W (1)
j | − 1

(3.79)

Rearranging Eqn. (3.79) and using the fact that |W (1)
j | is an integer,

we apply Lemma 2.2 to obtain

|W (1)
j | ≤

⌊∑
k∈W (1)

j \{k◦}
|sk|

|skj |
+ 1

⌋

≤
⌊sec φ

2 ·
∣∣∣∑

k∈W (1)
j \{k◦}

sk
∣∣∣

|skj |

⌋
+ 1

Let

d0 =
∑

k∈Rj\{kj},e◦∈Pk

sk + sk◦ , d1 = skj , d2 =
∑

k∈W (1)
j \{k◦}

sk
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By Eqn. (3.77), it follows that |d0 + d1| > |d0 + d2|.
Next, we apply Lemma 2.2 to bound

∣∣∑
k∈W (1)

j \{k◦}
sk
∣∣/|skj | ≤ secφ,

and obtain
|W (1)

j | ≤ bsecφ · sec φ
2 c+ 1

Lemma 3.14. Define W (2)
j as in Eqn. (3.75). We obtain

|W (2)
j | ≤ bη · ρ · secφzsc+ 1. (3.80)

Proof. Assume |W (2)
j | > 1. Let k′ ∈ W

(2)
j be an arbitrary customer.

Considering Cons. (3.73), define edge ẽ ∈ L such that

Qkj (ẽ) ≥
∑

k∈W (2)
j

Qk(ẽ)−Qk′(ẽ). (3.81)

Note that ẽ must exist, otherwise

Qkj (e) +Qk′(e) <
∑
k∈Wj

Qk(e), ∀e ∈ L

This implies that W (2)
j is not minimal, namely, {k′} ∪Rj is a feasible

solution, which contradicts the definition of W (2)
j in Eqn. (3.75). Let

emax , arg maxe∈Pkj z
R
e s

R
kj

+ zI
es

I
kj
.

Then, for all k ∈W (2)
j \{k′} and e ∈ Pk ∩ Pẽ, we obtain

zR
emaxs

R
kj + zI

emaxs
I
kj =

zR
emaxs

R
kj

+ zI
emaxs

I
kj

zR
e s

R
k + zI

es
I
k

(zR
e s

R
k + zI

es
I
k)

≤
|zemax | · |skj |
|ze| · |sk| · cosφzs

(zR
e s

R
k + zI

es
I
k) (3.82)

≤ ρ
cosφzs

· (zR
e s

R
k + zI

es
I
k), (3.83)

where Eqn. (3.82) follows by Cauchy-Schwarz inequality and φzs ∈ [0, π2 ),
Eqn. (3.83) by

|skj |
|sk| ≤ 1 by Claim 1.
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Summing all k ∈W (2)
j \{k′} and e ∈ Pk ∩ Pẽ, we obtain

zR
emaxs

R
kj + zI

emaxs
I
kj

≤
(

ρ

cosφzs

)
·

∑
k∈W (2)

j \{k′}
∑
e∈Pk∩Pẽ z

R
e s

R
k + zI

es
I
k∑

k∈W (2)
j \{k′}

|Pk ∩ Pẽ|

≤
(

ρ

cosφzs

)
·

∑
k∈W (2)

j \{k′}
Qk(ẽ)

|W (2)
j | − 1

, (3.84)

because of |Pk ∩ Pẽ| ≥ 1. By the definition of emax, we obtain

(zR
emaxs

R
kj + zI

emaxs
I
kj ) ≥

1
|Pkj ∩ Pẽ|

∑
e∈Pkj∩Pẽ

zR
e s

R
kj + zI

es
I
kj

≥ 1
η
·Qkj (ẽ) (3.85)

By Eqns. (3.81), (3.84), (3.85) and |W (2)
j | as an integer, we obtain

|W (2)
j | ≤

η · ( ρ

cosφzs

)∑
k∈W (2)

j \{k′}
Qk(ẽ)

Qkj (ẽ)

+ 1

≤ bη · ρ · secφzsc+ 1

Analysis of GreedyDisDm

We complete the analysis of GreedyDisDm by the following theorem.

Theorem 3.15. Assume that ρ, secφ and secφzs are constants, and
φ, φzs <

π
2 , then

1. GreedyDisDmC is 1
O(logn) -approximation for sOPFC.

2. GreedyDisDmV is 1
O(η·logn) -approximation for sOPFV.

3. GreedyDisDm is 1
O(η·logn) -approximation for sOPF.
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Proof. By rounding utilities in GreedyDisDm, ūk ∈ {0, ..., n2} = {0, ..., 22 logn}
for all k ∈ I. Therefore there are at most 2 logn + 1 groups of users
(denoted by Î1, ..., Î2 logn+1 respectively). Let M1, ...,M2 logn+1 be their
respective unit-utility solutions, returned by Algorithm 8. Define Opt
to be an optimal solution value for sOPF (resp., sOPFC, sOPFV) and
R∗i , i ∈ {1, ..., 2 logn + 1} be the subset of this optimal solution that
belongs to group i. Clearly, umax ≤ Opt, assuming each load can be
individually served (those loads that cannot be individually served can
be determined by checking the feasibility of the problem with exactly
one load turned on). Define u(N) ,

∑
k∈N uk for any N ⊆ I. The

solution returned by GreedyDisDm satisfies the following:

u(M) = max
i∈{1,...,2 logn+1}

u(Mi) ≥
∑2 logn+1
i=1 u(Mi)
2 logn+ 1 (3.86)

Using the fact that x ≥ y
⌊
x
y

⌋
for any x, y ∈ R and y 6= 0, we obtain

for i ∈ {1, ..., 2 logn+ 1},
u(Mi) =

∑
k∈Mi

uk ≥ L
∑
k∈Mi

ūk ≥ αL
∑
k∈R∗i

ūk (3.87)

where α is the approximation ratio of GreedysOPF on unit-utility in-
stances.

Next, we use x ≤ y
⌊
x
y

⌋
+ y for any x, y ∈ R and y 6= 0 to obtain∑

k∈R∗i

uk ≤
∑
k∈R∗i

(Lūk + L) = L
∑
k∈R∗i

ūk + |R∗i |L

⇒ L
∑
k∈R∗i

ūk ≥
∑
k∈R∗i

uk − |R∗i |L (3.88)

Finally, we complete the proof using Eqns. (3.86)-(3.88):

u(M) ≥ α

2 logn+ 1

2 logn+1∑
i=1

(
∑
k∈R∗i

uk − |R∗i |L)

= α

2 logn+ 1(Opt−
2 logn+1∑
i=1

|R∗i |L)

≥ α

2 logn+ 1(Opt− n · umax
n2 )

≥ α

2 logn+ 1 · (1−
1
n) ·Opt
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Therefore, we obtain

1. GreedyDisDmC is ᾱ-approximation for sOPFC, where

ᾱ =

(⌊
secφ · sec φ

2
⌋

+ 1
)−1

2 logn+ 1 ·
(
1− 1

n

)
= 1
O(logn)

2. GreedyDisDmV is ᾱ-approximation for sOPFV, where

ᾱ =

(⌊
η · ρ · secφzs

⌋
+ 1

)−1

2 logn+ 1 ·
(
1− 1

n

)
= 1
O(η · logn)

3. GreedyDisDm is ᾱ-approximation for sOPF, where

ᾱ =

(⌊
η · ρ · secφzs

⌋
+
⌊

secφ · sec φ
2
⌋

+ 2
)−1

2 logn+ 1 ·
(
1− 1

n

)
= 1
O(η · logn)

3.4.5 Greedy Approximation Algorithm for OPF

To incorporate continuous demands, we first solve the relaxed problem
rOPF by relaxing all discrete demands to be continuous as follows.

(rOPF) max
x,v,`,S

∑
k∈I

ukxk,

subject to Cons. (1.23)-(1.29),
xk ∈ [0, 1], ∀k ∈ I.

We consider convex relaxation by relaxing Cons. (1.23) to be `i,j ≥
|Si,j |2
vi

. Let the solution be x̃ =
(
(x̃k)k∈F , (x̃k)k∈I

)
.

We next define a simplified residual problem siOPFδ[x̃] by assuming
the continuous demands are set according to (x̃k)k∈F , and the links
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capacity are reduced by a factor of (1− δ) for a given δ ∈ (0, 1):

(siOPFδ[x̃]) max
x

∑
k∈I

ukxk

subject to
∣∣∣∣ ∑
k:e∈Pk

skxk

∣∣∣∣ ≤ (1− δ) · Se, ∀e ∈ E , (3.89)

∑
k∈I

( ∑
e′∈Pk∩Pe

zR
e′s

R
k + zI

e′s
I
k

)
xk ≤ Ve, ∀e ∈ E , (3.90)

xk ∈ {0, 1}, ∀k ∈ I, (3.91)
xk = x̃k, ∀k ∈ F . (3.92)

Then, we solve siOPFδ[x̃] by GreedyDisDm. To verify the feasibility
of a solution x̄ by GreedyDisDm, we consider the following problem with
given demands x̄:

(OPF[x̄]) min
v,`,S

∑
e∈E
|ze| · `e,

subject to Cons. (1.24)-(1.29),

`i,j ≥
|Si,j |2

vi
, ∀(i, j) ∈ E ,

xk = x̄k, ∀k ∈ I.

Algorithm 10 GreedyOPF[(uk, sk)k∈I , ε]
1: δ ← 0
2: repeat
3: x̃ ← Solution of rOPF
4: M ← GreedyDisDm on siOPFδ[x̃]
5: for k ∈ I do

6: x̄k ,


1 if k ∈M
x̃k if k ∈ F
0 otherwise

7: end for
8: δ ← δ + ε

9: until OPF[x̄] is feasible
10: return x̄
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GreedyOPF (Algorithm 10) is a heuristic to obtain a feasible solution
to OPF with both discrete and continuous demands. GreedyOPF has
polynomial running time in n, because OPF[x̄] can be solved efficiently
via convex optimization. However, the theoretical approximation ratio
of GreedyOPF with respect to OPF is not easy to obtain.

3.5 Notes

Traditionally, Optimal Power Flow (OPF) problems have been tackled by
relying on heuristics or general numerical solver, which lack optimality
guarantees or efficient running time. Recently, there has been a major
progress on tackling OPF efficiently using convex relaxations (Jabr,
2006; Bai et al., 2008; Bose et al., 2015; Huang et al., 2017; Gan et al.,
2015; Low, 2014a; Low, 2014b). These papers mainly consider radial
(i.e., tree) networks and derive sufficient conditions under which the
convex relaxation is exact (i.e., equivalent to the original non-relaxed
problem); for example, relaxing the rank-1 constraint in the semidefinite
programming (SDP) formulation (Bose et al., 2015), or relaxing the
equality constraints in the second order cone programming (SOCP)
formulation (Huang et al., 2017; Gan et al., 2015; Low, 2014a; Low,
2014b). However, these results yield polynomial time algorithms for
OPF with continuous power injection constrains, i.e., the control of
power injection can be partially satisfied (precisely, as fractional control
decision variables).

The algorithms for combinatorial optimization on OPF are studied
in Karapetyan et al. (2018), Elbassioni et al. (2017), and Khonji et
al. (2017). Karapetyan et al. (2018) presents a greedy algorithm for
DistFlow model. Elbassioni et al. (2017) presents a QPTAS for line
networks with scalable network size. Khonji et al. (2017) presents PTAS
for constant-sized tree networks.

On the other hand, OPF with discrete demands is related to Unsplit-
table Flow Problem (UFP). UFP has also received considerable attention
and approximation algorithms are known for different variants. In di-
rected graphs, the best known approximation is O(min{

√
m,n

2
3 log

1
3 n})

(Kleinberg, 1996; Varadarajan and Venkataraman, 2004), while it is
NP-Hard to approximate within Ω(n

1
2−ε) (Guruswami et al., 2003),
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where n and m are the number of nodes and edges respectively. Azar
and Regev (2001) shows that UFP in directed graphs is Ω(n1−ε)-hard
unless P = NP. In undirected graphs, there is an O(

√
n)-approximation

(Chekuri et al., 2006), and the best known hardness result is Ω(log
1
2−ε n)

assuming NP 6⊆ ZPTIME(nO(polylog(n))) (Andrews et al., 2005). These
hardness results suggest that the problem is difficult to solve in general
graphs. For tree topology, the problem is APX-Hard (i.e., hard to ap-
proximate within a constant factor) even when demands are uniform
(Chekuri et al., 2007). Chekuri et al. (2009) obtained an O(logn)-
approximation. Recently, Anagnostopoulos et al. (2014) obtained a
2 + ε-approximation for path topology.



