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Abstract. In this paper, we propose a color to grayscale image conver-
sion algorithm (C2G) that aims to preserve the perceptual properties of
the color image as much as possible. To this end, we propose measures for
two perceptual properties based on contemporary research in vision sci-
ence: brightness and multi-scale contrast. The brightness measurement
is based on the idea that the brightness of a grayscale image will affect
the perception of the probability of color information. The color contrast
measurement is based on the idea that the contrast of a given pixel to its
surroundings can be measured as a linear combination of color contrast
at different scales. Based on these measures we propose a graph based
optimization framework to balance the brightness and contrast measure-
ments. To solve the optimization, an `1-norm based method is provided
which converts color discontinuities to brightness discontinuities. To val-
idate our methods, we evaluate against the existing Ĉad́ık and Color250
datasets, and against NeoColor, a new dataset that improves over ex-
isting C2G datasets. NeoColor contains around 300 images from typi-
cal C2G scenarios, including: commercial photograph, printing, books,
magazines, masterpiece artworks and computer designed graphics. We
show improvements in metrics of performance, and further through a
user study, we validate the performance of both the algorithm and the
metric.

1 Introduction

Color images are frequently presented in grayscale. This is common with digital
ink displays and grayscale-only printing, but synthesizing a consistent grayscale
image is also important for color blindness, and for prosthetic vision devices such
as retinal implants[1] and sensory substitution devices [2] which mostly convey
brightness only. One may also wish to present color information in grayscale as
part of a virtual or augmented reality application. Such conversion is sometimes
considered in image processing tasks such as tone-mapping and compression. For
these reasons converting color images to grayscale images (C2G) has attracted
a stream of research attention (e.g., [3–5]).

Despite its common usage, C2G is non-trivial. Normal human vision perceives
color with three peak spectral sensitivities [6]. Hence, perceivable color-space is
homogeneous to R3, whereas gray-scale space is homogeneous to R. Standard
displays present an image in a smaller discrete range though dynamic range and
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Impression Sunrise Fog? Moonlight? Sunrise?

Fig. 1. Converting Claude Monet’s masterpiece ”Impression Sunrise” to grayscale.
A conversion without considering the color contrast will change the feeling to haze or
fog while a conversion without considering the brightness will change the feeling to
moonlight.

quantization restrictions. Perception is restricted further by human observers’
ability to perceive brightness and color difference [7]. However, as perception of
the presented grayscale image is also restricted, it is inevitable that information
loss will occur in C2G.

More importantly, grayscale space has strong perceptual meaning. Simply
quantizing the 3D signal and presenting it as a 1D signal often will not lead to a
grayscale image that is perceptually consistent with the original color image . An
example is shown in Fig. 1, Claude Monet’s masterpiece ”Impression Sunrise”,
which is included in Ĉad́ık dataset [8] and has been actively used for validating
C2G algorithms. As can be seen, while the original color image gives the feeling
of sunrise, that feeling can easily be lost in conversion to grayscale. A direct
grayscale conversion without considering color contrast can change the feeling of
the image to fog or haze. On the other hand, strongly enhancing contrast while
allowing the brightness to change aggressively can change the feeling of the image
to moonlight. Further, some representations of color can lead to an impression
of the scene where the appearance is not natural. For example, consider the
first row of Fig. 8, where as a result of methods that emphasize contrast over
perceptual consistency, orange juice may appear black.

Another important consideration is that ”contrast” is a relative concept that
is highly reliant on context. A famous example is the shadow illusion by Edward
Adelson et al.[9]. While earlier research in C2G focused more on contrast in color
space, current research considers spatial context. However, perceiving spatial
context is rather complex. Thus, a perceptional consistent contrast model is
desired.

In this paper, we propose a C2G algorithm which aims to preserve percep-
tual consistency as much as possible. To this end, we propose two perceptual
consistency measurements based on contemporary research in vision science:
brightness and multi-scale contrast measurement. The brightness measurement
is based on the idea that brightness in a grayscale image does affect the percep-
tion of the probability of color information. The color contrast measurement is
based on the finding that the contrast of a given pixel to its surroundings can
be measured as a linear combination of color contrast in different scales. Based
on these measures, we propose graphical model based optimization framework
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to balance the brightness and contrast measurement. To solve the optimization,
an `1-norm based method is provided.

