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ABSTRACT

Motion provides a rich source of information about the world.
It can be used as an important cue to analyse the behaviour
of objects in a scene and consequently identify interesting
locations within it. In this paper, given an unannotated
video sequence of a dynamic scene from fixed viewpoint, we
first present a set of useful motion features that can be effi-
ciently extracted at each pixel by optical flow. Using these
features, we then develop an algorithm that can extract mo-
tion topic models and identify semantically significant re-
gions and landmarks in a complex scene from a short video
sequence. For example, by watching a street scene our al-
gorithm can extract meaningful regions such as roads and
important landmarks such as parking spots. Our method is
robust to complicating factors such as shadows and occlu-
sions.

Categories and Subject Descriptors
1.2.10 [ARTIFICIAL INTELLIGENCE]: Vision and Scene

Understanding; 1.4.8 IMAGE PROCESSING AND COM-

PUTER VISION]: Scene Analysis

General Terms

Algorithms, Experimentation

Keywords

Semantic segmentation, motion cues, scene understanding

1. INTRODUCTION

Semantic scene segmentation is a fundamental task with a
large number of applications in video processing and artificial
intelligence. This task identifies meaningful regions behind
the content of a scene and is often referred to scene labelling.
In an unsupervised algorithm, the first task is to identify
robust features to distinguish different areas of interest in
the scene. There are many different features for this goal
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such as texture, colour, motion and so on. In this paper, we
focus on motion and colour. Moreover, we treat each pixel
independently, that is, without any detecting or tracking of
moving blobs across frames.

One of the issues confronting the use of motion features
is perspective distortion. When an object is moving in a
scene, the perception of its size and speed in the 2D image
changes relative to its distance from a stationary camera.
To overcome this problem and achieve camera-free features,
we employ a simple self-calibration method which does not
require Euclidean information. Specifically, we consider a
single object of constant height over at least two frames of
the video and use the perceived size change to calibrate for
distance.

Generally, the problem that we tackle in this paper is au-
tomatic segmentation of urban scenes into major semantic
categories of interest. For example, our method discovers
categories such as side-walk, road, cross road, parking place
and some traffic signs that are not easy to identify in crowded
areas or in low resolution videos.

Our approach is composed of the four modules. The first
module performs motion detection using optical flow. It
also removes all shadows from moving objects. The second
module extracts robust features for segmentation. The third
module removes perspective distortion from the features and
finally the fourth module clusters the scene based on the fea-
tures. We evaluate our method on two different metrics and
show increased precision of our results in comparison to a
baseline method.

2. RELATED WORK

Dynamic scene understanding has been an active area of
research for many years. Traditionally, many of the existing
methods exploit only colour and texture information from a
single view of the scene. Cao et al. [3] used an appropriate
distance measure in the composite feature space of colour
and texture. Seetha et al. [13] proposed an unsupervised
colour texture segmentation using Expectation Maximisa-
tion. However in many applications, texture and colour are
not enough. For example, roads and side walks have locally
similar appearance but very different semantics. Working
with video sequences gives us another feature to exploit:
Motion, which can help us draw some information from the
behaviour of moving objects in the scene and distinguish be-
tween regions with locally similar appearance. Some works
are based on object tracking [18, 12] which need more com-
putation for tracking and some others apply probabilistic
models [9] for clustering the scene.



Wang et al. [17] suggested a new generative model of topic
modelling called Spatial Latent Dirichlet Allocation (LDA)
to encode spatial structure among visual words and group
them to different segments. They defined the whole image as
a document and each local patch as a word and categorised
the close visual words in feature space into the same docu-
ment. In this work we also use Latent Dirichlet Allocation
for clustering, but instead of spatial relations among visual
words, we consider motion features in temporal structure
of the video to find the topic associated to each pixel as a
document.

One of the issues we face in comparing some features is
perspective distortion. Using camera calibration methods
[14] helps us remove this distortion, for example to normalise
the height of objects. A common drawback of these meth-
ods is that they require known camera parameters or have
at least two images of each frame. Albeit there is some re-
search which just work on one image as described in [10]
to find three orthogonal vanishing points. However, these
are not always available. Criminisi [5] calibrated the cam-
era by finding vanishing line and vertical vanishing point
which finding vertical vanishing point is not feasible in im-
ages without some converging vertical lines. Video usually
gives us some other useful information about the scene. We
extract this information by tracking one person at least in
two different frames. Then by using camera calibration for-
mulas, we can remove perspective distortion in the extracted
features.

3. MOTION DETECTION

In this module, we independently detect all moving ob-
jects by measuring the velocity field of pixels in the frames.
This is accomplished using an optical flow algorithm. We
also apply frame differencing and shadow removal to obtain
clean boundaries of moving objects. All of these steps are
explained below.