4
Scheduling of AC Electric Power

We extend the basic setting of single-capacitated AC electric power
systems to consider the scheduling problem of discrete demands over
a constant time horizon. We consider a discrete time horizon denoted
by T , {1, ...,m}. At each time slot t ∈ T , the generation capacity of
the power grid is denoted by St ∈ R+. Denote N , {1, ..., n} by the
set of all users. Each user k ∈ N declares a set of demand preferences
indexed by the set Dk. Each demand j ∈ Dk is defined over a time
interval Tj ⊆ T , that is, Tj = {t1, t1 + 1, ..., t2} where t1, t2 ∈ T and
t1 ≤ t2. Demand j is also associated with a set of complex numbers
{sk,j(t)}t∈Tj where sk,j(t) , sR

k,j(t) + isI
k,j(t) ∈ C is a complex power

demand at time t. A positive utility uk,j is associated with each user
demand (k, j) if satisfied.

4.1 Preliminaries of Multi-Choice Knapsack Problem

Our scheduling problem of AC power demands is related to a general
setting of knapsack problem, known as multi-choice knapsack problem.
Denote the set of feasible choices of each user k by Dk. Consider positive
real demand ŝk,j for all k ∈ I, j ∈ Dk. We define multi-choice knapsack

78
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problem (MKP) as follows.
(MKP) max

x

∑
k∈I

∑
j∈Dk

uk,jxk,j

subject to
∑
k∈I

∑
j∈Dk

ŝk,jxk,j ≤ S, (4.1)

∑
j∈Dk

xk,j ≤ 1, ∀k ∈ I, (4.2)

xk,j ∈ {0, 1}, ∀k ∈ I, (4.3)
where Cons. (4.2) is known as the multi-choice constraint that restricts
the multiplicity of satisfiable selections of each user.

In the context of scheduling of AC power demands,Dk is defined with
respect to the scheduling constraints of each user. Some user demands
are inelastic, denoted by I ⊆ N ×

⋃
kDk, which are required to be either

fully satisfied or fully dropped. An example is an appliance that should
be either supplied with a fixed amount of power, or switched off. The
rest of demands, denoted by F ⊆ N ×

⋃
kDk such that F ∩ I = ∅, are

elastic demands, which can be partially satisfied. The goal is to decide
a solution of control variables (xk,j)k∈N ,j∈Dk ∈ [0, 1]n that maximizes
the total utility of satisfiable users subject to the generation capacity
over time.

Extending MKP, we define the Complex-demand Scheduling Prob-
lem over m discrete time slots (m-CSP) by the following mixed integer
programming problem.

(m-CSP) max
∑
k∈N

∑
j∈Dk

uk,jxk,j

subject to
∣∣∣ ∑
k∈N

∑
j∈Dk:Tj3t

sk,j(t) · xk,j
∣∣∣ ≤ St, ∀t ∈ T , (4.4)

∑
j∈Dk

xk,j ≤ 1, ∀k ∈ N , (4.5)

xk,j ∈ {0, 1}, ∀(k, j) ∈ I, (4.6)
xk,j ∈ [0, 1], ∀(k, j) ∈ F , (4.7)

where |µ| denotes the magnitude of µ ∈ C. Cons. (4.4) captures the
capacity constraint, and Cons. (4.5) forces at most one inelastic demand
for every user to be selected.
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We consider the following assumptions: for any user k,

(i) |Dk| = 1 if (k, j) ∈ F , j ∈ Dk; and

(ii) all demands sk,j(t), j ∈ Dk reside in one quadrant of the complex
plane.

Note that 1-CSP (i.e., |T | = 1) is complex-demand knapsack prob-
lemCKP. (We drop subscripts t and j when |T | = 1 and |Dk| = 1 for all
k ∈ N .) We write m-CSP[φ1, φ2] for the restriction of problem m-CSP
subject to φ1 ≤ maxk∈N arg(sk) ≤ φ2, where arg(sk) ≥ 0 for all k ∈ N .

4.2 PTAS

In this section we assume the number of time slots |T | is a constant.
This assumption is practical in the realistic setting, where users declare
their demands on hourly basis one day ahead in the electric market.
We remark that the results in this section do not require Tj to be a
continuous interval in T .

4.2.1 PTAS for m-CSP[0, π2 ]

Define a convex relaxation of m-CSP (denoted by rCSP), such that
Cons. (4.6) are replaced by xk,j ∈ [0, 1] for all (k, j) ∈ I ∪ F . We define
another convex relaxation that will be used in the PTAS denoted by
rCSP[I1, I0] which is equivalent to rCSP, subject to partial substitution
such that xk,j = 1, for all (k, j) ∈ I1 and xk,j = 0, for all (k, j) ∈ I0,
where I1 ∩ I0 = ∅.

The above relaxation can be solved approximately in polynomial
time using standard convex optimization algorithms. In fact, such
algorithms can find a feasible solution xcx to the convex relaxation such
that u(xcx) ≥ Opt? − δ, in time polynomial in the input size (including
the bit complexity) and log 1

δ , where Opt? is the optimal objective
value of rCSP[I1, I0]. Notice that Opt? ≥ ū , maxk,j uk,j , setting δ to
ε
2 · ū assures that u(xcx) ≥ (1− ε

2) ·Opt?.
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(rCSP[I1, I0]) max
xk,j∈[0,1]

∑
k∈N

∑
k∈Dk

uk,jxk,j

subject to
( ∑
k∈N

∑
j∈Dk:t∈Tj

sR
k,j(t) · xk,j

)2

+
( ∑
k∈N

∑
j∈Dk:t∈Tj

sI
k,j(t) · xk,j

)2
≤ S2

t , ∀t ∈ T , (4.8)

∑
j∈Dk

xk,j ≤ 1, ∀k ∈ N , (4.9)

xk,j = 1, ∀(k, j) ∈ I1, (4.10)
xk,j = 0, ∀(k, j) ∈ I0. (4.11)

We provide a (1 − ε, 1)-approximation for m-CSP[0, π2 ] in Algo-
rithm 11, denoted by CSP-PTAS. The idea of CSP-PTAS is based on that
proposed in Elbassioni and Nguyen (2015) with two extensions. First,
we consider multiple demands per user. This in fact adds n extra con-
straints to that in Elbassioni and Nguyen (2015), and thus the rounding
procedure requires further analysis. The second extension is the addition
of elastic demands F .

Given a feasible solution x̃ to rCSP[I1, I0], a restricted set of de-
mands R ⊆ I ∪ F , and vectors c1, c2 ∈ R+m, we define the following
relaxation, denoted by LP[c1, c2, x̃, R].

CSP-PTAS proceeds as follows. We guess I1 ⊆ I to be the set of
largest-utility 8m

ε inelastic demands in the optimal solution; this defines
an excluded set of demands I0 ⊆ I \ I1 whose utilities exceed one of
the utilities in I1 (Step 4). For each such I1 and I0, we solve the convex
program rCSP[I1, I0] and obtain a (1− ε

2)-approximation xcx (note that
the feasibility of the convex program is guaranteed by the conditions
in Step 3). The real and imaginary projections over all time slots of
solution xcx, denoted by LR ∈ Rm+ and LI ∈ Rm+ , are used to define
the linear program LP[LR, LI, xcx,F ∪ I1 ∪ I0] over the restricted set of
demands F ∪ I1 ∪ I0. We solve the linear program in Step 10, and then
round down the solution corresponding to demands (k, j) ∈ I in Step
11. Finally, we return a solution x̂ that attains the maximum utility
among all obtained solutions.
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(LP[c1, c2, x̃, R]) max
xk,j∈[0,1]

∑
k∈N

∑
j∈Dk

uk,jxk,j (4.12)

subject to
∑
k∈N

∑
j∈Dk:t∈Tj

sR
k,j(t) · xk,j ≤ c1

t , ∀t ∈ T , (4.13)

∑
k∈N

∑
j∈Dk:t∈Tj

sI
k,j(t) · xk,j ≤ c2

t , ∀t ∈ T , (4.14)

∑
j∈Dk

xk,j ≤ 1, ∀k ∈ N , (4.15)

xk,j = x̃k,j , ∀(k, j) ∈ R. (4.16)

Theorem 4.1. For any fixed ε, CSP-PTAS obtains a (1−ε, 1)-approximation
in polynomial time.

Proof. One can easily see that the running time of CSP-PTAS is poly-
nomial in size of the input, for any given ε. We now argue that
the solution x̂ is (1 − ε)-approximation for m-CSP[0, π2 ]. Let x? be
an optimal solution for m-CSP[0, π2 ] of utility Opt , u(x?). Define
X? , {(k, j) ∈ I | x?k,j = 1}. By the feasibility of x?, in Step 5 the
algorithm obtains

u(xcx) ≥ (1− ε
2) ·Opt? ≥ (1− ε

2) ·Opt, (4.17)

where Opt? is the optimal value of rCSP[I1, I0] for some I1 equal to
the highest 8m

ε utility demands in X?, and I0 ∩X? = ∅. If |X?| ≤ 8m
ε ,

then obviously x̂ = x
′′ = xcx ≥ (1− ε

2)Opt.
Now suppose |X?| > 8m

ε . Observe that xcx (a solution of rCSP[I1, I0])
is also a feasible solution for LP[LR, LI, xcx,F ∪ I1 ∪ I0] (Cons. (4.13)-
(4.16) are tight when xcx is substituted). Therefore, the optimal solution
x
′′ of LP[LR, LI, xcx,F ∪ I1 ∪ I0] satisfies

u(x′′) ≥ u(xcx). (4.18)

By Lemma 4.2 below, LP[LR, LI, xcx,F ∪ I1∪ I0] has a basic feasible
solution (BFS) with at most 4m fractional components, and for any

fractional component (k, j), uk,j < min(k′,j′)∈I1 uk′,j′ ≤
∑

(k′,j′)∈I1
uk′,j′

|I1| .
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Algorithm 11 CSP-PTAS[
(
uk,j , {sk,j(t)}t∈Tj

)
k∈N ,j∈Dk

, (St)t∈T , ε]

Ensure: (1− ε, 1)-solution x̂ to m-CSP[0, π2 ]
1: x̂← 0
2: for each set I1 ⊆ I such that |I1| ≤ 8m

ε do
3: if∣∣∣ ∑

(k,j)∈I1:t∈Tj

sk,j(t)
∣∣∣ ≤ St,∀t ∈ T and

∑
j∈Dk

xk,j ≤ 1, ∀k ∈ N

then
4: I0 ← {(k, j) ∈ I \ I1 | uk,j > min(k′,j′)∈I1 uk′,j′}
5: xcx ← Solution of rCSP[I1, I0]

. Obtain a (1− ε
2)-approximation

6: for all t ∈ T do
7: LR

t ←
∑
k∈N

∑
j∈Dk:t∈Tj s

R
k,j(t) · xcx

k,j

8: LI
t ←

∑
k∈N

∑
j∈Dk:t∈Tj s

I
k,j(t) · xcx

k,j

9: end for
10: x

′′ ← Solution of LP[LR, LI, xcx,F ∪ I1 ∪ I0]
. Round down the LP solution

11: x̄← {(x̄k,j)k∈N ,j∈Dk | x̄k,j = bx′′k,jc for (k, j) ∈ I,
and x̄k,j = x

′′
k,j for (k, j) ∈ F}

12: if u(x̄) > u(x̂) then
13: x̂← x̄

14: end if
15: end if
16: end for
17: return x̂

Therefore, rounding down x′′ in Step 11 obtains,

u(x̂) ≥ u(x′′)− 4m
∑

(k,j)∈I1 uk,j

|I1|
≥ (1− ε

2)u(x′′)

≥ (1− ε
2)2 ·Opt ≥ (1− ε) ·Opt,

where the last inequity follows by Eqns. (4.17)-(4.18). It remains to show
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that x̂ is feasible. Since x̂ is obtained by rounding down x′′ (Step. 11),( ∑
k∈N

∑
j∈Dk:t∈Tj

sR
k,j(t) · x̂k,j

)2
+
( ∑
k∈N

∑
j∈Dk:t∈Tj

sI
k,j(t) · x̂k,j

)2

≤
( ∑
k∈N

∑
j∈Dk:t∈Tj

sR
k,j(t) · x

′′
k,j

)2
+
( ∑
k∈N

∑
j∈Dk:t∈Tj

sI
k,j(t) · x

′′
k,j

)2

≤(LR
t )2 + (LI

t)2

=
( ∑
k∈N

∑
j∈Dk:t∈Tj

sR
k,j(t)xcx

k,j

)2
+
( ∑
k∈N

∑
j∈Dk:t∈Tj

sI
k,j(t)xcx

k,j

)2
≤ S2

t ,

(4.19)

where Eqn. (4.19) follows by the feasibility of x′′ and xcx respectively.
Hence, Cons. (4.4) are satisfied. Finally, since some components of x′′ in
Step 11 are only rounded down, Cons. (4.5)-(4.6) are also satisfied.