To validate our methods, we also propose a new dataset, called NeoColor,
that improves on existing datasets. The Ĉad́ık dataset [8] has only 24 images.
Further, the Color 250 dataset [10] is a subset of Berkeley segmentation dataset
which was not designed to evaluate C2G algorithms. For NeoColor, we collect
about 300 images from typical C2G scenarios including: natural scenes from
commercial printing, books, magazines, masterpiece artworks, and computer de-
signed graphics.

The contribution of our work is three-fold. Firstly, we propose a rationale
for perceptual consistency of C2G algorithms. Based on perceptual consistency,
we propose brightness and multi-scale color contrast measurements. Secondly,
we propose an efficient algorithm for C2G which best preserves the perceptual
consistency measurement. Thirdly, a new dataset which is specially designed
for C2G evaluation is provided to address some shortcomings of the Ĉad́ık and
Color250 datasets.

The rest of the paper is organized as follows: Section 2 summarizes related
work on C2G. In Section 3, we discuss key aspects of human perception. Based
on this, in Section 4, the perceptual consistency C2G algorithm is described.
Section 5 demonstrates the effectiveness of the proposed method using both
automatic evaluation and a user study. Section 6 concludes the paper.

2 Related Work

Existing C2G research can be categorized as global and local methods. Generally,
global methods seek a global mapping for each color value to an intensity value,
aiming to maximize the overall contrast, whereas local methods enhance spatially
local contrast.

Global methods: Bala et al.[3] start with an image with a limited number of col-
ors, the colors are sorted and brightness values are assigned accordingly. Gooch
et al.[4] considered brightness variation according to hue, the orientation of the
hue-ring was determined by maximizing the global contrast. Kim et al.[11] ex-
tended Gooch et al.’s method: variation from the hue-ring is represented by a
Fourier series instead of the original linear mapping. Ancunti et al.[12] also ex-
tended the method of Gooch et al., so that salient and non-salient areas have
different hue-ring variation. A user study was also included to evaluate the ef-
fectiveness.

Rosche et al.[13, 14] sought a continuous global mapping to assign similar
colors to similar grayscale values, using pair-wise comparison between sampled
colors. Using the same framework, Grundland et al.[15] improved the computa-
tional efficiency by using PCA to find the 1D component that maximizes con-
trast.

In more recent work, spatial context has been taken in consideration for
global methods. Kuk et al.[16] proposed method to find landmark colors though
K-means. Adopting similar strategy for spatial context, Lu et al.[17, 10] proposed
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a bimodal contrast preserving energy function, along with local and non-local
constraints. An evaluation metric and dataset were also introduced to automat-
ically evaluate C2G algorithms. Ji et al.[18] proposed a hybrid method where
color mapping is performance by modulating the hue ring and edges are sharp-
ened by bandpass filtering. Yoo et al.[5] considered video C2G instead of single
image C2G. They clustered the image sequence in spatio-temporal space to a
1D manifold, and assigned brightness accordingly.
Local methods: Bala et al.[19] proposed high pass filtering the color image to
strengthen local contrast when converting to grayscale. Subsequently, Smith
et al.[20] presented a method to pre-assign color variation based on vision science
studies, and applied the variation to enhance local contrast. In recent work, Liu
et al.[21] proposed an enhancement which preserves gradient, while attenuat-
ing the halo between inconsistent boundaries and local method of Du et al.[22]
emphasised color contrast in salient areas.

Existing methods focus on best preserving contrast. However, inadequate
focus has been given to ensuring that the image is consistent with human per-
ception.

3 Human Perception of Color and Measurement

Modeling human perception of color in an algorithm is not trivial. It relies not
only on physical modeling of object luminance and spectrum, but also on studies
of human visual perception. Before we introduce our algorithm, which aims to
produce a grayscale image that is consistent with human perception of the orig-
inal color image, in this section, we discuss the factors that affect human color
perception. We first introduce the basic concepts in color space and our nota-
tion. In Sec. 3.1 we discuss the perception of color brightness with a probability
model, and introduce an energy function to model brightness perception. Then,
in Sec. 3.2 we discuss perception of color contrast in complex spatial contexts
and introduce an energy function to model complex color contrast perception.