3.1 Optical Flow

Almost 30 years ago, Horn and Schunck [8] published their
seminal paper on optical flow calculation and its techniques.
In our work optical flow is used to estimate magnitude and
direction of movement in each pixel, which defines two fea-
tures for segmentation. We use the optical flow method pro-
posed by Sun et al. [16], which de-noises the flow using
median filtering to improve accuracy.

3.2 Frame Difference

Frame differencing is a simple way to detect changes be-
tween subsequent frames. The output of this method is in-
herently noisy due to similarity in intensity inside moving
blobs in two consecutive frames. In contrast to optical flow,
however, frame differencing results in clean object bound-
aries. In this work, we combine both methods to obtain
clean boundary and exact velocity information for each mov-
ing object.

Initially we apply both algorithms on successive frames.
As shown in Fig. 1, inside each moving blob, the result of
frame difference is sparse. We complete the missing pixels
within detected blobs by interpolating from optical flow in-
formation. Specifically we connect adjacent pixels if they
have the same optical flow. At the end, all detected blobs
are filled with the velocity calculated by the optical flow al-
gorithm.
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(a) Optical Flow, videol (b) Optical Flow, video2
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Figure 1: Best viewed in colour. Difference between
optical flow, frame difference and combined method for both
videos. (a) and (b) are the output of optical flow, (c) and
(d) are the frame difference of two subsequence frames and
finally(e) and (f) show the detected blobs by combining both
methods.

3.3 Shadow Removal

Dynamic shadows generated as a result of bright point-like
light sources, e.g., the sun in outdoor scenes, are a major
problem confronting motion detection algorithms. Zhang et
al. [19] introduced a new feature called Ratio Edge to find
shadows. Ratio Edge represent the quantity of the texture
in one neighbouring region. We simplify their method by
having the background.

One simple way to find the background is averaging frames
in the video. However, in crowded areas like our scenes,
the time available for viewing background intensity values is
small, so the result is not very satisfactory as is shown in
Fig. 2. A better way is to average just the no-motion pixels
per frame.

To calculate the Ratio Edge, we define the neighbouring
region of pixel (z,y) as:

O(z,y) = {(I+i,y+j) |0 <+ 5% <r?
and f(z+i,y+) #0} (1)
in which r is the radius of the neighbouring region and f(x, y)

is the intensity value at pixel (x,y). The ratio edge of this
pixel is then defined as:
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Under certain conditions [19], there is a noticeable differ-
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(a) Averaging method

(¢) Difference between two
methods

Figure 2: Comparison between averaging method and our
method to find a soft background. (a) shows the output of
averaging over frames. (b) is the background found by our
method. (c) is the difference between two methods. (image
is inverted to be better viewed)
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(b) Un-shadow frame
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(a) Original frame

Figure 3: Best viewed in colour. Shadow removal re-
sults. (a) before and (b) after shadow removal.

ence between the ratio edge of the pixels under shadow and
without it. By automatically specifying a threshold Trqtiom,
we can differentiate pixels in shadows from others. The shad-
ows are then detected by a simple rule:

if (R(.’E, y)background - R(xy y)currentFrame) < TratioE

then (z,y) € Shadow (3)

The results of this shadow removal algorithm for an ex-
ample scene are shown in Fig. 3.

4. FEATURE EXTRACTION

Using irrelevant attributes usually adds noise to our data
and also increases the memory usage, computation time and
overall system resources. In our method, the attributes used
to build the model are based on the output of motion detec-
tion and are listed below:

e The size of objects moving over each pixel
e The magnitude of optical flows on each pixel
e The direction of optical flows on each pixel

In this work we use three major motion features each of
which is strong enough to distinguish interested regions. For
example, vehicles moving on the road are usually faster than
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Figure 4: The pinhole camera and vanishing line in two dif-
ferent frames

people. So in these pixels we have flows with a relatively
high magnitude. Furthermore the size of people commonly
is smaller than that of vehicles. Hence, we can use these
features to differentiate between side-walk and road. By
considering both of them, we could determine the cross road
area where both people and vehicles can move on these pixels
but usually with different directions. Some semantic regions
like approaches to stop signs and traffic lights also can be
recognised by the changing speed of objects on the road.

We also use colour information as a low-level feature which
can be helpful in homogeneous colour regions where perhaps
motion is absent. We tested two different colour spaces,
RGB and Lab, and compared the results (see Sec. 6).

The features used in this work are highly affected by per-
spective, so we employ simple calibration to overcome this
problem. There is a direct relation between the geometry
of the scene and camera calibration. In this paper we use
motion: by tracking objects in two different frames we can
estimate the relative place of moving objects in 3D world.