Lemma 4.2 (Patt-Shamir and Rawitz (2010)). Let x be a basic feasible
solution (BFS) for LP[c1, c2, x?, R]. Then x has at most 4m non-integral
components.

Proof. Let h be the number of users k such that
∑
j∈Dk xk,j = 1. By the

properties of a BFS (see, e.g., Grötschel et al., 1988; Schrijver, 1986),
the number of strictly positive components in x is at most 2m + h.
Furthermore, constraints (4.15) impose that for each k ∈ N among
those h users, there is a j ∈ Dk such that xk,j > 0. The remaining 2m
positive variables can belong to at most 2m of the constraints (4.15),
implying that at least max{h− 2m, 0} variables are set to 1. It follows
that the total number variables taking non-integral values is at most
2m+ h−max{h− 2m, 0} ≤ 4m.

4.3 Resource-augmented FPTAS

In the previous section, we have restricted our attention to the setting
where all demands lie in the positive quadrant of the complex plane
(i.e., m-CSP[0, π2 ]). In this section, we extend our study to the second
quadrant (m-CSP[0, π−ε]) for any arbitrary small constant ε > 0, that
is, we assume arg(sk,j(t)) ≤ π − ε for all k ∈ N , j ∈ Dk, t ∈ Tj .



4.3. Resource-augmented FPTAS 85

For convenience, we let θ = max{φ − π
2 , 0} (see Fig. 4.1 for an

illustration). We present a (1, 1 + ε)-approximation for m-CSP[0, π− ε]
in Algorithm 12, denoted by CSP-bFPTAS, that is polynomial in both 1

ε

and n (i.e., FPTAS). We assume that tan θ is bounded by a polynomial
in n; without this assumption, a resource-augmented FPTAS is unlikely
to exist (see Sec. 5.2).

Figure 4.1: We measure θ = φ− π
2 from the imaginary axis.

Let I+ , {k ∈ I | sR
k,j(t) ≥ 0,∀j ∈ Dk, t ∈ Tj} and I− ,

{k ∈ I | sR
k,j(t) < 0, ∀j ∈ Dk, t ∈ Tj} be the subsets of users with

demands in the first and second quadrants respectively. Note that I+
and I− partition the set of users I. Consider any solution x̂ to m-
CSP[0, π− ε]. The basic idea of Algorithm CSP-bFPTAS is to enumerate
the guessed total projections on real and imaginary axes of all time
slots for

∑
k∈I+

∑
j∈Dk:t∈Tj x̂k,jsk,j(t) and

∑
k∈I−

∑
j∈Dk:t∈Tj x̂k,jsk,j(t)

respectively. We can use tan θ to upper bound the total projections for
any feasible solution x̂ as follows, for all t ∈ T :∑

k∈I

∑
j∈Dk:t∈Tj

sI
k,j(t) · x̂k,j ≤ St,∑

k∈I−

∑
j∈Dk:t∈Tj

−sR
k,j(t) · x̂k,j ≤ St tan θ,

∑
k∈I+

∑
j∈Dk:t∈Tj

sR
k,j(t) · x̂k,j ≤ St(1 + tan θ). (4.20)

See Fig. 4.1 for a pictorial illustration.
We then solve two separate multi-dimensional knapsack problems of

dimension 2m (denoted by 2mDKP), to find subsets of demands that
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satisfy the individual guessed total projections. But since 2mDKP is
generally NP-hard, we need to round-up the demands to get a problem
that can be solved efficiently by dynamic programming. We show that
the violation of the optimal solution to the rounded problem with
respect to to the original problem is small in ε.

Next, we describe the rounding in detail. First, we define Lt ,
εSt

n(tan θ+1) , for all t ∈ T such that the new rounded-up demands ŝk,j(t)
are defined by:

ŝk,j(t) = ŝR
k,j(t)+iŝI

k,j(t) ,


⌈
sR
k,j(t)
Lt

⌉
· Lt + i

⌈
sI
k,j(t)
Lt

⌉
· Lt, if sR

k,j(t) ≥ 0,⌊
sR
k,j(t)
Lt

⌋
· Lt + i

⌈
sI
k,j(t)
Lt

⌉
· Lt, otherwise.

(4.21)
We also define R , ε

3n(tan θ+1)2 , such that the values of any elastic
xk,j , (k, j) ∈ F are selected from the discrete set R of integer multiples
of R defined by

R ,
{

0, 1R, 2R, ..., (d 1
Re − 1)R, 1

}
.

Let ξ+ ∈ Rm+ (and ξ− ∈ Rm+ ), ζ+ ∈ Rm+ (and ζ− ∈ Rm+ ) be respectively
the guessed real and imaginary absolute total projections of the rounded
optimal solution.

Then the possible values of ξ+, ξ−, ζ+ and ζ− in each component t
are integer mutiples of (R · Lt):

ξ+(t) ∈ A+(t) ,
{

0, (RLt), 2(RLt), . . . ,
⌈
St(1 + tan θ)

RLt

⌉
· (RLt)

}
,

ξ−(t) ∈ A− ,

{
0, (RLt), 2(RLt), . . . ,

⌈
St · tan θ
RLt

⌉
· (RLt)

}
,

ζ+(t), ζ−(t) ∈ B(t) ,
{

0, (RLt), 2(RLt), . . . ,
⌈
St
RLt

⌉
· (RLt)

}
. (4.22)

The next step is to solve the rounded instance exactly. Assume
an arbitrary order on I = {1, ..., n}. We use recursion to define a
table, with each entry U(k, c1, c2), c1, c2 ∈ Rm+ , as the maximum util-
ity obtained from a subset of users {1, 2, . . . ,K} ⊆ I with demands
{ŝk,j(t)}k∈{1,...,K},j∈Dk,t∈Tj that can fit exactly (i.e., satisfies the capacity
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constraints as equations) within capacities {c1
t }t=1,...,m on the real axis

and {c2
t }t=1,...,m on the imaginary axis. We denote by 2mDKP-Exact[·]

the algorithm for solving exactly the rounded 2mDKP by dynamic
programming. We provide the detailed description of 2mDKP-Exact[·]
in Algorithm 13.

Algorithm 12 CSP-bFPTAS[
(
uk,j , {sk,j(t)}t∈Tj

)
k∈I,j∈Dk

, (St)t∈T , ε]

Require: Users’ utilities and demands {uk,j , {sk,j(t)}t∈Tj}k∈I,j∈Dk ; ca-
pacity over time St; accuracy parameter ε

Ensure: (1, 1 + 4ε)-solution x̂ to m-CSP[0, π − ε]
1: x̂← 0
2: for all sk,j(t), k ∈ I, j ∈ Dk, and t ∈ Tj do
3: Set ŝk,j(t)← ŝR

k,j(t) + iŝI
k,j(t) as defined by (4.21)

4: end for
5: for all ξ+ ∈

∏
t∈T A+(t), ξ− ∈

∏
t∈T A−(t), ζ+, ζ− ∈

∏
t∈T B(t) do

6: if
(
ξ+(t)− ξ−(t)

)2 +
(
ζ+(t) + ζ−(t)

)2 ≤ (1 + 2ε)2S
2
t for all t ∈ T

then
y+ ← 2mDKP-Exact

(
{uk,j , (ŝk,j(t)/Lt)t}k∈I+,j∈Dk ,

7:
(
ξ+(t)/Lt

)
t
,
(
ζ+(t)/Lt

)
t

)
y− ← 2mDKP-Exact

(
{uk,j , (−ŝk,j(t)/Lt)t}k∈I−,j∈Dk ,

8:
(
ξ−(t)/Lt

)
t
,
(
ζ−(t)/Lt

)
t

)
9: if u(y+ + y−) > u(x̂) then
10: x̂← y+ + y−
11: end if
12: end if
13: end for
14: return x̂

Theorem 4.3. CSP-bFPTAS is a (1, 1+4ε)-approximation form-CSP[0, π−
ε] and its running time is polynomial in both n and 1

ε .

Proof. First, the running time is proportional to the number of guesses,
upper bounded by (1

εn(tan θ + 1))O(1).
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For each guess, 2mDKP-Exact constructs a table of size at most
(1
εn(tan θ+ 1))O(1). Since we assumed tan θ is polynomial in n, the total
running time is polynomial in n and 1

ε .
To show the approximation ratio of 1, we note CSP-bFPTAS enu-

merates over all possible rounded projections subject to the capacity
constraints in m-CSP and that 2mDKP-Exact returns the exact
optimal solution for each rounded problem. In particular, by Lemma 4.4
below one of the choices would be rounded projection for the optimum
solution x∗. It remains to show that the violation of the returned solu-
tion is small in ε. This is given in Lemma 4.5 below, which shows that
the solution x̂ to the rounded problem violates the capacity constraint
by only a factor at most (1 + 4ε).

For any solution x ∈ [0, 1]n, let us write for brevity

P+,t(x) ,
∑
k∈I+

∑
j∈Dk:t∈Tj

xk,js
R
k,j(t), P−,t(x) ,

∑
k∈I−

∑
j∈Dk:t∈Tj

−xk,jsR
k,j(t),

P̂+,t(x) ,
∑
k∈I+

∑
j∈Dk:t∈Tj

xk,j ŝ
R
k,j(t), P̂−,t(x) ,

∑
k∈I−

∑
j∈Dk:t∈Tj

−xk,j ŝR
k,j(t),

PI,t(x) ,
∑
k∈I

∑
j∈Dk:t∈Tj

xk,js
I
k,j(t), P̂I,t(x) ,

∑
k∈I

∑
j∈Dk:t∈Tj

xk,j ŝ
I
k,j .

Consider the rounded solution x̂ of some x such that x̂k,j ∈ R, and
xk,j ≤ x̂k,j ≤ xk,j + R. By the fact that ` ≤ τd `τ e ≤ `+ τ for any `, τ
such that τ > 0; and that each user k has at most one x̂k,j > 0 by
Algorithm 13 (and consequently one xk,j > 0, since x̂k,j ≥ xk,j) we have

P̂+,t(x̂) =
∑
k∈I

∑
j∈Dk:t∈Tj

x̂k,j ŝ
R
k,j(t) =

∑
k∈I

j:x̂k,j>0

x̂k,j ŝ
R
k,j(t)

≤
∑
k∈I

j:x̂k,j>0

(xk,j +R)(sR
k,j(t) + L)

=P+,t(t) +
∑
k∈I

j:x̂k,j>0

sR
k,j(t)R+ nL+ nLtR

≤P+,t(t) + nSt(tan θ + 1)R+ nL+ nLtR ≤ P+,t(t) + nLt,
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where the last inequality follows by Eqn. (4.21), and the definitions of
R and Lt respectively. The same bound holds for P̂−,t and P̂I,t:

max{P̂+,t(x̂)− nLt, 0} ≤ P+,t(x) ≤ P̂+,t(x̂),
max{P̂−,t(x̂)− nLt, 0} ≤ P−,t(x) ≤ P̂−,t(x̂),
max{P̂I,t(x̂)− nLt, 0} ≤ PI,t(x) ≤ P̂I,t(x̂). (4.23)

Lemma 4.4. For any feasible solution x to m-CSP [0, π − ε], and the
rounded x̂ ∈ Rn such that xk,j ≤ x̂k,j ≤ xk,j +R, we have∣∣∣∑

k∈I

∑
j∈Dk:t∈Tj

x̂k,j ŝk,j(t)
∣∣∣ ≤ (1 + 2ε)St for all t ∈ T .