Background and notation
Color space: Since Young-Helmholz theory in the mid-1800s, it has been gener-
ally agreed that human perception of color is within a three dimensional space
[23–26, 7, 27, 28]. In images, this can be represented in several common color
spaces, e.g., RGB, HSL, YUV, CIEL*a*b*. Because CIE-LAB preserves the per-
ceived difference between colors, in this paper, we will use Euclidean distance
in L*a*b* space as the contrast metric, which is common practice for recent
C2G research [10, 22, 29, 21]. Figure 2.a is an illustration of the CIEL*a*b* color
space: a spherical space where lightness l varies from 0 for black to 100 for white.
a varies from 100 for red to -100 for green; and b varies from 100 for yellow to
-100 for blue.

Notation: Notation is listed in Table 1, for the convenience of the reader. Specif-
ically, we denote the color channels of a pixel as l, a, b respectively and the
targeted grayscale value as g. We use lower case for a single pixel, capitalized
letter for image matrix and bold lower case for vectors.
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Table 1. Notation

Symbols Single pixel Image Matrix Image Vector

CIEL*a*b* Lightness 𝑙 𝐿 =
𝑙11 ⋯ 𝑙1𝑚
⋮ ⋱ ⋮
𝑙𝑛1 ⋯ 𝑙𝑛𝑚

𝒍 = ⋯ 𝑙𝑖∗𝑚+𝑗⋯
𝑇

CIEL*a*b* a-channel 𝑎 𝐴 𝒂

CIEL*a*b* b-channel 𝑏 𝐵 𝒃

Grayscale image 𝑔 𝐺 𝒈

Color variance 𝑣 = 𝑎2 + 𝑏2 𝑣 𝑉 𝒗

(a) (b) (c)

Fig. 2. Color variance as function of brightness.
(a) The CIE L*a*b* color space. (b) A color slice in L*a*b* space with high, middle,
low brightness. A high/low brightness color does not give same level of color contrast
as mid-brightness color. (c) Desaturated slice of (b), a high/low brighness indicates a
small color variation, while middle brightness indicates a large range for color variation.

3.1 Perception of Color Brightness and Perception Measurement

Color as function of brightness: As can be inferred from L*a*b* color space,
color components with very low or very high brightness do not provide the same
level of color variance as those with mid brightness levels. We show a simple
example in Fig. 2.

Unlike previous C2G, especially global methods, [10, 15], where brightness is
considered to be independent of color, we consider brightness as an importance
cue for indicating color. As we presented in Fig. 2, although brightness does not
allow us to infer the a, b value of a color, it does allow us to infer the possibility
of color. This is important for generating a grayscale image that preserves the
perceivable feeling of color.

Here we discuss the possibility of infereing color a, b as function of brightness
l. Using the metric in CIEL*a*b* space, a color (l, a, b) with brightness l ∈
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[0, 100] has a color variance, denoted as v, limited in the spherical color space:

v =‖ (a(l), b(l)) ‖2≤
√

1002 − 4 ∗ (l − 50)2, (1)

Assuming a uniform distribution of color in CIEL*a*b* space, the partial prob-
ability of v by l is:1

p(v = ṽ|l) ∝ ṽ
√

1002 − 4 ∗ (l − 50)2,

0 ≤ ṽ ≤
√

1002 − 4 ∗ (l − 50)2.
(2)

and similarly:

p(l = l̃|v) =
2√

1002 − v2
,

50−
√

1002 − v2
2

< l̃ < +

√
1002 − v2

2
.

(3)

As can be seen, a color with a large v value is less likely to have a large
variance in l, whereas a color with large l is less likely to have a large variance
in v.

Brightness Perceptual Energy Considering Eq. (2) and Eq. (3), we define the
brightness perceptual energy for inconsistent brightness between the color and
grayscale image as:

EB(g) = w(l, a, b) ‖ l − g ‖`

=
1√

1002 − a2 − b2 + ε

1√
1002 − (2l − 100)2 + ε

‖ l − g ‖`,
(4)

where ε is a small constant regulator. Generally, when the brightness in a color
image l is not mapped to same grayscale value g, error energy increases. The error
energy is reweighted by w which penalizes color with large variance v (because
high probablity color is not sensed); and color with high or low brightness l
(because low probablity of color is not sensed).

