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Abstract

High-level, or holistic, scene understanding involves
reasoning about objects, regions, and the 3D relationships
between them. This requires a representation above the
level of pixels that can be endowed with high-level at-
tributes such as class of object/region, its orientation, and
(rough 3D) location within the scene. Towards this goal, we
propose a region-based model which combines appearance
and scene geometry to automatically decompose a scene
into semantically meaningful regions. Our model is de�ned
in terms of a uni�ed energy function over scene appearance
and structure. We show how this energy function can be
learned from data and present an ef�cient inference tech-
nique that makes use of multiple over-segmentations of the
image to propose moves in the energy-space. We show, ex-
perimentally, that our method achieves state-of-the-art per-
formance on the tasks of both multi-class image segmen-
tation and geometric reasoning. Finally, by understanding
region classes and geometry, we show how our model can
be used as the basis for 3D reconstruction of the scene.

1. Introduction
With recent success on many vision subtasks—object de-

tection [21, 18, 3], multi-class image segmentation [17, 7,
13], and 3D reconstruction [10, 16]—holistic scene under-
standing has emerged as one of the next great challenges
for computer vision [11, 9, 19]. Here the aim is to reason
jointly about objects, regions and geometry of a scene with
the hope of avoiding the many errors induced by modeling
these tasks in isolation.

An important step towards the goal of holistic scene un-
derstanding is to decompose the scene intoregionsthat are
semantically labeled and placed relative to each other within
a coherent scene geometry. Such an analysis gives a high-
level understanding of the overall structure of the scene, al-
lowing us to derive a notion of relative object scale, height
above ground, and placement relative to important semantic
categories such as road, grass, water, buildings or sky. We
provide a novel method that addresses this goal.

Our method is based on a uni�ed model where each pixel
in the image is assigned to a single region. Regions are
labeled both with a semantic category (such as grass, sky,
foreground, and so on) and a geometric label (currently ver-
tical, horizontal, or sky). Unlike methods that deal only
with multi-class segmentation [17] or only with geometric
reconstruction [10], our approach reasons jointly about both
aspects of the scene, allowing us to avoid inconsistencies
(such as vertical roads) and to utilize the context to reduce
false positives (such as unsupported objects).

A key aspect of our approach is the use of large,
dynamically-de�ned regions as the basic semantic unit.
Most previous methods for doing this type of image de-
composition use either individual pixels [17] or prede�ned
superpixels [24, 5]. Each of these approaches has its trade-
offs. The use of individual pixels makes it dif�cult to utilize
more global cues, including both robust statistics about the
appearance of larger regions, which can help average out the
random variations of individual pixels, and relationshipsbe-
tween regions, which are hard to “transmit” by using local
interactions at the pixel level. The use of superpixels par-
tially addresses some of these concerns, but as superpixels
are constructed in advance using simple procedures based
on local appearance alone, their boundaries are often incon-
sistent with the true segment boundaries, making an accu-
rate decomposition of the image impossible. Our approach
dynamically associates pixels to regions, allowing region
boundaries to adjust so as to accurately capture the true ob-
ject boundaries. Moreover, our regions are also much larger
than superpixels, allowing us to derive global appearance
properties for each region, including not only color and tex-
ture, but even larger properties such as its general shape,
aspect ratio, and characteristics of its boundary. These fea-
tures can help capture subtle yet important cues about re-
gions that improve classi�cation accuracy. As we will see,
this provides a decomposition of the scenes into objects or
appearance-coherent parts of objects (such as person's head,
or a window in a building).

Reasoning in our model requires that we infer both the
pixel-to-region association and the semantic and geometric
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labels for the regions. We address this challenge using a hy-
brid approach. For the pixel-association task, we propose
a novel multiple-segmentation approach, in which different
precomputed segmentations are used to propose changes to
the pixel-region associations. These proposed moves take
large steps in the space and hence help avoid local min-
ima; however, they are evaluated relative to our global en-
ergy function, ensuring that each step improves the energy.
The region-labeling task is addressed using global energy-
minimization methods over the region space. This step is
not too expensive, since the number of regions is signif-
icantly lower than the number of pixels. By performing
the inference at this level, we also improve labeling accu-
racy because the adjacency structure between these larger
regions allows us to directly exploit correlations between
them (such as the fact that ground is below sky).