Proof. Using (4.23) and (4.20), for all t ∈ T ,(∑
k∈I

∑
j∈Dk:t∈Tj

x̂k,j ŝ
R
k,j(t)

)2
+
(∑
k∈I

∑
j∈Dk:t∈Tj

x̂k,j ŝ
I
k,j(t)

)2

=
(
P̂+,t(x̂)− P̂−,t(x̂)

)2
+ P̂ 2

I,t(x̂)

=P̂ 2
+,t(x̂) + P̂ 2

−,t(x̂)− 2P̂+,t(x̂)P̂−,t(x̂) + P̂ 2
I,t(x̂)

≤(P+,t(x) + nLt)2 + (P−,t(x) + nLt)2 − 2P+,t(x)P−,t(x) + (PI,t(x) + nLt)2

=(P+,t(x)− P−,t(x))2 + P 2
I,t(x) + 2nLt(P+,t(x) + P−,t(x) + PI,t(x)) + 3n2L2

t

=
(∑
k∈I

∑
j∈Dk:t∈Tj

xk,js
R
k,j(t)

)2
+
(∑
k∈I

∑
j∈Dk:t∈Tj

xk,js
I
k,j(t)

)2

+ 2nLt
(∑
k∈I

∑
j∈Dk:t∈Tj

xk,j |sR
k,j(t)|+

∑
k∈I

∑
j∈Dk:t∈Tj

xk,js
I
k,j(t)

)
+ 3n2L2

t

≤S2
t + 4nLt(tan θ + 1)St + 3n2L2

t = S
2
t + 4εS2

t + 3ε2S2
t /(1 + tan θ)2

≤S2
t (1 + 4ε+ 3ε2) ≤ S2

t (1 + 2ε)2.

Lemma 4.5. Let x̂ be the solution returned by CSP-bFPTAS. Then∣∣∣∑
k∈I

∑
j∈Dk:t∈Tj

x̂k,jsk,j(t)
∣∣∣ ≤ (1 + 4ε)St for all t ∈ T .



90 Scheduling of AC Electric Power

Proof. As in the proof of Lemma 4.4, for all t ∈ T , we have

(∑
k∈I

∑
j∈Dk:t∈Tj

x̂k,js
R
k,j(t)

)2
+
(∑
k∈I

∑
j∈Dk:t∈Tj

x̂k,js
I
k,j(t)

)2

= (P+,t(x̂)− P−,t(x̂))2 + P 2
I,t(x̂)

=P 2
+,t(x̂) + P 2

−,t(x̂)− 2P+,t(x̂)P−,t(x̂) + P 2
I,t(x̂). (4.24)

If both P̂+,t(x̂) and P̂−,t(x̂) are less than nLt, then the right-hand side
of (4.24) can be bounded by

P̂ 2
+,t(x̂) + P̂ 2

−,t(x̂) + P̂ 2
I,t(x̂)

≤P̂ 2
+,t(x̂) + P̂ 2

−,t(x̂)− 2P̂+,t(x̂)P̂−,t(x̂) + 2n2L2
t + P̂ 2

I,t(x̂)
=(P̂+,t(x̂)− P̂−,t(x̂))2 + P̂ 2

I,t(x̂) + 2n2L2
t . (4.25)

Otherwise, we bound the right-hand side of Eqn. (4.24) by

P̂ 2
+,t(x̂) + P̂ 2

−,t(x̂)− 2(P̂+,t(x̂)− nLt)(P̂−,t(x̂)− nLt) + P̂ 2
I,t(x̂)

=(P̂+,t(x̂)− P̂−,t(x̂))2 + P̂ 2
I,t(x̂) + 2nLt(P̂+,t(x̂) + P̂−,t(x̂))− 2n2L2

t .

(4.26)

Since x̂ = y+ + y− is obtained from feasible solutions y+ and y− to

2mDKP-Exact
(
{uk,j , (ŝk,j(t)/Lt)t}k∈I+,j∈Dk ,

(
ξ+(t)/Lt

)
t
,
(
ζ+(t)/Lt

)
t

)

and

2mDKP-Exact
(
{uk,j , (−ŝk,j(t)/Lt)t}k∈I−,j∈Dk ,

(
ξ−(t)/Lt

)
t
,
(
ζ−(t)/Lt

)
t

)
,

respectively, and ξ+, ξ−, ζ+, ζ− satisfy the condition in Step 6, it follows
from (4.24)-(4.26) that
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(∑
k∈I

∑
j∈Dk:t∈Tj

x̂k,js
R
k,j(t)

)2
+
(∑
k∈I

∑
j∈Dk:t∈Tj

x̂k,js
I
k,j(t)

)2
(4.27)

≤
(∑
k∈I

∑
j∈Dk:t∈Tj

x̂k,j ŝ
R
k,j(t)

)2
+
(∑
k∈I

∑
j∈Dk:t∈Tj

x̂k,j ŝ
I
k,j(t)

)2
(4.28)

+ 2nLt
∑
k∈I

∑
j∈Dk:t∈Tj

x̂k,j |ŝR
k,j(t)|+ 2n2L2

t

=(ξ+(t)− ξ−(t)2 + (ζ+(t) + ζ−(t)2 + 2nLt(ξ+(t) + ξ−(t) + 2n2L2
t

(4.29)

≤
(
(1 + 2ε)2S

2
t + 4n εSt

n(tan θ + 1)(1 + tan θ)St + 2n2 ε2S
2
t

n2(tan θ + 1)2

)
(4.30)

≤
(
(1 + 2ε)2 + 4ε+ 2ε2

)
S

2
t ≤ (1 + 4ε)2S

2
t . (4.31)

4.4 Notes

Scheduling problems are a well-studied topic in computer science. How-
ever, most extant literature considers scheduling problems formulated
by linear constraints. Khonji et al. (2016) and Khonji et al. (2018e)
consider the Complex-demand Scheduling Problem (CSP), involving
AC power demands subject to generation apparent power constraints.
This monograph covers the case of constant number of time slots. For
the case of a polynomial number of time slots, CSP is a generalization
of the unsplittable flow problem on paths to accommodate complex-
valued demands. Also, Khonji et al. (2016) and Khonji et al. (2018e)
extend the greedy algorithm in Karapetyan et al. (2018) for the single
time slot case to handle multiple demands per user keeping the same
approximation ratio and running time. Recently, the joint problem of
temporal scheduling and CSP has been studied in Khonji et al. (2018c),
Khonji et al. (2018b), and Khonji et al. (2018d).
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Algorithm 13 2mDKP-Exact[
(
uk,j , {ŝk,j(t)}t∈Tj

)
k∈W,j∈Dk

, (c1
t )t∈T , (c2

t )t∈T ]

Require: Utilities, and rounded demands of a restricted set of users
W ⊆ I, {uk,j , {sk,j(t)}t∈Tj}k∈I,j∈Dk ; integer capacity vectors
(c1
t )t∈T , (c2

t )t∈T
Ensure: A utility-maximizing optimal solution y ∈ [0, 1]n subject to

the capacity constraints defined by c1
t , c

2
t

1: Create a table of size |W| ·
∏
t(c1

t + 1) · (c2
t + 1), with each entry

U(k, c1, c2) according to:

U(1, c1, c2) , max



max
(1,j)∈(I∩W)

{uk,j | ŝR
k,j(t) = c1

t , ŝI
k,j(t) = c2

t , ∀t},

max
(1,j)∈(F∩W)

x̂k,j∈R

{x̂k,juk,j | x̂k,j ŝR
k,j(t) = c1

t ,

x̂k,j ŝ
I
k,j(t) = c2

t , ∀t},
−∞



U(k, c1, c2) , max



max
(k,j)∈(I∩W)

{
uk,j + U

(
k − 1, (c1

t − ŝk,j(t))t,

(c2
t − ŝk,j(t))t

)}
,

max
(k,j)∈(F∩W)

x̂k,j∈R

{
x̂k,juk,j + U

(
k − 1, (c1

t − x̂k,j ŝk,j(t))t,

(c2
t − x̂k,j ŝk,j(t))t

)}
,

U(k − 1, c1, c2)


U(k, c1, c2) , −∞, ∀c1, c2 6∈ Rm+

2: Create a table of size |W| ·
∏
t(c1

t + 1) · (c2
t + 1), with each entry

y(k, c1, c2) ∈ [0, 1]n according to:

y(k, c1, c2) , 0 if U(k, c1, c2) = −∞
y(1, c1, c2) , {(0, ..., x̂kj , ..., 0) | x̂k,juk,j = U(1, c1, c2)}
y(k, c1, c2) , {y(k − 1, c1, c2) + (0, ..., x̂kj , ..., 0) |

x̂k,juk,j = U(1, c1, c2)− u
(
y(k − 1, c1, c2)

)
}

3: return y(|W|, c1, c2).



5
Hardness Results

In this section, we provide inapproximability results for CKP and OPF,
which complement with our approximation solutions. Based on the
hardness results, our approximation algorithms (PTAS and resource-
augmented FPTAS) are the best achievable efficient algorithms in theory
in the respective settings of CKP and OPF.

In the following, we show hardness results for special cases of OPF,
which are sufficient for the hardness of general OPF. We denote by
OPFV when OPF considers voltage Cons. (1.27) and thermal capac-
ity Cons. (1.29) without Cons. (1.28), whereas by OPFS when OPF
considers capacity Cons. (1.28)-(1.29) without Cons. (1.27).

In the hardness proofs, we often rely on the hardness results of
well-known NP-Hard problems called the Equipartition problem and
Subset Sum (SubSum) problem.

Definition 5.1. (Equipartition): Given a set of positive integers
{wk}k∈I , with |I| = n where n is even, we determine if there is a
subset of items X ⊆ I such that

|X| = n

2 and
∑
k∈X

wk =
∑
k/∈X

wk (5.1)

93
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Definition 5.2 (SubSum). Given a set of positive integersA , {a1, ..., am}
and a positive integer B, decide if there exists a subset of A that sums-up
to exactly B.

Note that B is generally not polynomial in m. Otherwise, SubSum
can be solved easily in polynomial time by dynamic programming.

5.1 Absence of FPTAS

First, we show that CKP[0, π2 ] does not admit an FPTAS (a PTAS but
requires the running time to be polynomial in both input size and 1/ε),
unless P = NP.

We remark that it is known that there is no FPTAS for 2-KP (see
Kellerer et al. (2010)), which does not have direct implications for CKP.
However, our proof is an extension of the basic idea in the proof for
2-KP. As in the reduction for 2-KP, we reduce the Equipartition
problem to CKP[0, π2 ].

Theorem 5.1. There is no FPTAS for CKP[0, π2 ], unless P = NP.

Remark 5.1. By Theorems 5.1, a PTAS is among the best achievable
efficient algorithm that can be attained for CKP and OPF with discrete
demands, because FPTAS is not possible.

Proof. We define a decision version of CKP[0, π2 ] with a cardinality
objective: given {wk}k∈I , a capacity bound S and a cardinality bound
M , we determine if there is a subset of items X such that

|X| ≥M, and
∣∣∣ ∑
k∈X

sk
∣∣∣ ≤ S (5.2)

Now we map every instance of Equipartition to an instance of
the CKP[0, π2 ] decision problem that always yields the same answer.

Given {wk}k∈I from Equipartition, define

M = n/2, sR
k = wk, sI

k = β(wmax − wk), (5.3)

S =

√(W
2
)2

+ β2
(nwmax

2 − W

2
)2

(5.4)
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where W ,
∑n
k=1wk, wmax , max{wk : k ∈ I}. Note that in our

reduction, sI
k ≥ 0.