3.2 Perception of Multi-Scale Spatial Contrast and Measurement

In the previous subsection, we assume that the two areas of color appear close
together spatially, and color contrast is only evaluated between the two. Much
of the existing C2G research is based on such an assumption. However, color
contrast is not absolute, but depends on spatial context. In this section, we start
by considering pairwise color contrast and simple spatial context. Specifically,
we introduce the Campbell-Robson curve, [23, 30]. Based on this, we introduce
perception of complex spatial contrast, specifically considering recent research
from vision science [25, 26]. Finally, we study the perception complex spatial
color contrast as it appears in many real images.

1 We use proportion instead of equal mark and neglect a constant for normalization.
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Fig. 3. Campbell-Robson curve.
Left, the original Campbell-Robson curve, brightness contrast sensitivity is a function
of spatial frequency. Middle, Campbell-Robson curve on single color. We assume color
brightness contrast follows the same curve. Right, curve on hue ring, the color hue
contrast follows the same curve.

Fig. 4. The Haun-Peli curve for perceiving complex contrast [26]. Left, two gray scale
images with difference combinations of intensity of spatial frequency component. Users
are asked to choose the one with higher contrast. Right, statistics of importance of
different frequency components for the overall perceived contrast.

Peception of simple spatial contrast: As illustrated in Fig. 3.a, the Campbell-
Robson curve demonstrates that the perception of contrast is a function of spatial
frequency. Specifically, human perception of contrast is most sensitive at 1-2
cycles per degree (cpd). The sensitivity drops for spatial frequency above and
below the peak.

The Campbell-Robson study is only of luminance contrast. No equivalent
study is available for the perception of color contrast. Although in practice,
colour contrast is likely to exhibit spatial sensitivities that differ from luminance
contrast, we take the simplest assumption that the perception of color contrast
follows the same curve. This is shown in Fig. 3.b for the perceptional sensitivity
of color-brightness contrast with respect to spatial frequency, and in Fig. 3.c, for
the perception of hue contrast. Our subsequent algorithm could be adapted if
curves like that Campbell-Robson became available for color contrasat. Thus,

Assumption 1 the perception of color contrast (Brightness, Hue, Saturation)
with respect to spatial frequency follows the same Campbell-Robson curve.

Perception of complex spatial contrast: However, the spatial contrast of a natural
image is often far more complex that the Campbell-Robson pattern. According
to Haun et al.[26], human perception of complex contrast follows a linear of
combination of different spatial frequencies. In Fig. 4, we include a typical result
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5. Complex color contrast. (a) Color image, (b) b channel of L*a*b* spece. (c - g)
contrast in different scale, using DoG filter. (h) Combined complex contrast according
to Haun-Peli curve.

of such a combination. Note that the coefficients for such a combination need
not all be positive.

Perception of complex spatial color contrast: Unfortunately, no systematic vision
science model is available for complex color contrast. Therefore, here again, we
make an assumption that the perception of complex brightness contrast can be
extended to complex color contrast:

Assumption 2 the perception of complex color contrast with respect to spatial
frequency follows the same Haun-Peli curve.

Complex Color Contrast Consistency Measurement: According to the above as-
sumptions, we introduce the Brightness Contrast Measurement. For a single
channel (grayscale) image the complex contrast is defined as:

c(G) =
∑

βiki ∗G, (5)

where ki is the Difference of Gaussian (DoG) Kernel at scale 2i:

ki(j, k) =
1

2π22i
e−

j2+k2

22i − 1

2π22(i+1)
e
− 1

2
k2+k2

22(i+1) . (6)

βi are the coefficients derived from the Haun-Peli curve. For example, a screen
with 72 dots per inch (dpi), and viewed from 60cm away.

β1 = −4, β2 = 1, β3 = 4, β4 = 4, β5 = 1, β6 = −2. (7)

When varying the dpi or the viewing distance, the scale by pixels shifts propor-
tionally. Figure 5 shows an example of the contrast at different scales and the
combined complex contrast.

We define the complex contrast for the color channels similarly and denote
them as c(L), c(A), c(B). The contrast measure is defined as:

Ec(G) = αL ‖ c(L)−c(G) ‖` +αAB ‖ c(A)−c(G) ‖` +αAB ‖ c(B)−c(G) ‖`, (8)

where αL, αAB balances the importance between different channels. As can be
seen, the contrast energy functions has three terms that represent the contrast
lost for the l, a, b channels respectively. Note that the contrast loss for the a, b
channels are directional, this is because we incorporate the understanding of
human vision that the brightness of same color is not always perceived in the
same way [31].
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4 Methodology

In this section, we introduce a graphical model based method which aims to find
a gray-scale image which best fits the brightness perceptual consistency as well
as the contrast consistency.