From the pinhole camera model [7], some mathematical
relations can be defined in homogeneous coordinates (see
Fig. 4). Let (u,v) be the image coordinates of the world
coordinates (X,Y, Z), then by projection, we have:

AU f 0 0 X
M | =| 0 fcosg f.sing Y-H (4)
A 0 —sing cos¢o Z

where f is the focal length of the camera, H is the height of
the camera place from the ground and ¢ is the angle between
focal length and horizon. We assume that the principal point
of the camera is located at the image centre.

Considering an object resting on the ground plane we can
use Eq. 4 to arrive at:

(f +vr.tane).(Y — H).(vp — f.tan¢) =

—(f +vB.tan¢).H.(vr — f.tan ¢) (5)

where vr and vp are the head and feet points for an object
in the image plane.

However even by tracking many people in different frames,
we can not solve Eq. 5. Regarding the fact that the real
height of an object appearing in two frames remains the
same, we can find the vanishing line (see Fig. 4). Then we
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Figure 5: Removing perspective distortion using considering
a reference point as the left-bottom point in the image plane

have:

Vj’z* (6)

in which V4, is the vertical distance of vanishing line to the
principal point. The vanishing line is located by using top
and bottom points of one object in two different frames as
shown in Fig. 4.

To remove perspective distortion, we map each moving
blob with vr and vp to a reference point which is chosen
to be the left-bottom point in the frame. The height of
the image plane is indicated by r. These parameters and
their relations are shown in Fig. 5 and after some algebraic
manipulation and using Egs. 5 and 6, we obtain:

h1 (Var + %)(UT + g)

tan ¢ =

ol 7
R [ R s [
By finding the ratio between the heights, %, we can map

the object size in each pixel to a reference point and remove
the perspective problem.

S. SEGMENTATION
Latent Dirichlet Allocation (LDA) [2] is a probabilistic

model for automatically clustering collections of discrete data.

This model is a powerful machine learning algorithm which
was first presented in the context of document analysis to
group words into topics and associate a probability distribu-
tion with each document over topics. In recent years, some
other applications have been found for LDA in the computer
vision field, for example, action recognition [4], classification
[6] and image segmentation [15].

In our work, we treat each pixel in the image plane as a
document and the whole image as the corpus. Each pixel
represents a ray from the constant camera and can therefore
provide a model for the ground plane point intersecting that
ray. All extracted features per pixel in each frame act as a
word. The visual words in our case form descriptors for mo-
tion patterns of moving blobs and static colour information.
We use three motion features and three colour features, so
we will have six-dimensional words for each pixel. We quan-
tise their six-dimensional values into discrete words with the
k-means algorithm.

Suppose we have ¢ video frames with M pixels per frame.
FEach pixel contains words from a vocabulary of size N which
should describe the properties of each pixel and what hap-
pens in it during the video. We find the hidden topic for
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(a) LDA model

(b) Words in our model

Figure 6: (a) shows the graphical model representation of
LDA. The outer plate represents M documents, while in-
ner plate represents the repeated choice of topics and words
within a document. (b) illustrates graphical representation
of each word in our model

each pixel and group similar ones with the same topics. Con-
cretely, each pixel d; is defined as a set of N; visual words
wij,j =1,2,...,n and n < t. In fact, each word w;; is a six-
dimensional measured value for pixel ¢ in each of j frames,
in which each of these dimensions are one of the measured
features for that pixel. In addition, there is a latent topic
variable z; associated with each pixel which represents the
labels for pixel, z; = 1,..., K. All the words in the corpus
will be clustered into K topics which are the total number
of latent topics and the number of semantic segments in our
video. The graphical model of LDA is shown in Fig. 6. The
joint distribution over this model is given by:

N

p(6, 2 wla, B) = p(8la) [ [ p(=il0)p(wil=i, B) (8)

i=1

where o and 3 are the parameters of the Dirichlet prior on
the per-pixel label distribution and label visual words distri-
bution, respectively. We are interested in € which contains
the probabilities of each pixel belonging to each of K labels.
The selected label for that pixel will be the label with the
highest probability.

6. EXPERIMENTAL RESULTS

By analysing the features at each pixel, we segment the
scene into different semantic landmarks like cross-roads and
stop places. Experiments were carried out using the chal-
lenging VIRAT video dataset [1]. We chose two videos of
crowded streets and parking lots with about 1300 frames for
each video. To make the run time more efficient, we sam-
ple every 10th frame. The applied threshold for Ratio Edge,
Tratior, was automatically calculated by k-means.