As shown in Fig. 5.1, the feasible region D for CKP[0, π2 ] is the
1
4 disk of radius S in the first quadrant. Since for any subset X ⊆ I,∑
k∈X s

I
k = β(|X| ·wmax−

∑
k∈X s

R
k ), the cardinality constraint |X| ≥ n

2
imposes all solutions to have its sum vector in the half-plane H :
νI ≥ β(nwmax

2 − νR). The dividing line of H goes through point P :(
W
2 , β(nwmax

2 − W
2 )
)
. Our main idea is to set β > 0 such that the

dividing line of H coincides with the tangent line at P . Thus we make
the intersection of H and D exactly P , which implies |X| = n

2 and∑
k∈X wj = W

2 for any solution X to our reduced CKP[0, π2 ] decision
problem instance.

Figure 5.1: Reduction of inapproximability.

On the other hand, it is clear that each subsetX satisfying conditions
of Equipartition also satisfies conditions of the reduced CKP[0, π2 ]
decision problem. Therefore, the solution of the reduced CKP[0, π2 ]
decision problem is equivalent to the solution of Equipartition.

To determine a proper β, since the dividing line of half-plane H
goes through P , it coincides with the tangent line at P if and only if
they have the same slope, i.e.,

−
W
2

β(nwmax
2 − W

2 )
= −β. (5.5)
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Solving the above equation, we obtain

β =
√

W

nwmax −W
, (5.6)

which is > 0 unless all weights are equal. In this case, we set β = 0,
and it is trivially a "yes" instance for both Equipartition and our
CKP[0, π2 ] decision problem.

So far we have shown the NP-hardness of the CKP[0, π2 ] decision
problem. So its maximization version, where |X| ≥ M is replaced
by max |X|, is NP-hard. We use the standard technique to prove the
inapproximability of the maximization version by FPTAS. Suppose that
there exists an FPTAS for any ε > 0 in time polynomial in n and 1/ε.
Then we choose ε = 1

n+1 . Let the optimal solution be F ∗ > 0 and that
of the approximation solution produced by FPTAS be FA. We obtain

FA ≥ (1− ε)F ∗ > F ∗ − F ∗

n
≥ F ∗ − 1 (5.7)

because F ∗ ≤ n. Moreover, since F ∗ is an integer, this implies that the
FPTAS can solve the problem exactly in polynomial time, contradicting
the NP-hardness of the problem.

Finally, since the maximization version of CKP[0, π2 ] decision prob-
lem is a special case of the original CKP[0, π2 ] with all uk = 1, there is
no FPTAS to CKP[0, π2 ].

5.2 Hardness of CKP

In this section, we show the hardness of CKP. The hardness depends on
the maximum angle φ at which the demands make with the positive real
axis. When φ ∈ [π2 + δ, π], we show that the problem is inapproximable
within any polynomial factor if we do not allow a violation of Cons. (2.1).
Moreover, when φ approaches π, there is no (α, β)-approximation, for
any α and β with polynomial bit length. Our hardness results indi-
cate that the approximability of the problem CKP differs depending on
maximum argument of any demand φ. This insight suggests to study dif-
ferent techniques in the later sections to achieve the best approximation
result possible for each case.
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Theorem 5.2. Unless P=NP, for any δ > 0 and δ′ > 0

(i) there is no (α, 1)-approximation for CKP[π2 +δ, π] where α, δ have
polynomial length.

(ii) there is no (α, β)-approximation for CKP[π− δ′, π], where α and
β have polynomial length, and δ′ is exponentially small in n.

Remark 5.2. In fact, these hardness results hold even if we assume that
all demands are on the real line, except one demand sm+1 such that
arg(sm+1) = π

2 + θ, for some θ ∈ [δ, π2 ] (see Fig. 5.2). Note that the
trivial approximation of picking the user with the highest feasible value
does not obtain 1

n approximation, because we allow demands to have
both positive and negative real parts, which can cancel each other.

Remark 5.3. For CKP[π − δ′, π], Theorem 5.2 shows that efficient
approximation algorithm is not possible without violating the constraint.
Hence, a resource-augmented FPTAS is the best achievable efficient
algorithm.

Remark 5.4. Theorem 5.2 also shows that assumption A4 is necessary
for PTAS of OPF with discrete demands.

Figure 5.2: The set of demands {sk} for the proof of Theorem 5.2.

Proof. We present a reduction from the (weakly) NP-hard Subset Sum
(SubSum) problem: given an instance I, a set of positive integers A ,
{a1, . . . , am} and a positive integer B, does there exist a subset of A
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that sums-up to exactly B? We assume that B is not polynomial in
m, otherwise the problem can be easily solved in polynomial time by
dynamic programming.

We construct an instance I ′ of CKP[π2 + θ, π2 + θ] for each instance
I of SubSum such that if SubSum(I) is a “yes” instance then the
optimum value of CKP[π2 +θ, π2 +θ], denoted by Opt, is at least 1; and
if SubSum(I) is a “no” instance, then Opt < α even when Cons. (2.1)
can be violated by β.

We define n , m + 1 demands: for each ak, k = 1, ...,m, define a
demand sk , ak, and an additional demand

sm+1 , −B + iB cot θ.

For all k = 1, ...,m, let valuation vk , α
m+1 , and vm+1 , 1. We let

S , B cot θ.

We prove the first direction, assuming SubSum(I) is feasible. Namely,∑m
k=1 akx̂k = B, where x̂ ∈ {0, 1}m is a solution vector of SubSum.

Construct a solution x ∈ {0, 1}m+1 of CKP such that

xk =
{
x̂k if k = 1, ...,m
1 if k = m+ 1.

In fact, this is a feasible solution that satisfies Cons. (2.1): using∑m
k=1 akx̂k −B = 0, we get(

m∑
k=1

sR
k xk + sR

m+1

)2

+
(

m∑
k=1

sI
kxk + sI

m+1

)2

=
(

m∑
k=1

sR
k xk −B

)2

+B2 cot2 θ

=B2 cot2 θ = S
2
.

Since vm+1 = 1, the total value of such solution v(x) ≥ 1, which implies
that Opt is at least 1.

Conversely, assume that Opt ≥ α. Let x? ∈ {0, 1}m+1 be an optimal
solution that may violate Cons. (2.1) by β. Since user m + 1 has
valuation vm+1 = 1, while the rest of users valuations total to less than
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α:
∑m
k=1 vk < α, user m+1 must be included in the optimum. Therefore,

substituting in Cons. (2.1) with violation at most β,(
m∑
k=1

sR
k x

?
k −B

)2

+B2 cot2 θ ≤ β2S
2

gives (
m∑
k=1

akx
?
k −B

)2

≤ β2S
2 −B2 cot2 θ

= B2 cot2 θ(β2 − 1). (5.8)

By the integrality of the ai’s,
m∑
k=1

akx
?
k = B ⇐⇒

∣∣∣ m∑
k=1

akx
?
k −B

∣∣∣ < 1 (5.9)

In other words, SubSum is feasible if and only if the absolute difference
|
∑m
k=1 akx

?
k − B| < 1. This implies, SubSum(I) is feasible when the

right-hand side of Eqn. (5.8) is strictly less than 1. When β = 1, right-
hand side of Eqn. (5.8) is zero, and we complete the second direction
and hence, the proof of part (i) of the theorem.

For large enough θ, the right-hand side of Eqn. (5.8) is strictly less
than 1:

B2 cot2 θ(β2 − 1) < 1

This implies, θ > tan−1√B2(β2 − 1). By Eqn. (5.9), SubSum is feasible
which completes the second direction and establishes part (ii) of the
theorem.

5.3 Hardness of OPF with Voltage Constraint

Theorem 5.3. Unless P=NP, there is no (α, β)-approximation for
OPFV (even when |E| = 1) by a polynomial-time algorithm in n,
for any α and β have polynomial length in n.

Remark 5.5. Theorem 5.3 shows that assumption A3 is necessary for
PTAS of OPF with discrete demands.
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Proof. The basic idea is that we show a reduction from SubSum to
OPFV. Assume that there is an (α, β)-approximation for OPFV. We con-
struct an instance I ′ of OPFV for each instance I of SubSum, such that
SubSum(I) is a “yes” instance if and only if the (α, β)-approximation
of OPFV(I ′) gives a total utility at least α. Since SubSum is NP-hard,
there exists no (α, β)-approximation for OPFV in polynomial time.
Otherwise, SubSum can be solved in polynomial time.

Given a SubSum instance I = (A,B), where A = {a1, ..., am}, we
define OPFV instance I ′ as follows.

• Consider a network with a single edge e = (0, 1). Let ze , 1 + i.

• Fix some δ > 0, set v0 in instance I ′ by

v0 ,
1

δ
2 − ε

∣∣∣m+1∑
k=1

sk
∣∣∣2, for arbitrarily small ε > 0.

Set v = v0 + δ and v = v0 − δ.

• Let N = I = {1, ...,m+ 1} be the set of customers attached to
node 1 (see Fig. 5.3). Define

Λ , max{v0 − 1
β v, βv − v0}.

For each k ∈ {1, ...,m+ 1}, define the customers’ demands and
utilities as follows.

sk , Λak, uk ,
α

m+1 sm+1 , −iΛB, um+1 , 1

Figure 5.3: A gadget for reduction from SubSum to OPFv.

First, we prove that if SubSum(I) is a “yes” instance, then the
(α, β)-approximation of OPFV(I ′) gives a total utility at least α. If
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SubSum(I) is a “yes” instance, then
∑m
k=1 akx̂k = B, where x̂ ∈ {0, 1}m

is a solution of SubSum. We construct a solution x ∈ {0, 1}m+1 for
OPFV(I ′) by

xk =
{
x̂k if k = 1, ...,m
1 if k = m+ 1

We formulate Cons. (1.23) as Se =
∑
k∈N sk + ze`e and substitute it in

Cons. (1.27) to obtain

1
2(v0 − v) ≤ Re(z∗eSe)− 1

2 |ze|
2`e ≤ 1

2(v0 − v)

Note that

1
2(v0 − v1) = Re(z∗eSe)− 1

2 |ze|
2`e

= Re(
∑
k∈N

z∗eskxk + |ze|2`e)− 1
2 |ze|

2`e

=
m+1∑
k=1

(zR
e s

R
k + zI

es
I
k)xk + 1

2 |ze|
2`e

= Λ
( m∑
k=1

akxk −Bxm+1
)

+ `e = `e,

where
∑m
k=1 akx̂k −B = 0 and |ze|2 = 2.

By Cons. (1.23) and the definition of v0, we obtain

`e = |Se|
2

v0
=

( δ2 − ε) ·
∣∣∣∑m+1

k=1 skxk
∣∣∣2∣∣∣∑m+1

k=1 sk
∣∣∣2 ≤ δ

2 − ε (5.10)

Hence,

0 ≤ v0 − v1
2 = `e ≤ δ

2 − ε <
v0 − v

2
Therefore, v ≤ v1 ≤ v0 = v and Cons. (1.27) is satisfied. Since um+1 = 1,
we have u(x) ≥ 1, and Opt is also at least 1. By the feasibility of this
solution, the (α, β)-approximation of OPFV(I ′) gives a total utility at
least α.

Conversely, assume that the (α, β)-approximation algorithm gives a
solution x ∈ {0, 1}m+1 of total utility at least α. Customer m+ 1 must
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be satisfied in this solution. Then, Cons. (1.27) with violation β implies

v0 − βv
2 ≤

m∑
k=1

Λ(akxk −B) + `e ≤
v0 − 1

β v

2

⇒− (βv − v0)
2Λ

− `e

Λ
≤

m∑
k=1

akxk −B ≤
v0 − 1

β v

2Λ
− `e

Λ

The right-hand side can be bounded by

v0 − 1
β v

2Λ
− `e

Λ
≤ 1

2 < 1

Using Eqn. (5.10), the left-hand side can be bounded by

−(βv − v0)
2Λ

− `e

Λ
≥ −1

2 −
δ
2 − ε

Λ
> −1

Since |
∑m
k=1 akxk − B| < 1, and ak, B are integers, this implies∑m

k=1 akxk −B = 0. Hence, SubSum(I) is a “yes" instance.