Objective Function Combining Eq. (4) and Eq. (8), the proposed objective func-
tion seeks the gray-scale image G that optimizes the trade-off between brightness
consistency and contrast:

E(G) = EB(G) + EC(G) (9)

Similarly, Eq. (9) can be represented as linear system:

E(g) = EB(d) + EC(g)

=‖ Λ(w)(l− g) ‖`
+ αL ‖ Cl− Cg ‖` +αAB ‖ Ca− Cg ‖` +αAB ‖ Cb− Cg ‖`,

(10)

where the bold letters are the vectorized representation of the image matrix.
C is the complex contrast operator in matrix form. Λ converts the coefficients
array w to a diagonal matrix. A typical choise of channel importance is αL =
0.5, αAB = 1.5. We will fix such setting for all the experiments.

`2-norm Solution: When ` = 2, Eq. (10) takes a quadratic form, which is mini-
mized when:

∂E(g)

∂g
= 0

= −Λ(w)(l− g)

− αLC
>(Cl− Cg)− αABC

>(Ca− Cg)− αABC
>(Cb− Cg),

(11)

This can be written as:
Mg = u, (12)

where:
M = Λ(w) + (αL + 2αAB)C>C, (13)

and
u = Λ(w)l + αLC

>Cl + αABC
>Ca + αABC

>Cb. (14)
Notice that M is invertable because:
1. Λ(w) is a positive definite diagonal matrix.
2. C>C is semi-positive definite.
3. αL, αAB are positive.
1, 2, 3 together infer that M is a positive-definite symmetric matrix and is

thus invertable [32]. Therefore, the grayscale image is found by:

g = M−1u. (15)

`1-norm Solution: It is well known that `2 norm based objective functions tend
to over-smooth boundaries, this problem is significant for color-to-gray conver-
sion. This is because a grayscale image is intended to preserve opposing terms:
brightness and multi-channel color contrast. Unfortunately, it is unlikely to find
a solution to suit the contrast for all three channels simultaneously. The `1 solu-
tion allows us to neglect a relatively insignificant channel and strongly emphasize
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CIE Y Proposed Gooch 05 Grundland 07 Lu 14Brightness Du15

Fig. 6. Visual results on Ĉad́ık dataset. (Optimized for A4 paper viewed from 40cm
away).

the contrast of a more significant channel. In addition we take advantage of us-
ing `1 where discontinuity at boundaries is implicitly handled in the graphical
model.

To solve the `1 objective function, we use the Iteratively Re-weighted Least
Square method [33]. For i-th iteration, we solve a reweighted least square problem
of Eq. (10):

minE(gi) = minΛ(qi)[EB(d) + EC(gi)], (16)

where the weight is defined as:
qi+1 =

1

|ri|+ 1
, (17)

w0 is set to 1 for all the pixels, and r is the residual of each iteration:

ri = Λ(qi)[|Λ(w)(l−gi)|+αL|Cl−Cgi|+αAB |Ca−Cgi|+αAB |Cb−Cgi|]. (18)

Speedup: Constructing the complex contrast matrix C will yield a large dense
matrix with N2 elements where N is the number of pixels, as a large scale DoG
compares the difference over a large range. Fortunately, we find that the blurring
matrix C can be pre-computed using decomposition of the Gaussian kernel and
the construction of an image pyramid. Details of the speedup can be found in
the supplementary material.

5 Experiments

We validate the proposed method systematically. We compare it with methods
for which code are available, on existing datasets as well as the new proposed
dataset. We evaluate qualitative performance, as well as performance with re-
spect to metrics. Further, we include a user study to validate the method and
the proposed metric.
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CIE Y Proposed Gooch 05 Grundland 07 Lu 14Color Du14

Fig. 7. Visual results on Color250 dataset. (Optimized for A4 paper viewed from 40cm
away).

5.1 Datasets

Ĉad́ık [8] is the earliest dataset for C2G evaluation, which contains 25 highly
saturated images. The contents varies from geometric pattern to real scenes. Be-
cause the Ĉad́ık dataset has only 25 images, as is common practice, we evaluate
the performance on the Color250 dataset[10]. This data set is a subset of the
2001 Berkeley Segmentation Dataset [34]. CSDD [22] contains 22 highly satu-
rated and fully chromatic geometric patterns. Because the number of images is
limited and no natural image are included, we do not use it in our evaluation.
However, we include the results on the CSDD dataset in the supplementary
material.