The parameters of our model are entirely learned from
data. In this model, we are learning to label entire segments,
allowing us to exploit global, region-level characteristics.
We obtain positive examples for region labels from a large
training set, which we constructed using Amazon Mechan-
ical Turk (AMT), at a total cost of less than $250. Negative
examples are a bit trickier to acquire, as there are exponen-
tially many “non-regions,” most of which are obviously bad
choices. We therefore propose a novelclosed-looptrain-
ing regime, where the algorithm runs inference on the train-
ing images given its current model, and then uses mistakes
made in the process as negative examples to retrain.

We apply our method to a challenging data set consist-
ing of 715 images, most of which have fairly low resolu-
tion and multiple small objects at varying scales. We show
that our approach produces multi-class segmentation and
surface orientation results that outperform state-of-the-art
methods. In addition, we show how our output can be used
as the basis for 3D scene reconstruction.

2. Background and Related Work

Our work touches on many facets of computer vision
that have, in recent years, been treated as separate prob-
lems. The problem of multi-class image segmentation (or
labeling) has been successfully addressed by a number of
works [7, 22, 17, 23, 24, 5]. The goal here is to label every
pixel in the image with a single class label. Typically these
algorithms construct CRFs over the pixels (or small coher-
ent regions calledsuperpixels) with local class-predictors
based on pixel appearance and a pairwise smoothness term
to encourage neighboring pixels to take the same label.
Some novel works introduce 2D layout consistency be-
tween objects [23], object shape [22], or relative location
between regions [7, 5]. However, none of these works take
into account 3D context and do not learn or enforce global
consistency, such as that “sky” needs to be above “ground”.

As an alternative to segmenting into semantic classes,

Hoiemet al. [12] propose segmenting free-standing objects
by estimating occlusion boundaries in an image. Other
works attempt to reconstruct 3D depth [16] or surface ge-
ometry [10] directly from monocular images without �rst
reasoning about occlusions. These use local color and tex-
ture cues together with pairwise interactions to infer scene
structure. None of these works attempt to understand the
semantic content of the scene and they tend to produce poor
3D reconstructions when foreground objects are present.

The use of multiple over-segmented images is not new to
computer vision. Russellet al. [14], for example, use mul-
tiple over-segmentations for �nding objects in images, and
many of the depth reconstruction methods described above
(e.g., [10]) make use of over-segmentations for comput-
ing feature statistics. In the context of multi-class image
segmentation, Kohliet al. [13] specify a global objective
which rewards solutions in which an entire segment is la-
beled consistently. However, their energy function is very
restricted and does not, for example, capture the interac-
tion between region appearance and class label nor does
their energy function allow for label-dependent pairwise
preferences, such as foreground objects above road. Un-
like all of these methods, our method uses multiple over-
segmentations to build a dictionary ofproposal movesfor
optimizing a global energy function—the segments them-
selves are not used for computing features nor do they ap-
pear explicitly in our objective.

The importance of holistic scene interpretation has been
highlighted in a number of recent works [11, 9]. These
methods combine tasks by passing the output of one model
to the input of another. Unlike these approaches, which op-
timize variables for each task separately, our method con-
siders semantic and geometric tasks simultaneously and
performs joint optimization on a uni�ed objective over the
variables, providing a coherent decomposition of the scene.

Perhaps most relevant is the work of Tuet al. [20], which
decomposes a scene into regions, text and faces using an
innovative data driven MCMC approach on a generative
model of the scene. However, their work is primarily fo-
cussed on identifying text and faces, and does not attempt
to label “generic” regions with semantic classes, nor do they
model the geometric relationship between regions.

3. Region-based Scene Decomposition

Our goal is to decompose an imageI into an unknown
number (K ) of geometrically and semantically consistent
regions by iteratively optimizing an energy function that
measures the quality of the solution at hand. We begin by
describing the various entities in our model. Inference and
learning are described in Section 4.

Our model reasons about both pixels and regions. Each
pixel in the imagep 2 I belongs to exactly one region,
which is identi�ed by the pixel's region-correspondence



variableRp 2 f 1; : : : ; K g. Let the set of pixels in regionr
be denoted byPr = f p : Rp = r g. The size of the region
(number of pixels) is thenN r = jP r j =

P
p 1f Rp = r g.

Each pixel has a local appearance feature vector� p 2 Rn

(described in Section 3.1 below). Associated with each re-
gion are: a semantic class labelSr , currently grass, moun-
tain, water, sky, road, tree, building and foreground; a ge-
ometryGr , currently horizontal, vertical, and sky; and an
appearanceA r that summarizes the appearance of the re-
gion as a whole. The �nal component in our model is the
horizon. We assume that the image was taken by a camera
with horizontal axis parallel to the ground. We therefore
model the location of the horizon as the row in the image
corresponding to the horizonvhz 2 f 1; : : : ; height(I )g.