5.4 Hardness of OPF with Capacity Constraint

Theorem 5.4. Unless P=NP, there exists no (α, β)-approximation for
OPFC in general networks, for any α and β have polynomial length in
n, even in DC electric networks (i.e., Im(zi,j) = 0 for all (i, j) ∈ E and
Im(sk) = 0 for all k ∈ N ).

Remark 5.6. Theorem 5.4 shows that the assumption of radial network
is necessary for PTAS of OPF with discrete demands.

Proof. The basic idea is similar to that of Theorem 5.3. We consider a
DC electric network that contains a cycle.

Given a SubSum instance I = (A,B), where A = {a1, ..., am}, we
define a OPFC instance I ′ as follows. Define the customers’ demands
and utilities by

sk , ak, uk ,
α

m+1 sm+1 , B, um+1 , 1

Consider the network in Fig. 5.4 for OPFC such that all power demands
{sk}k=1,...,m are attached to node a, sm+1 is attached to b, and z0,a =
z0,b = za,b = 1.
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Figure 5.4: A gadget for reduction from SubSum to OPFC.

Denote the transmitted power, current, and resistance on edge (i, j)
by Si,j , Ii,j , zi,j respectively. Let Sa ,

∑m
k=1 skxk and Sb , sm+1xm+1

be the total demand on node a and b respectively. Without loss of
generality, assume Va ≥ Vb. By the power balance equations, we obtain

Sa = S0,a − I2
0,az0,a − Sa,b,

Sb = S0,b − I2
0,bz0,b + Sa,b − I2

a,bzz,b.

Using Ohm’s law Ii,j = Vi−Vj
zi,j

and Si,j = ViIi,j , we obtain

Sa = V0(V0 − Va)
z0,a

− (V0 − Va)2

z0,a
− Va(Va − Vb)

za,b
,

Sb = V0(V0 − Vb)
z0,b

− (V0 − Vb)2

z0,b
+ Va(Va − Vb)

za,b
− (Va − Vb)2

za,b

Note that the above equations can also obtained when Vb ≥ Va.
Since z0,a = z0,b = za,b = 1, we obtain

2V 2
a − (V0 + Vb)Va + Sa = 0

2V 2
b − (V0 + Va)Vb + Sb = 0

It follows that

Sa − Sb = 2V 2
b − 2V 2

a + V0(Va − Vb) (5.11)
= (Vb − Va)(2Vb + 2Va − V0) (5.12)
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Let x = (x1, . . . , xm+1) be a solution of the (α, β)-approximation
to OPFC, where xk indicates if power demand sk is satisfied for k ∈
{1, ...,m}, and xm+1 indicates if power demand sm+1 is satisfied. If
the total utility of x is at least α, then we necessarily have xm+1 = 1.
Considering the capacity constraints, we obtain

|Va(Va − Vb)| ≤ βSa,b,
|V0(V0 − Va)| ≤ βS0,a,

|V0(V0 − Vb)| ≤ βS0,b

Note that V0 > Va, because V0 is attached to generation. Then, we
obtain

V 2
0 − βS0,a

V0
≤ Va (5.13)

By substituting Eqn. (5.12), Eqn. (5.13) and considering V0 > Va
and V0 > Vb, we obtain

|Va(Va − Vb)| ≤ βSa,b

⇒ |Sa − Sb| ≤ βSa,b
∣∣∣2Vb + 2Va − V0

Va

∣∣∣
≤ βSa,b

3V0
Va
≤ 3βSa,bV 2

0
V 2

0 − βS0,a

Next, we set Sa,b <
V 2

0 −βS0,a
3βV 2

0
, such that

|Va(Va − Vb)| ≤ βSa,b ⇒ |Sa − Sb| =
∣∣∣∣B − m∑

k=1
akxk

∣∣∣∣ < 1

Thus, SubSum(I) is a “yes" instance.
Conversely, a feasible solution x ∈ {0, 1}m+1 satisfying

∑n
k=1 akxk−

Bxm+1 = 0, with xm+1 = 1, we can see that Sa = Sb = B. Next, we
set Va = Vb = V ′ for some positive value V ′ < V0 and S0,a = S0,b =
B + (V0 − V ′)2. This is a feasible solution (with β = 1) to OPFC(I ′),
which has utility at least 1. Thus the (α, β)-approximation returns a
solution of utility at least α.
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5.5 Hardness of Simplified OPF

Recall that sOPF is simplified OPF under the DistFlow model. Note
that since sOPF has a different model from OPF, its hardness results
cannot be directly derived from those of OPF.

Definition 5.3. For α ∈ (0, 1] and β ≥ 1, we define a bi-criteria
(α, β)-approximation to sOPF as a solution x̂ =

(
(x̂k)k∈I , (x̂k)k∈F

)
∈

{0, 1}|I| × [0, 1]|F| satisfying∣∣∣∣ ∑
k:e∈Pk

skxk

∣∣∣∣ ≤ βĈe, ∀e ∈ E (5.14)

1
β
Ve ≤

∑
k∈N

( ∑
e′∈Pk∩Pe

zR
e′s

R
k + zI

e′s
I
k

)
xk ≤ βVe, ∀e ∈ E (5.15)

such that u(x̂) ≥ αOpt.

Theorem 5.5. Unless P=NP, there is no (α, β)-approximation for
sOPFV (even when |E| = 1) by a polynomial-time algorithm in n,
for any α and β have polynomial length in n.

Proof. We present a reduction from SubSum to sOPFV. Assume that
there is an (α, β)-approximation for sOPFV. We construct an instance
I ′ of sOPFV for each instance I of SubSum, such that SubSum(I) is
a “yes” instance if and only if the (α, β)-approximation of sOPFV(I ′)
gives a total utility at least α.

We define the sOPFV instance I ′ as follows. Consider a graph
with a single edge e. Let ze , 1 + i, V = Ve and V = Ve. Define
Λ , max{− 1

βV , βV }. LetN = I = {1, ...,m+1} be the set of customers
(i.e., all having inelastic demands). For each k ∈ {1, ...,m+ 1}, define
the customers’ demands and utilities by:

sk , 2Λak, uk ,
α

m+1 sm+1 , −i2ΛB, um+1 , 1

First, we prove that if SubSum(I) is a “yes” instance, then the
(α, β)-approximation of sOPFV(I ′) gives a total utility at least α. If
SubSum(I) is a “yes” instance, then

∑m
k=1 akx̂k = B, where x̂ ∈ {0, 1}m

is a solution vector of SubSum. Construct a solution x ∈ {0, 1}m+1 of
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sOPFV such that

xk =
{
x̂k if k = 1, ...,m
1 if k = m+ 1

By
∑m
k=1 akx̂k −B = 0, we obtain
m+1∑
k=1

(zR
e s

R
k + zI

es
I
k)xk =

m∑
k=1

2Λakxk − 2ΛBxm+1

=
m∑
k=1

2Λ(akxk −Bxm+1) = 0

Therefore, (xk)k∈N is a feasible solution of sOPFV and satisfies
Eqn. (3.72). Since um+1 = 1, u(x) is at least one which implies that
Opt is also at least 1, and hence, by the feasibility of this solution, any
(α, β)-approximation gives a total utility at least α.

Conversely, assume the (α, β)-approximation gives a solution x ∈
{0, 1}m+1 of total utility at least α. Since customer m+ 1 has valuation
vm+1 = 1, while the rest of customers valuations total to less than α
(i.e.,

∑m
k=1 uk < α), customer m+ 1 must be satisfied in this solution.

Therefore, we obtain

1
β
V ≤

m∑
k=1

2Λ(akxk −B) ≤ βV (5.16)

⇒ V
2βΛ ≤

m∑
k=1

akxk −B ≤ βV
2Λ (5.17)

Since − V
2βΛ ,

βV
2Λ ≤ 1

2 < 1, and ak, B are integers, this implies∑m
k=1 akxk −B = 0. Hence, SubSum(I) is a “yes" instance.

5.6 Notes

The inapproximability results of CKP[π2 + δ, π] and CKP[π − δ′, π]
were obtained in Chau et al. (2016). It was shown in Woeginger (2000)
and Yu and Chau (2013), independently, that there exists no FPTAS
for CKP[0, π2 ]. The hardness results of OPF with voltage constraint
and discrete demands, and OPF with power capacity constraint and
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discrete demands were obtained in Khonji et al. (2018a). The hardness
results of simplified OPF were also obtained in Khonji et al. (2018a).
We note that there are other hardness results of OPF Lehmann et al.
(2016), Verma (2009), and Bienstock and Verma (2015). But there are
several differences compared to our hardness results. The results in
Lehmann et al. (2016), Verma (2009), and Bienstock and Verma (2015)
consider a different set of constraints, namely the phase angle difference
on each link is bounded by some threshold, in addition to the voltage
constraints. In our paper, we consider, either voltage constraints alone,
or power capacity constraints alone (the latter can be related to phase
angle constraints). The setting in Lehmann et al. (2016), Verma (2009),
and Bienstock and Verma (2015) with no binary variables implies that
checking feasibility is already NP-hard; on the other hand, since we
allow binary variables associated with loads in our setting, the all-zero
solution (and all voltages equal to v in case v > 0) is trivially feasible.
In this case, the non-trivial question is about optimization rather than
decision. While the results in Lehmann et al. (2016), Verma (2009),
and Bienstock and Verma (2015) show NP-hardness of (continuous)
AC feasibility, we study the discrete problem. We show hardness of
approximation, even if we allow the capacity/voltage constraints to be
violated by some multiplicative parameter β.



6
Simulation Studies

We provided analysis on the approximations ratios of our algorithms
in the previous chapters, which are the worst-case guarantees. In this
chapter, we evaluate the empirical average-case ratios by simulations. We
observe that our algorithms perform relatively well in several scenarios
which are far below the theoretical worst-case values.

6.1 Simulation Settings

To evaluate the performance of the algorithms presented in earlier
chapters, we consider a distribution network and over thousands of
users. Each user has a specific power demand (including both active
and reactive power) and a utility (or a cost) that is generated according
to a probability preference model. In a micro grid (MG), the amount of
generation is typically less than the amount of demand and thus, the
users may suffer from a reduction of generation capacity occasionally.
Various types of loads are considered including residential and indus-
trial users ranging between 300KVA to 1MVA. We also assume that
the distribution network is equipped with a two-way communication
infrastructure capable of sending the optimal load management signals

108
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(determined by the centralized controller) and allowing for user demand
and utility to be sent back to the centralized controller. The central
controller is assumed to have full control over the on/off operations of
its users.

We consider diverse case studies of various settings of power demands
by taking into account the correlation between user demand and utility
(resp. cost) considering various demand types. The following are the
settings of power demands at the users:

(i) Utility-demand correlation:

(a) Correlated setting (C): The utility of each user is a function
of the power demand:

uk = a · |sk|2 + b · |sk|+ c , (6.1)

where a > 0, b, c ≥ 0 are constants. For simplicity, uk = |sk|2
is considered in the simulation.

(b) Uncorrelated setting (U): The utility of each user is indepen-
dent of the power demand and is generated randomly from
[0, |smax(k)|]. Here smax(k) depends on the user type (as de-
fined below): if user k is an industrial user then |smax(k)| =
1MVA, otherwise |smax(k)| = 5KVA.

(ii) User types:

(a) Residential (R) users: The users are comprised of residential
users having small power demands ranging from 500VA to
5KVA.

(b) Mixed (M) users: The users are comprised of a mix of indus-
trial and residential users. Industrial users have big power
demands ranging from 300KVA up to 1MVA and constitute
no more than 20% of all users chosen at random.

In this chapter, the case studies will be represented by the afore-
mentioned acronyms. For example, the case study named CM stands
for the one with utilities-demand correlation and mixed users. The
power factor for each user varies between 0.8 to 1 (to comply with
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IEEE standards) and thus we restrict the phase angle θ of demands
to be in the range of [−36◦, 36◦]. The algorithms were implemented
using Python programming language with Scipy library for scientific
computation. In order to quantify the performance of the proposed
algorithms, Gurobi optimizer (Gurobi Optimization, 2017) is employed
to obtain the close-to-optimal solutions numerically. The following pa-
rameters were set in Gurobi optimizer: (1) the total time expended
for solving the problem was 200 seconds, (2) absolute mixed integer
programming (MIP) optimality gap (i.e., the threshold of the absolute
gap between the lower and upper objective bound) was set to zero,
and (3) infeasibility tolerance was set to 10−9. It is worth noting that
there are no guarantees that given an integer programming problem
the optimizer will return an optimal solution nor it will terminate in a
reasonable time (i.e., within 200 seconds for each run). Whenever the
optimizer exceeds the time limit, the current best solution is considered
to be optimal.