NeoColor The Berkeley Segmentation Dataset was designed for evaluating seg-
mentation performance rather than evaluating C2G algorithms. Images in the
dataset tend to have strong contrast on object boundaries, only contain a limited
number of segments with different colors, and the contents are relatively simple.
On the other hand, C2G algorithms must be able to deal with more complex
images that frequently arise.

To fully evaluate the performance of C2G algorithms, we have collected high
quality digital images of natural scenes, advertisements, computer graphic de-
signs as well as fine art. We consider that this new dataset, NeoColor, extends
upon the existing datasets by including images of greater color complexity. A full
collection of the dataset appears in the supplementary material. Some examples
are shown in Fig. 8.

5.2 Evaluation metric

We evaluate our methods using EScore proposed by Lu et al.[10] which has a
joint evaluation between color contrast preservation and color fidelity. However,
the metric emphasizes preservation of high contrast, and measurement of spatial
contrast preservation is based on random sampling which does not fully reflect
the concept on visual perception preservation. The QScore Ma et al.[29], has
better quantization for color contrast measurement, however, scale dependent
contrast is not emphasized.
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CIE Y Proposed Gooch 05 Grundland 07 Lu 14Color Du 15

Fig. 8. Visual results on NeoColor dataset. (Optimized for A4 paper viewed from 40cm
away).
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NeoColorColor250Cadik
Fig. 9. Quantitative evaluation using the EScore [10].

The y-axis the Escore, where as the x-axis the contrast threshold level.

Visual Perception Metric (PScore) Because both metrics focus more on contrast
preservation rather than the overall perception of color, we provide further eval-
uation using the proposed perceptually consistent color energy function Eq. (9).
For a fair comparison, we weight all scales of contrast preservation separately,
we set βi = 1 (Eq. (5)) for the evaluated scale and rest as 0.

5.3 Results

We compare with classic methods of Gooch et al.[4] and Grundland et al.[15] as
well as the state-of-the-art methods of Lu et al.[10] and Du et al.[22]. We use
the default setting for all the datasets. For our method, scale is set to optimize
contrast for A4 paper viewed from 40cm away, and all parameters are fixed for
all the experiments. Code is not available2 for the methods of Liu et al.[21]
and Ji et al.[18] and thus they are not evaluated. We report both visual and
quantitative results.

Visual results Visual results on the Ĉad́ık dataset, the Color250 dataset and
NeoColor dataset are shown in Fig. 6, Fig. 7 and Fig. 8 respectively. A full
collection of the results can be found in the supplementary material.

As can be seen, methods that do not consider perceptual consistency are
likely to produce strong contrast but unnatural images. For example in Fig. 8,
black orange juice, a rainbow with black and white stripes, and a black sun
in a sunset image, all lose their natural impression. Further, the impressionist
painting ”Lotus” which now has more emphasis on weeds has lost the original
feeling of the image, and the intention of the artist. On the contrary, the proposed
methods allows a reasonable sense of color contrast as well as the original feeling
of the images.

Quantitative results: Quantitative evaluation using the E-score is shown in Fig. 9,
a higher curve indicates better performance. As can be seen, the Ĉad́ık dataset
is not large enough to produce a smooth curve. On the Color250 dataset, our
method performs well on contrast in the range 0-20 (where total black to white
was a scale of 100).

The Q-score proposed by Ma et al.[29] is shown in Fig. 10. Whereas the
evaluation for most C2G algorithms was reasonable, CIE Y which does not
consider color contrast is evaluated as the best on all the datasets.
2 Not available on webpage as well as through email contact
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Fig. 10. Quantitative evaluation using the QScore [29]. Higher score is better. Average
score and standard variance is shown.

NeoColorColor250Cadik

Fig. 11. Quantitative evaluation using proposed PScore. The y-axis is the PScore. The

x-axis represents the natural contrast preservation at scale 2
i+2
2 pixels.

Results for consistency (P-Score) are shown in Fig. 11. Again, a higher curve
shows better performance. The x-axis represents contrast preservation at scale

2
i+2
2 pixels. We plot the contrast preservation for different scales. As can be

seen, the proposed method best preserves the color contrast at the scale which
is most sensitive for perception. Whereas for the scales which are less contribu-
tive to overall contrast, the proposed method has lower contrast preservation in
comparing with other methods. The ordering is accordance with the feeling on
visual results.