Given an imageI and model parameters� , our uni-
�ed energy function scores the entire description of the
scene: the pixel-to-region associationsR ; the region se-
mantic class labelsS, geometriesG, and appearancesA ;
and the location of the horizonvhz:

E (R ; S; G; A ; vhz; K j I ; � ) =

+ � horizon horizon(vhz) (1)

+ � regionP
r  region

r (Sr ; Gr ; vhz; A r ; Pr ) (2)

+ � pair P
rs  pair

rs (Sr ; Gr ; Ss; Gs; A r ; Pr ; As; Ps) (3)

+ � boundaryP
pq  boundary

pq (Rp; Rq; � p; � q): (4)

We now describe each of the components of our model.

3.1. Characterizing Individual Region Appearance

For each pixelp in the image, we construct a local ap-
pearance descriptor vector� p comprised of raw image fea-
tures and discriminitively learned boosted features. Our raw
image features, which are computed in a small neighbor-
hood of the pixel, are identical to the 17-dimensional color
and texture features described in [17]. We augment these
raw features with more processed summaries that represent
the “match” between the pixel's local neighborhood and
each of the region labels. In particular, for each (individual)
semantic and geometric label we learn a one-vs-all boosted
classi�er to predict the label given the raw image features
in a small neighborhood around the pixel.1 We then append
the score (log-odds ratio) from each boosted classi�er to our
pixel appearance feature vector� p.

In our experiments, we set the region appearanceA r to
be the maximum-likelihood Gaussian parameters over the
appearance of pixels within the region:A r =

�
� A

r ; � A
r

�

where� A
r 2 Rn and � A

r 2 Rn � n are the mean and co-
variance matrix for the appearance vectors� p of pixels in

1In our experiments we append to the pixel's 17 features, the average
and variance for each feature over a5� 5-pixel window in 9 grid locations
around the pixel and the image row to give a total of 324 features. We use
the GentleBoost algorithm with 2-split decision stumps and train for 500
rounds. Our results appeared robust to the choice of parameters.

the r -th region. These summary statistics give us a more
robust estimator of the appearance of the region than would
be obtained by considering only small neighborhoods of the
individual pixels.

3.2. Individual Region Potentials

To de�ne the potentials that help infer the label of indi-
vidual regions, we extract features� r (A r ; Pr ) 2 Rn de-
scribing the region appearance and basic shape. Our ap-
pearance features include the mean and covariance� A

r ; � A
r ,

the log-determinant of� A
r , and the average contrast at the

region boundary and region interior. In addition to relating
to semantic class—grass is green—the appearance features
provide a measure for the quality of a region—well-formed
regions will tend to have strong boundary contrast and (de-
pending on the class) little variation of interior appearance.

We also want to capture more global characteristics of
our larger regions. For example, we would like to capture
the fact that buildings tend to be vertical with many straight
lines, trees tend to be green and textured, and grass tends
to be green and horizontal. Thus, we incorporate shape fea-
tures that include normalized region area, perimeter, �rst
and secondx- andy-moments, and residual to a robust line
�t along the top and bottom boundary of the region. The
latter features capture the fact that buildings tend to have
straight boundaries while trees tend to be rough.

We also include the horizon variable in the region-
speci�c potential, allowing us to include features that mea-
sure the ratio of pixels in the region above and below the
horizon. These features give us a sense of the scale of the
object and its global position in the scene. For example,
buildings are tall and tend to have more mass above the hori-
zon than below it; foreground objects are often close and
will have most of their mass below the horizon. Conversely,
these potentials also allow us to capture the strong posi-
tional correlation between the horizon and semantic classes
such as sky or ground, allowing us to use the same potential
to place the horizon within the image.

To put all of these features together, we learn a multi-
class logistic classi�er forSr � Gr with a quadratic kernel
over � r (see Section 4.2). The score for any assignment to
the region variables is then: region

r (Sr ; Gr ; vhz; A r ; Pr ) =
� N r log �

�
Sr � Gr j � r (A r ; Pr ); vhz

�
, where� (�) is the

multi-class logistic function with learned parameters. We
scale the potential by the region sizeN r so that our score
gives more weight to larger regions and is independent of
the number of regions in the image.

