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Motivation: Image Labeling

Image labeling: Label every pixel in an image with a class label
from some pre-defined set, i.e., y, € L.
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Interactive segmentation Semantic labeling (He et

Surface context (Hoiem

(Boykov and Jolly, 2001; et al., 2005) al., 2004; Shotton et al.,
Boykov and Funka-Lea, 2006; Gould et al., 2009)
2006)

Stereo matching (Schar-
stein and Szeliski, 2002)

Photo montage (Agarwala et al., 2004) Denoising
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These problems are typically solved using a pairwise conditional
Markov random field.

However, pairwise terms are often not expressive enough.
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Consistency Potentials

Suppose an oracle told us which pixels belong together, e.g., for
the figure-ground segmentation problem we might have
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Consistency Potentials

Suppose an oracle told us which pixels belong together, e.g., for
the figure-ground segmentation problem we might have

Then we would only need to label the so-called superpixels rather
than individual pixels.
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Consistency Potentials

Unfortunately we don't have a perfect oracle. So what can we do?

penalty

‘ number of disagreements

[Kohli et al., 2007]
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Consistency Potentials

Unfortunately we don't have a perfect oracle. So what can we do?

penalty penalty penalty

‘ number of disagreements | number of disagreements | number of disagreements

[Kohli et al., 2007] [Kohli et al., 2008] [Kohli and Kumar, 2010]
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The energy function for a higher-order MRF over discrete random
variables y = {y1,...,yn} can be written as:

clique potentials

—

E(yix,0) = > ve(yc)
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Higher-order Markov Random Fields

The energy function for a higher-order MRF over discrete random
variables y = {y1,...,yn} can be written as:

clique potentials

—_——
E(y:ix,0) = Y vc(y)
=20l + D i (i) + o welye)

— —

unary pairwise higher-order

where the potential functions 1/1,-“, 5 and ¢! encode preferences

for unary, pairwise and k-ary variable assignments, respectively.
The goal of inference is to find y* = argminy E(y; x, 6).
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Binary Lower Linear Envelope MRFs

UACAE min {akZYi + bk}

ieC
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Blnary Lower Linear Envelope MRFs

velye) 2 min | a > i+ by
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Energy Minimization ([Kohli and Kumar, CVPR 2010])

wg(yc) 2 mkin {akZ}/i + bk} = mkin {fk(yc)}

ieC
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Energy Minimization ([Kohli and Kumar, CVPR 2010])

velye) £ min {akaf + bk} = min {f(yc)}
ieC

Introduce multi-valued auxiliary random variable z € {1,..., K}

and write

unary and pairwise

QZ(’:-I(ymz) = Z |IZ = k]]fk(yc)'

k

Now minimize jointly over y and z.
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Energy Minimization (Attempt 2)

blye) £ min Y yitbep= min {fi(yc)}

ieC
Introduce auxiliary binary random variables z = (zy, ..., zx) with
mutual exclusion constraint and write
unary and pairwise globdl
—— ——

wc Ye: 2 szfk yc) s.t. sz—l

Now minimize jointly over y and z.
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Energy Minimization (Attempt 3)

H, A .

v(yc) £ min {akaf + bk} = min {fi(yc)}
ieC

Assume sorted on aj. Introduce auxiliary binary random variables

z=(z,...,2K_1) with inclusion constraints and write

uns uy unary and pairwise pairwise

—N——
YHy..2) = f1 (yc) sz firr(ye) — fuye)) st zic = zicva.

Now minimize jointly over y and z.
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Relationship to Binary Pairwise MRFs

Each transformation results in a different latent variable Markov
random field:

Attempt 1 Attempt 2 Attempt 3
(multi-valued; (binary; (binary;
pairwise) non-pairwise) pairwise)
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Exact Inference

o Claim 1: The binary pairwise MRF induced by “Energy
Minimization Attempt 3" is submodular (see paper for proof)
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Exact Inference

o Claim 1: The binary pairwise MRF induced by “Energy
Minimization Attempt 3" is submodular (see paper for proof)
o Claim 2: Submodular binary MRFs can be minimized in time
polynomial in the number of variables ([Hammer, 1965])
o Empirically, very fast algorithms exist for quadratic submodular
problems ([Boykov and Kolmogorov, 2004])
o We can perform exact inference in lower linear envelope binary
Markov random fields
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Max-margin Learning for Structured Prediction
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Max-margin Learning for Structured Prediction

o Energy function. Parameterized by 6 € R¢,

easy learning

——
E(y:ix,0) =Y the(yeix,0c) = 07¢(y,x)

easy inference
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Max-margin Learning for Structured Prediction

o Energy function. Parameterized by 6 € R¢,

easy learning

——
E(y:ix,0) =Y the(yeix,0c) = 07¢(y,x)

easy inference

o Structured loss function. e.g., A(§,y) =157 [§i # v

o Learning algorithm. Given a training set {(x¢,y,)},_;, solve
the margin-rescaling optimization problem ([Taskar et al., 2005;
Tsochantaridis et al., 2004]).