5.4 User Study

Ten volunteers (aged 22-41) with normal or corrected-to-normal vision took part,
with data collection in March 2016. Written consent was obtained from partic-
ipants before they began the experiment. The research was approved by the
institution removed Ethics Committee, and adhered to the tenets of the Decla-
ration of Helsinki.

Considering the complexity of the task, four methods were compared: the
proposed, CIE Y (as a widely used method), Lu et al.(as the state-of-the-art),
Grundland et al.(as reported relatively worse from the quantitative metric). Par-
ticipants were masked to the algorithm. The color image was presented in the
middle of the screen, with a white background, and the four grayscale images
presented at identical distances from the original image. Please refer to supple-
mentary material for screen layout and experimental details. We selected 50 hard
images from Color250, and 200 images from NeoColor, excluding more difficult
images. Then, 150 images were randomly selected from these subsets with a 30%
selection probability from Color250 and a 70% probability from NeoColor. Each
user was shown these images in random order, and placement of the grayscale
images was randomly assigned for each trial.
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C2G Method Rank 1 Rank 2 Rank 3 Rank 4

Proposed 368 (31.3) 390 (33.2) 319 (27.1) 98 (8.3)

CIE Y 456 (38.8) 425 (36.2) 241 (20.5) 53 (4.5)

Lu 14 271 (23.1) 289 (24.6) 462 (39.3) 153 (13.0)

Grundland 07 80 (6.8) 71 (6.0) 153 (13.0) 871 (74.1)

0

0.5

1

Proposed CIE Y Lu Grundland

Rank 1 Rank 2 Rank 3 Rank 4

Fig. 12. User preference on C2G algorithms.
Left, statics of users’ ranking by number of choices. Parenthesis list the percentage.
Right, ranking frequency distribution of all the methods.

Participants were required to rank the grayscale images from best (1) to
worst (4) according to the instruction: “Which black-and-white image best rep-
resents the original color image”. When answering, the participants were asked
to consider: which grayscale image best retains the contrast between colors of the
original color image; and, which grayscale image best retains the overall sense or
feeling of the original color image. The chance rate of ranking a image as ”best”
(1 and 2) representation of the color image was 50%, and 75% was the crite-
rion set as a benchmark as a reliable grayscale representation of the color image
(i.e., participants ranking a Color2Gray vision processing method “1” or “2” for
75% of the trials). Descriptive analyses were used to characterize the counts and
percentages of responses. Comparisons between participants and color-to-gray
methods for the average rankings of the preferred images were calculated using
non-parametric statistics (e.g., Kruskal-Wallis H test). Windows SPSS v23 (IBM
Corporation, Somers, NY) was used for all statistical analyses.

Results: The data for ten participants was pooled for further analyses as there
was no significant difference in overall preferences between participants (p <
1.00). Overall preference is shown in Fig. 12. Our proposed C2G method was
ranked as a significantly (p < 0.0001) better representation of the original color
images compared to the Grundland and Lu methods. However, the CIE-Y ap-
proach was selected significantly (p < 0.0001) more often compared to the pro-
posed method. Our proposed method was ranked as being a better (ranked 1 or
2) representation of the original color image for 64.5% of responses, and CIE-Y
achieved 75.0% of responses ranked as 1 or 2. The CIE-Y approach is similar to
approaches that are ubiquitous in print media (e.g., newspapers, kindle). Among
the specialized C2G algorithms, our proposed method was highest ranked. The
Grundland and Lu methods were consistently ranked as the least preferred meth-
ods with only 12.8% and 47.7% of responses ranked 1 or 2.

6 Conclusion
In this paper, we proposed a method for converting color images to gray scale
while preserving brightness consistency as much as possible. The key ideas of
brightness consistency is that the feeling and naturalness of the original color
is preserved, and that color contrast is preserved. These key ideas were used to
derive quantitative metrics based on recent studies in vision science. An `1 opti-
mization framework was proposed to find the grayscale image which optimised
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the proposed brightness consistency metric. To evaluate the proposed methods,
we used both existing datasets and a proposed new dataset. We also validated
both the algorithm and the metric with a user study. For future work, we will
exploit brightness consistency with more emphasis on visual augmentation.
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