3.3. InterRegion Potentials

Our model contains two types of inter-region poten-
tials. The �rst of these is boundary

pq (Rp; Rq; � p; � q), which
is the standard contrast-dependent pairwise boundary po-
tential [17]. For two adjacent pixelsp and q, we de-



�ne  boundary
pq (Rp; Rq; � p; � q) = exp f� � � 1k� p � � qk2g

if Rp 6= Rq and zero otherwise where� is half the aver-
age contrast between all adjacent pixels in the image. This
term penalizes adjacent regions that do not have an edge
between them; it has the effect of trying to merge adjacent
regions that are not clearly demarcated. We note that, since
the penalty is accumulated over pairs of adjacent pixels, the
region-level penalty is proportional to the pixel-length of
the boundary between the regions.

Our second inter-region potential, pair, models the af�n-
ity of two classes to appear adjacent to each other. Sim-
ilar to the within-region potentials, we extract features
� rs (A r ; Pr ; As; Ps) 2 Rm for every pair of adjacent re-
gionsr ands. We then learn independent multi-class logis-
tic classi�ers forSr � Ss andGr � Gs given these features.
Note that these potentials are asymmetric (exchanging re-
gions r and s gives a different preference). The features
� rs are intended to model contextual properties between re-
gions, for example, the boundary between building and sky
tends to be straight and building is more likely to appear
above a foreground object than below it. To capture these
properties, our features include the difference between cen-
troids of the two regions, the proportion of pixels along the
boundary in which regionr is above regions, the length and
orientation of the boundary, and residual in �tting a straight
line to the boundary. In addition to these layout-based fea-
tures, we include appearance difference between the regions
normalized by the total appearance variance within each re-
gion. This captures signals such as foreground objects tend
to contrast highly with other regions, whereas background
regions are more similar in appearance, such as adjacent
buildings in a city.

We normalize each pairwise potential by the sum of
the number of pixels in each region divided by the num-

ber of neighbors for the region:� =
�

N r
j nbrs( r ) j + N s

j nbrs(s) j

�
.

This makes the total in�uence on a region independent of
its number of neighbors while still giving larger regions
more weight. The �nal form of our second inter-region
potential is then pair

rs (Sr ; Gr ; Ss; Gs; A r ; Pr ; As; Ps) =
� � log � (Sr � Ss j � rs ) � � log � (Gr � Gs j � rs ), where,
as above,� (�) is the multi-class logistic function.

4. Inference and Learning

4.1. Inference Algorithm

Exact inference in our model is clearly intractable. We
adopt a two-stage hill climbing approach to minimize the
energy. In the �rst stage, we modify the pixel-region asso-
ciation variables by allowing a set of pixels to change the
region to which they are assigned. Given the new pixel as-
signments, we then optimize the region and horizon vari-
ables in the second stage. The global energy of the resulting
con�guration is then evaluated, and the move is accepted

ProcedureInferSceneDecomposition
Generate over-segmentation dictionary

Initialize R p using one of the over-segmentations
Repeat until convergence

Propose a movef R p : p 2 ! g  r
Update region appearanceA and features�
Run inference over regions(S; G ) and horizonvhz

Compute total total energyE
If (E < E min) then

Accept move and setE min = E
Else reject move

(a) (b)
Figure 1. (a) Scene decomposition inference algorithm; (b) Over-
segmentation dictionary,
 , generated by running mean-shift [1]
with three different parameter settings. See text for details.

only if this energy improves, ensuring that our inference is
continuously improving a coherent global objective.

The proposal moves for region associations are drawn
from a pre-computed, image-speci�c dictionary of image
segments
 (Figure 1(b)). To build a “good” set of segments
we start with a number of different over-segmentations of
the image. Here, we use the mean-shift algorithm [1] us-
ing publicly available code.2 We generate different over-
segmentations by varying the spatial and range bandwidth
parameters. To allow coarse granularity moves, we also
perform hierarchical agglomerative clustering (up to a �xed
depth) on each over-segmentation by merging adjacent seg-
ments that have similar appearance. We then add all subsets
constructed by this process (including the initial segments)
to the dictionary. This procedure produces a rich set of pro-
posal moves. We sort the dictionary by the entropy of pixel
appearance within each segment so that more uniform seg-
ments are proposed �rst.

In addition to moves proposed by the dictionary, we also
allow moves in which two adjacent regions are merged to-
gether. The set of allowed pixel-to-region correspondence
proposal moves is thus: (i) pick a segment! 2 
 and as-
sign allRp for p 2 ! to a new region; (ii) pick a segment
! 2 
 and assign allRp for p 2 ! to one of the regions
in its neighborhood; or (iii) pick two neighboring regionsr
ands and merge them, that is,8Rp = s setRp = r .