For each video, we extract different regions by applying an
implementation of LDA using Gibbs Sampling [11]. Heuris-
tically in LDA, by having K different topics, good initial
values for o and 8 are 50/K and 0.01, respectively. To ob-
jectively evaluate the quality of topics discovered by LDA,
we measure the performance of segmentation in each region.
For evaluation, we suppose that for each cluster, the label
is determined based on which label is in the majority in the
region defined by the ground truth. Then we calculated F1-
measure for each clustering result with different values for
K. The Fl-measure is a combination of purity and recall
which are defined as the fraction of majority of labels in one
cluster to the whole number of labels in the same cluster and
to the whole number of the same label in the clustering re-
sult, respectively. Table 1 shows the values of F1-measure for



Table 1: The values of Fl-measure for different values of K

K |8 9 10 11
Fl-measure | 63.5 64.7 645 63.8
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Figure 7: Quantitative comparison between LDA with dif-
ferent groups of features and GMM as a standard method

different values of K. It is notable that there is a maximum
for the best value of K which is 9 in the first video.

As explained above, we tried three different groups of fea-
tures: motion, motion+RGB and motion+Lab. We also
compared our method with Gaussian Mixture Model (GMM)
with motion and Lab colour features, as a standard method.
For evaluating the results, we manually annotated all pixels
and made a ground truth for each video which is shown in
Fig. 8. A quantitative comparison, with respect to the F1-
measure, of all algorithms against the ground truth annota-
tions is shown in Fig. 7. Here, it is clear that LDA clusters
better than GMM in most regions even when we use just mo-
tion features. Another notable point in this diagram is that
the segmentations produced by motion+Lab features agree
fairly well with the ground truth segmentations for this set
of frames.

Fig. 8 shows the first frame of the video, the annotated
labels as ground truth and the segmentation results gener-
ated by our algorithm for both videos. The quantitative
evaluation based on purity and recall also is displayed in
Table 2 and 3 for both videos. These results indicate that
some semantic regions like cross roads or stop points on the
road are possible to be captured based on motion features.
Nevertheless, it is clear that parking places can not be dis-
tinguished until at least one vehicle parks in that place. So,
the parking points, for example in the second video, are not
extracted clearly, because the incidence of parking vehicles
in this video is not frequent enough. This also happens for
some quiet roads like road3 and road8 in the second video.
Moreover, in this video some people and vehicles move across
vacant spaces in the parking lot as is shown in Fig. 8, mak-
ing these areas much noisier. Another noticeable point in
the stop places on the road is that in both videos this seg-
ment is clustered to two different regions. This is due to the
stop action for the first moving vehicle on the road causing
following cars to slow and stop. If there are many vehicles on
the road, after stopping the first one, all of vehicles should

Table 2: Quantitative evaluation on the first video

Clusters LDA GMM
Purity Recall | Purity Recall
B no-motion 75 93 74 93
H side-walk 53 s 61 56
W park place 33 14 33 15
roadl 95 53 41 76
road2 95 74 75 69
M stop place 84 75 65 44
cross-roadl 63 46 26 26
W cross-road2 64 75 99 4.5
Total 70 64 62 51.4

Table 3: Quantitative evaluation on the second video

Clusters LDA GMM
Purity Recall | Purity Recall
H no-motion 75 96 74 96
M roadl 92 40 38 51
W road2 25 64 19 69
4 cross road 40 74 40 45
M side walk 62 56 46 19
M road3 5 3 0.1 0.2
road4 66 80 19 10
M roadb 59 47 68 52
M stop place 66 73 32 60
M road6 75 75 1.3 0.3
W park place 3 0.3 64 5.5
M road? 83 47 88 36
W road8 0.2 0.3 34 12
road9 85 50 46 55
Total 71 68.3 65 51.2

stop. This causes another region before stop area which is
different from other parts of the road. Finally, we also ob-
serve that the two labelled cross roads are different based on
the direction of flow.

7. CONCLUSION

We propose an unsupervised clustering of meaningful re-
gions and some semantic landmarks by modelling the pat-
tern movements in the scene. To understand scene motion,
we employ optical flow because we need to know exact mag-
nitude and direction at each pixel. Then by defining some
distinguishing features like the size of objects and the veloc-
ity of flow on each pixel and using LDA, we could determine
different parts in the video as side-walk, road, cross-road and
so on. We also quantitatively compared the results of our
algorithm with GMM as a baseline algorithm which shows
that the proposed algorithm works better specially in find-
ing semantic regions like cross road. In addition, by tracking
one object in two frames and camera calibration, we removed
distortions in our defined motion features caused by perspec-
tive.

Our work provides a basis for unsupervised clustering of
regions within scenes by observing the motion of objects in
the scene. We hope to build on this work to gain a better
understanding of activities by linking motion behaviour and
location within a scene.
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Figure 8: Annotated ground truth and our method’s results for both videos. (a) and (d) show the first frame of each video, (b)
and (e) show ground truth and manually annotated labels, and finally (c) and (f) show the clustering results of our method
on both videos.
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