6.2 Single-capacitated AC Electric Power Systems

In this section, we evaluate the performance of GreedyRatio, presented
in Sec. 2.2. A micro grid (MG) with an overall capacity of 2MVA is
considered. The simulations were evaluated using 2 Quad core Intel
Xeon CPU E5607 2.27 GHz processors with 12 GB of RAM.

6.2.1 Optimality

In this section, we compare GreedyRatio, written as GRA for short,
with two other greedy algorithms that follow from the conventional
strategies:

1. Greedy Utility Algorithm (GUA): First, sort the users in N =
{1, ..., n} by their utilities in a non-increasing order (with arbitrary
tie-breaking), such that

u1 ≥ u2 ≥ ... ≥ un . (6.2)

Then, select the satisfiable demands sequentially from the first
user according to the order whenever feasible (i.e.

∣∣∑
k skxk

∣∣ ≤ S).
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2. Greedy Demand Algorithm (GDA): Similar to GUA, but sort the
users by the magnitudes of their demands in a non-decreasing
order, such that

|s1| ≤ |s2| ≤ ... ≤ |sn| . (6.3)

Then, select the satisfiable demands sequentially from the first
user according to the order whenever feasible (i.e.

∣∣∑
k skxk

∣∣ ≤ S).
In this subsection the proposed approaches are compared in terms of

quality of solution. The optimal solutions computed by Gurobi, denoted
by Opt, are considered to be the base case for the comparison. The
algorithms are applied to various case studies where each case study
is analyzed considering changes in the set of users. As an example,
GRA is applied 30 times for each of the m number of users (where m
varies between 100 to 1500 in steps of hundred) for case study CR (i.e.,
correlated, residential) considering random changes in demands and
utilities of users. Thus, the total number of experiments for each case
study is 450. In particular, Table 6.1 highlights the results obtained
using GRA, GUA, and GDA for the various case studies. The results in
Table 6.1 present the minimal ratio between the solutions obtained by
the proposed algorithms and Gurobi. It is worthy to note that the closer
this value is to 1, the closer is the solution to the optimum.

C U

GRA
R 0.999 0.883
M 0.921 0.568

GUA
R 0.999 0.934
M 0.921 0.403

GDA
R 0.541 0.839
M 0.002 0.262

Table 6.1: The worst-case approximation ratios of GRA, GUA, and GDA with respect
to the optimal solutions computed by Gurobi optimizer.

As can be observed from Table 6.1 when there is a utility-demand
correlation for all users, GRA and GUA obtain solutions that are very
close to the optimal Opt. Furthermore, for all the case studies GRA



112 Simulation Studies

provides the highest approximation ratio in the worst-case (worst-case
of GRA is 0.568, while that of GUA is 0.403) when compared to other
candidate algorithms. Fig. 6.1a presents the maximized utility for the
three algorithms at 95% confidence interval considering different user
set cardinality. Similarly, each point presented in Fig. 6.1a represents
the average objective value among 30 iterations. It was observed experi-
mentally that 30 iterations was sufficient for convergence of the sample
mean and variance.

It is observed that GDA performs the worst in terms of the quality of
solution. In fact, GDA performance degrades significantly as the number
of users increase when there is correlation between utilities and demands.
The reason is that GDA heuristically selects the smallest demands first
which on contrary obtain lower utility when considering a quadratic
utility function. This situation does not occur when there is no such
correlation (namely, in case studies UR and UM). For case study UR,
the observed performance of GUA is slightly better than that of GRA
when considering large user participation. This could be due to the fact
that with increasing user participation the probability of having a user
with a small utility but high utility to demand ratio increases. Unlike
GUA, GRA selects those users first thus failing to consider the users with
relatively large utilities. All algorithms can output optimal solutions
when having only few residential users, because at this scale all users’
demands are below the total capacity of 2MVA and hence can be all
satisfied (see case studies CR and UR in Fig. 6.1a).

The observed approximation ratios are plotted in Fig. 6.1b against
the number of users for each scenario. When a curve is close to the
line y = 1, it indicates a close to optimal solution. The observed
approximation ratios of GRA and GUA are approximately 1 for case
studies CR and CM for scalable number of users. As highlighted earlier,
the theoretical guarantees on the worst-case approximation ratio of
GRA is 0.475, computed using θ = 36 degrees (refer to Theorem 2.1).
Nevertheless as can be observed from Table 6.1 GRA, for the majority
of cases, can achieve almost twice higher approximation ratio compared
to the theoretical bound.
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Figure 6.1: (a) The average approximation ratios of GRA, GUA and GDA against the
number of users at 95% confidence interval. (b) The average objective values of GRA,
GUA, GDA and Opt against the number of users at 95% confidence interval.
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6.2.2 Running Time

As stated earlier a major problem with most of the available centralized
demand management schemes is the computational time. It is very
important to develop fast and efficient algorithms capable of executing
optimal decisions when considering significant user participation. Thus,
one of the key parameters utilized to evaluate the performance of the
proposed algorithm is the computational time.

In this subsection the computational time of the proposed GRA is
compared against the Gurobi solver. Computational time is of significant
importance when designing centralized controllers for MGs since this
will have implications on the stability of MG. Note that the running
time complexity of GUA and GDA is the same as that of GRA. For clarity
of presentation, however, we investigate only the running time of GRA.

The running time of GRA is compared to that of Gurobi optimizer
in Fig. 6.2. For brevity, only the results related to a case study CR
are presented in Fig. 6.2. However, it is worthy to note that nearly the
same running time was observed for GRA and Gurobi optimizer when
considering the rest case studies. The computational time reported is
the average running time over 30 iterations. As can be observed, for an
MG with roughly 600 users the centralized controller operated using
Gurobi solver will take roughly 5 seconds.
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Figure 6.2: The average running time of GRA (left) and Opt (right) against the
number of users at 95% confidence interval.

In these case studies it is expected that the MG will not be capable
of maintaining stable operation. On the contrary, for the same number



of users the computational time needed for the GRA is nearly 5 millisec-
onds. This would allow load management decisions to be made almost
instantaneously and thus allowing for the MG to stabilize.

For an MG with up to 1400 users, the GRA is capable of providing
close to optimal solutions in less than 10 milliseconds. Furthermore, it
is worthy to mention that for some cases the Gurobi optimizer did not
return an optimal solution within 200 seconds, but on the contrary GRA
can always output a solution in nearly linear time.

6.3 Constant-Sized AC Electric Power Networks

6.3.1 Maximizing OPF

We consider two electric networks: a 38-node system adopted from
(Singh et al., 2007) (see Fig. 6.3), and the de-facto IEEE 123-node
system.

Figure 6.3: A 38-node electric network for evaluation.

For the 38-node system, the settings of line impedance and maximum
capacity are provided in Table. 6.2.

In 38-node system, we assume that the generation source is attached
to node 1, whereas the power demands are randomly generated at other
37 nodes uniformly.
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The IEEE 123-node network is an unbalanced three-phase network
with several devices that are not modeled in our formulation. As in
(Gan et al., 2015), we modify the IEEE network by the following:

• The three phases are assumed to be decoupled into three identical
single phase networks.

• Closed circuit switches are modeled as shorted lines and ignore
open circuit switches.

• Transformers are modeled as lines with appropriate impedances.

We assume that the generation source is attached to the substation
(node 150), whereas the power demands are randomly generated at the
other nodes uniformly.

In order to quantify the performance of our algorithms, we use
Gurobi optimizer to obtain numerically close-to-optimal solutions for
OPF and sOPF respectively. We denote output solution for OPF
(resp., sOPF) obtained by Gurobi optimizer by Opt (resp., Opts). To
ensure the feasibility of Opts, we perform a linear search similar to
that in Algorithm 10 (see Sec. 3.4) with a small modification. Note that
there is no guarantee that the optimizer will return an optimal solution
nor it will terminate in a reasonable time (e.g., within 200 seconds for
each run). Whenever the optimizer exceeds the time limit, the current
best solution is considered to be optimal. We set the step size to be
ε = 0.005 (i.e., 0.5%) for both GreedyOPF and Opts.

The simulations were evaluated using 2 Quad core Intel Xeon CPU
E5607 2.27 GHz processors with 12 GB of RAM.

Optimality

Fig 6.4a (resp., 6.4b) presents the objective value attained by GreedyOPF
with only inelastic demands, Opt, and Opts respectively using the
38-node system (resp., the IEEE 123-node system) for up to 1500
users. Each run is repeated 40 times. The utility values attained by
Opt and Opts are almost identical in all scenarios. This is due to the
insignificance of the terms associated with transmission power loss in
OPF. We observe from the figure that GreedyOPF performs relatively
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Figure 6.4: The average objective values of GreedyOPF with inelastic demands only
against the number of users with 95% confidence interval.

better when loads are mixed between residential and industrial (CM
and UM).

We note that GreedyOPF objective does not smoothly increase in
the number of users which is due to the way users are arranged into
different groups in algorithm GreedysOPF. User utility is rounded by
the factor L which is a function of the number of users. We observe
from the figure that such rounding sometimes obtains lower utilities by
increasing the number of users.
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Figure 6.5: The average approximation ratios of GreedyOPF applied to instances
with different percentage of elastic demands, against the number of users with 95%
confidence interval.

The empirical approximation ratios for the two networks are plotted
in Fig. 6.5a and 6.5b against the number of users, along with the
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theoretical approximation ratio given by Theorem 3.11 part 1. The lines
in Fig. 6.5a (resp., 6.5b) correspond to different percentages of elastic
demands (i.e., |F||N | = 0, 0.25, 0.50, 0.75). As the percentage of elastic
demands increases, GreedyOPF consistently achieves better solutions in
all scenarios. The average empirical ratios are more than 0.4 in all cases
which is well above the theoretical worst case results. This suggests
that GreedyOPF performs relatively well in practice under difference
scenarios.
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Figure 6.6: The average loss of GreedyOPF with inelastic demands only and Opts
for the 38 node system.

To understand the transmission power loss in practice, we evaluate
the loss ratio (i.e., δ) in GreedyOPF (with inelastic demands only) and
Opts respectively for the 38-node system. The results are plotted
in Fig. 6.6. As one may expect, Opts has a higher loss percentage
since it satisfies more demands than GreedyOPF in general. We observe
that when users are all residential, GreedyOPF always obtains feasible
solutions without any reduction in link capacities (i.e., δ = 0). The
maximum loss ratio obtained is 5.5% in UM scenario for both Opts
and GreedyOPF. The ramification is that GreedyOPF can attain a good
empirical approximation ratio in practice, because the transmission
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power loss is usually small in practical electric networks.
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Figure 6.7: The average running time of GreedyDisDm and Opt for (a) the 38-node
system and (b) the IEEE 123-node system against the number of users.

One of the main goals of this work is to develop efficient algorithms
that ensure a polynomial running time. The computational time of
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GreedyDisDm is compared against the Gurobi solver. Computational
time is of significant importance when designing centralized controllers
for micro-grids since this will have implications on the overall stability.
The running time is presented in Fig. 6.7 under different scenarios for
up to 2000 users, each point is repeated 100 times.

We observe the running time of GreedyDisDm is always in millisec-
onds and linearly increases in the number of users n. On the other hand,
the running time of Opt is much higher in many cases (measured in
minuets) and has no polynomial guarantee. Throughout the simulations,
we observed many timeouts especially in scenario CR. The actual run-
ning time of Opt may substantially increase if we increase the timeout
parameter in Gurobi optimizer. The running time of Opt can be much
higher if we consider larger network topologies, whereas, linear increase
is expected for GreedyDisDm in practice. Therefore, our algorithm is
far more scalable than any known optimal algorithm. We note that the
implementation of our algorithms can be further optimized using C
programming language since the current one is based on Python that is
relatively slow.