Stephen Gould 13/24



Australian
I\

ational
University

Max-margin Learning for Structured Prediction

minimize %HHH% + % Zt €t very large
- T T ooy
subject to 07 ¢i(y) — 0" de(y,) = A(y,y:) =&, Vi, y €
energy difference rescaled margin
gt Z 07 Vt
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Max-margin Learning for Structured Prediction

minimize %HGH% + % PRI

very large
—
SUbjeCt to 0T¢t(Y) - oT(bt(yt) 2 A (y7Yt) - €t7 Vt, y € yt

energy difference rescaled margin

gt Z 07 Vt

minimize 3|03 + £ 3, &
subject to & > max {A0ye) — 070y | +67Tuly,), Ve

loss-augmented inference (for given 0)

gt Z 07 Vt
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Lower Linear Envelope Representation

It remains to represent the lower linear envelope in a form that is
amenable to learning.

UACAE min {akZYi + bk}

ieC
= GT(/)(yc)
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Lower Linear Envelope Representation for Learning

o Sample-based representation with concavity constraints:
20 — 01 — 0441 >0

l'UCA

® a,x+b,

Ve '?___\
// \\
0/ k \ X
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Lower Linear Envelope Representation for Learning

o Sample-based representation with concavity constraints:
20k — Ok—1 —Ok41 >0
‘//C“

Lo Qx+by

'/’y___\

/ \
/ N\,
0/ k \ X

o Features ¢(y,.) are 1-of-n indicator vectors

lolololojolo|1|ojofolo/ololo]

o Can extend to be invariant of clique size
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Max-margin Learning for Lower Linear Envelope MRFs

minimizeg ¢

subject to

31613+ £ 3, &

07 pe(y) — 07 dely:) = A(y,ye) — &, Vi,y €D
gt 2 07 Vt
D%0 >0
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Max-margin Learning for Lower Linear Envelope MRFs

minimizeg ¢ %HOHE + % >

subject to 0Tg/>t(y) = 0T¢t(yt) > A(y,y:) — &, Vi yeED:
YVt

61.“207
D%0 >0

o Learning algorithm repeatedly
o solves above QP using sampled representation 8
o finds violated constraints using lower linear envelope

representation {(ax, bk)}
o Variants of the feature representation and corresponding
learning objective can also be used.
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Synthetic Experiments
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Synthetic Experiments

S . S

penalty

@ number of disagreements

o In these experiments the ground-truth location of the squares
are given.
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Synthetic Results

]

groundtruth data pairwise crf |3rd iteration final iteration
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Synthetic Results

groundtruth

groundtruth
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for Synthetic Experiments

——1=[0.1, 0.1]
=1 =[0.5, 0.1]

n = (0.5,0.1) 2 4 6 8 10

o 7 is the signal-to-noise ratio.
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Interactive Image Segmentation

o "GrabCut” [Rother et al., SIGGRAPH 2004]
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Interactive Image Segmentation

o "GrabCut” [Rother et al., SIGGRAPH 2004]

o Our experimental setup
o leave-one-out cross-validation on 50 images
o baseline: 8-neighborhood pairwise CRF
o higher-order: lower linear envelope potential on
non-overlapping superpixels
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“GrabCut” Experiments
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o Superpixels determined via a bottom-up unsupervised
approach.
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image truth baseline higher-order
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“GrabCut” Results

image truth baseline higher-order
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“GrabCut” Results

image truth baseline higher-order
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“GrabCut” Results

image truth baseline higher-order

o Quantitatively we see a 15% reduction in error rate.
o Simply enforcing hard consistency within superpixels results in
1% increase in error rate.
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Summary

o motivation
o higher-order models are important for image understanding

Stephen Gould 24/24



Australian
59} National

University

Summary

o motivation
o higher-order models are important for image understanding
o this work—binary lower linear envelope potentials
o telescoping-sum construction for exact MAP inference in time
polynomial in the number of variables and number of linear
envelope functions
o representation for learning parameters of lower linear envelope
potentials using max-margin framework
o demonstrated in the context of figure-ground segmentation

Stephen Gould 24/24



Australian
National

University

Summary

o motivation
o higher-order models are important for image understanding
o this work—binary lower linear envelope potentials

o telescoping-sum construction for exact MAP inference in time
polynomial in the number of variables and number of linear
envelope functions

o representation for learning parameters of lower linear envelope
potentials using max-margin framework

o demonstrated in the context of figure-ground segmentation

o future work

o apply to multi-class setting
o explore relationship with latent-variable SVMs

Stephen Gould 24/24



Australian
National

University

Summary

o motivation
o higher-order models are important for image understanding
o this work—binary lower linear envelope potentials

o telescoping-sum construction for exact MAP inference in time
polynomial in the number of variables and number of linear
envelope functions

o representation for learning parameters of lower linear envelope
potentials using max-margin framework

o demonstrated in the context of figure-ground segmentation

o future work

o apply to multi-class setting
o explore relationship with latent-variable SVMs

o questions?
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