6.3.2 Minimizing OPF

In this subsection, we evaluate PTAS-cOPF on the Bus 4 distribution
system of the Roy Billinton Test System (RBTS) (Allan et al., 1991;
Huang et al., 2017), which comprises of 13 nodes, in which the generation
source is attached to the sub-station node 0, the base power capacity of
this network is 8MVA, and the base voltage is 11KV. The evaluation was
also performed on the IEEE 123-node network, in which the generation
source is attached to node 150, and the base capacity and voltage are
5MVA and 4.16KV, respectively.

The single-line diagram and line data of the RBTS 13-node network
are presented in Fig. 6.8 and Table 6.3, respectively.

We consider the following scenarios for Cost-Demand Correlation:

(a) Correlated Setting (C): The cost objective of each user is a function
of his power demand:

hk(Re(sk)) =
(
|sk| − Re(sk)

Re(sk) |sk|
)2
.
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Figure 6.8: Single-line diagram of the RBTS 13-node electric network.

(b) Uncorrelated Setting (U): The cost objective of each user is
independent of his power demand and is generated randomly
from [0, |smax(k)|]. Here smax(k) depends on the user type. If
user k is an industrial user then |smax(k)| = 1MVA, otherwise
|smax(k)| = 5KVA. More precisely, given a random r ∈ |smax(k)|,

hk(Re(sk)) = r − Re(sk)
Re(sk)r.

As in previous sections, the case studies will be represented by the
acronyms; for example, the case study named “CM” stands for the one
with mixed users and correlated cost-demand setting. The simulations
were evaluated using Intel i7-3770 CPU 3.40GHz processor with 32GB
of RAM.

Bus R X Capacity
(p.u.) (p.u.) (p.u.)

(0, 1) 0.011636363636364 0.034380165289256 1

(1, 2) 0.026446280991736 0.158677685950413 0.125

(1, 3) 0.014545454545455 0.043636363636364 0.7625

(3, 4) 0.026446280991736 0.158677685950413 0.25

(3, 5) 0.017454545454546 0.042314049586777 0.75

(5, 6) 0.026446280991736 0.158677685950413 0.25

(5, 7) 0.011636363636364 0.03702479338843 0.75

(7, 8) 0.026446280991736 0.171900826446281 0.25

(7, 9) 0.031735537190083 0.185123966942149 0.25

(7, 10) 0.014545454545455 0.039669421487603 0.75

(10, 11) 0.013223140495868 0.161322314049587 0.25

(10, 12) 0.029090909090909 0.185123966942149 0.25

Table 6.3: Settings of line impedance and maximum capacity of the RBTS 13-node
electric network.



124 Simulation Studies

Optimality

Fig 6.9a (resp., 6.9b) presents the objective values obtained by PTAS-cOPF,
Gurobi numerical solver, and the lower bounds to the true optimal val-
ues by fractional solutions with relaxed discrete demands (i.e., setting
all xk ∈ [0, 1]) respectively using the RBTS 13-node network (resp.,
IEEE 123-node network) for up to 3500 users. Each run was evaluated
with over 40 random instances. PTAS-cOPF will terminate, when its
objective value is close to the lower bound. The objective values of
PTAS-cOPF are often close to the true optimal values. This is because
the number of fractional components in the relaxed problem P1 is often
small (see Sec. 3.3). Fig. 6.10 shows the ratio of fractional components
over 4m (where m is the number of links) is close to 10%, which stays
small when the number of users increases.

The empirical approximation ratios of PTAS-cOPF for the two net-
works are plotted in Fig. 6.11 against the number of users. We observe
that the empirical approximation ratio is close to 1.2 in most cases.
There are few instances with a larger empirical approximation ratio,
but increasing partial guessing is able to resolve this issue, still within
polynomial running time.

Running Time

The computation time of PTAS-cOPF is compared against that of Gurobi
numerical solver. The running time is plotted in Fig. 6.12 under dif-
ferent case studies for IEEE 123-node network. Although the current
implementation of PTAS-cOPF is not fully optimized, its running time is
still substantially better than that of Gurobi, and is observed to scale
linearly as the number of users. On the other hand, the running time
of Gurobi is much higher in many cases, which does not provide any
guarantee on the termination of execution, if timeout is not set. Many
instances experienced timeouts, especially for the case study UR. The
actual running time of Gurobi may substantially increase if the timeout
value is further increased.
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Figure 6.9: The average objective values of PTAS-cOPF, Gurobi numerical solver,
and fractional solutions with relaxed discrete demands (as the lower bounds to the
true optimal values), against the number of users with 95% confidence intervals.

6.4 Scheduling of AC Electric Power

In this section, we evaluate the empirical performance of CSP-PTAS,
presented in Chapter 4. For simplicity, we considered a fixed generation
capacity at 2MVA, and a scheduling horizon of 24 time steps, where
each step represents 1 hour duration. Each user k has a single preference
(|Dk| = 1) that arise at a uniformly random time step and remains for
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Figure 6.10: The ratio of fractional components after solving P1. The ‘+’ points
represent the outliers.
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Figure 6.11: The empirical approximation ratios of PTAS-cOPF for different case
studies, against the number of users.

a uniformly random duration. The simulations were evaluated using
Intel i7-3770 CPU 3.40GHz processor with 32GB of RAM.

Optimality

Fig 6.13 presents the objective values obtained by CSP-PTAS, Gurobi
numerical solver, and the upper bounds to the true optimal values
by fractional solutions with relaxed discrete demands (i.e., setting all
xk ∈ [0, 1]) for up to 3500 users. Each run was evaluated with over
40 random instances. The objective values of CSP-PTAS are often close
to the true optimal values. This is because, as in the previous section,
the number of fractional components in the relaxed problem is small.
Fig. 6.14b shows the ratio of fractional components over 48, the number
of inequality constraints in LP (see Sec. 4.2), which remains fixed as we
increase the number of users.
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Figure 6.12: The median of running times of PTAS-cOPF and Gurobi numerical
solver for different case studies in IEEE 123-node network.
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Figure 6.13: The average objective values of CSP-PTAS, Gurobi numerical solver,
and fractional solutions with relaxed discrete demands (as upper bounds to the true
optimal values), against the number of users with 95% confidence intervals.

The empirical approximation ratios of CSP-PTAS is plotted in Fig. 6.14a
against the number of users. We observe that the empirical approxima-
tion ratio is close to optimal in most cases.
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Figure 6.14: (a) The empirical approximation ratios of CSP-PTAS for different case
studies, against the number of users; and (b) The ratio of fractional components
after solving LP.
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Figure 6.15: The median of running times of CSP-PTAS and Gurobi numerical solver
for different case studies.

The computation time of CSP-PTAS is compared against that of
Gurobi numerical solver. The running time is plotted in Fig. 6.15
Although the current implementation of CSP-PTAS is not fully optimized,
its running time is still substantially better than that of Gurobi, and is
observed to scale linearly as the number of users. On the other hand,
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the running time of Gurobi is much higher in many cases, which does
not provide any guarantee on the termination of execution, if timeout
is not set. Many instances experienced timeouts, especially for the case
study UR.

6.5 Notes

The simulation results for the single link case, algorithm GreedyRatio,
was presented in (Karapetyan et al., 2018). For constant-sized network,
the simulations for algorithm GreedyOPF was presented in (Khonji et
al., 2018a), while PTAS-cOPFs presented in (Khonji et al., 2017). We
observed that the performance of Gurobi solver for the OPF problem,
both in terms of optimality and running time, is improved when the
problem is modeled using the tree formulation for OPF (see Sec. 3.1.2).
In many occasions when using the original recursive formulation, Gurobi
optimizer fails to return feasible solution.



7
Future Directions and Conclusion

This monograph presented a study of combinatorial OPF with dis-
crete demands, covering basic single-capacitated AC electric power
systems, constant-sized AC electric grid networks with power flows, and
scheduling of AC electric power. Our goal is to bridge power systems
engineering and theoretical computer science, establishing a foundation
for advancing the frontiers of both communities.

It is believed that such a bridge between power systems engineering
and theoretical computer science will not be a short-lived endeavor.
In fact, there are many open possibilities for further impactful results,
based on the foundation laid in this monograph. In the following, we
outline several extensions for future work.

7.1 Scalable Algorithms for Large Power Networks

In Chapter 3, we have given approximation algorithms for OPF with
discrete demands, assuming a radial network with a fixed number of
buses. While the hardness results in Chapter 5 show that is unlikely
that (efficient) approximation algorithms can be obtained for general
networks, it remains an interesting question whether the assumption

130



7.2. Online Algorithms 131

on the network size can be dropped, assuming a tree network. Pre-
liminary results indicate that this is indeed the case: a QPTAS for
line networks with scalable network size is obtained in Elbassioni et al.
(2017). Extending this work to general tree networks, under (some of)
the assumptions in Section 3.1.1 is an interesting direction for future
research. The main idea, as in Elbassioni et al. (2017), would be to
relate the OPF problem on radial networks to the UFP problem on
trees, via Corollary 3.7, and extend known techniques for UFP on trees
such as the ones in Anagnostopoulos et al. (2013), Chekuri et al. (2009),
and Chekuri et al. (2007).

7.2 Online Algorithms

Today’s smart grid requires timely control decision-making in dynamic
environments, while ensuring the robustness of electric networks. There
is a high probability that a microgrid once operating in isolated mode
will be short of power. This is specially the case when the microgrid
encompasses a hybrid mix of traditional and renewable energy supplies
that could collectively have a variable (depending on the availability of
renewable energy and storage available) yet dispatchable capacity. This
induces time-varying generation capacity. Constrained by the generation
fluctuating over time, it will be required to make binary control decisions
in real time so as to maximize the total utility of satisfied customers.
Another interesting scenario is when the customers demands are not
known in advance but are revealed one at a time. At each time step,
the so-called online algorithm has to make irreversible decisions so as to
satisfy the system’s constraints while keeping the objective function as
close as possible to the one produced by an algorithm that foresees all
the future input. The typical framework to address this type of problems
is through competitive analysis, where the performance of an online
algorithm is compared to that of the best offline algorithm. A general
primal-dual framework for developing competitive online algorithms for
binary packing problems Buchbinder and Naor (2009) can be extended
to solve the scheduling problem studied in Chapter 4; see Karapetyan
et al. (2017). Extensions of these results to the more general OPF
problem on trees is an interesting research direction.
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7.3 Truthful Mechanisms

Future smart grids will be automated by agents representing individual
users. Hence, one might expect these agents to be self-interested and may
untruthfully report their valuations or demands. This motivates us to
consider truthful (aka. incentive-compatible) approximation mechanisms,
in which it is in the best interest of the agents to report their true
parameters. In Yu and Chau (2013) a monotone 1/2-approximation
algorithm that induces a deterministic truthful mechanism was devised
for the CKP problem, which, however, assumes that all complex-valued
demands lie in the positive quadrant. In Chau et al. (2016), a more
complete study of truthful mechanisms for CKP was given: a truthful
PTAS for the case φ ∈ [0, π2 − δ], and a truthful resources augmented
FPTAS for the case φ ∈ (π2 , π−δ], where φ is the maximum argument of
any complex-valued demand and ε, δ > 0 are arbitrarily small constants.
Extension of these results to the OPF problem on trees is an interesting
research direction. More specifically, in Corollary 3.7, we have shown
how to use an LP-rounding approximation algorithm for a generalization
of the unsplittable flow problem, to obtain an approximation algorithm
for OPF. Based on this result and the approach in Lavi and Swamy
(2011), it seems plausible that one might be able to obtain a truthful-in-
expectation mechanism for OPF on trees, if an LP-based approximation
algorithm can be developed for the same problem.

7.4 Efficient Algorithms for SOCP Relaxation of OPF

General convex programming solvers are typically computationally
expensive and do not use the special structure of cOPF. Recently, more
efficient first-order methods have been applied successfully to a number
of special convex optimization problems (see e.g., Arora et al. (2012)
and M.D. Grigoriadis and Villavicencio (2001)), and more specifically to
a class of second-order cone programs Elbassioni et al. (2016). It would
be interesting to study the extension of these and similar methods for
solving the SOCP relaxation of OPF.
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