Our overall inference algorithm is summarized in Fig-
ure 1(a): Brie�y, we initialize our pixel-to-region associa-
tions R using one of the over-segmentations used to pro-
duce our dictionary. Given our current associationR , we
select a proposal move and reassign pixels to form new re-
gions. We then update the appearance modelA r and fea-
tures of any region that was affected by the move. We
maintain suf�cient statistics over pixel appearance, making
this step very fast. Keeping the pixel-to-region correspon-
dence variables and horizon �xed, we run max-product be-
lief propagation on the region class and geometry variables.

2http://www.caip.rutgers.edu/riul/research/
code/EDISON/index.html



We then update the horizonvhz using Iterated Conditional
Modes (ICM).3 The new con�guration is evaluated relative
to our global energy function, and kept if it provides an im-
provement. The algorithm iterates until convergence. In our
experiments (Section 5) inference took between 30 seconds
and 10 minutes to converge depending on image complexity
(i.e., number of segments in
 ).

4.2. Learning Algorithm

We train our model using a labeled dataset where each
image is segmented into regions that are semantically and
geometrically coherent. Thus, our ground truth speci�es
both the region association for each pixel and the labels for
each region.

We learn each term horizon,  region and pair in our en-
ergy function separately, using our labeled training data.We
then cross-validate the weights between the terms using a
subset of our training data. Since only the relative weight-
ing between terms matter, we �xed� region to one.

For the horizon singleton term, we learn a Gaussian
over the location of the horizon in training images and set
 horizon(vhz) to be the log-likelihood ofvhz given this model.
We normalize horizon(vhz) by the image height to make
this model resolution invariant. Our learned Gaussian has
a mean of approximately 0.5 and standard deviation of 0.15
(varying slightly across experiment folds). This suggests
that the horizon in our dataset is quite well spread around
the center of the image.

The within-region term, region, and the between-region
term, pair, are learned using multi-class logistic regression.
However, the training of the within-region term involves an
important subtlety. One of the main roles of this term is to
help recognize when a given collection of pixels is actually
a coherent region—one corresponding to a single semantic
class and a single geometry. Although all of the regions in
our training set are coherent, many of the moves proposed
during the course of inference are not. For example, our
algorithm may propose a move that merges together pixels
containing (horizontal) grass and pixels containing (verti-
cal) trees. We want to train our classi�er to recognize in-
valid moves and penalize them. To penalize such moves,
we train our multi-class logistic regression classi�er with
an additional “invalid” label. This label cannot be assigned
to a candidate region during inference, and so if the pro-
posed regionr appears incoherent, the “invalid” label will
get high probability, reducing the probability for all (valid)
labels inSr � Gr . This induces a high energy for the new
proposed assignment, making it likely to be rejected.

To train a discriminative classi�er that distinguishes be-

3We experimented with includingvhz in the belief propagation infer-
ence but found that it changed very little from one iterationto the next and
was therefore more ef�cient to infer conditionally (using ICM) once the
other variables were assigned.

tween coherent and incoherent regions, we need to provide
it with negative (incoherent) training instances. Here, we
cannot simply collect arbitrary subsets of adjacent pixels
that do not correspond to coherent regions: Most arbitrary
subsets of pixels are easily seen to be incoherent, so that a
discriminative model trained with such subsets as negative
examples is unlikely to learn a meaningful decision bound-
ary. Therefore, we use a novel “closed-loop” learning pro-
cedure, where the algorithm trains on its own mistakes. We
begin by training our classi�er where the negative exam-
ples are de�ned by merging pairs of adjacent ground truth
regions (which are not consistent with each other). We then
perform inference (on our training set) using this model.
During each proposal move we evaluate the outcome of in-
ference with the ground truth annotations. We append to
our training set moves that were incorrectly accepted or re-
jected, or moves that were accepted (resulted in lower en-
ergy) but produced an incorrect labeling of the region vari-
ables. In this way, we can target the training of our decision
boundary on the more troublesome examples.

5. Experimental Results

We conduct experiments on a set of 715 images of ur-
ban and rural scenes assembled from a collection of public
image datasets: LabelMe [15], MSRC [2], PASCAL [4],
and Geometric Context (GC) [10]. Our selection criteria
were for the images to have approximately320� 240pix-
els, contain at least one foreground object and have the hori-
zon positioned within the image (it need not be visible). We
perform 5-fold cross-validation with the dataset randomly
split into 572 training images and 143 test images for each
fold. The quality of our annotations (obtained from Ama-
zon Mechanical Turk) is extremely good and in many cases
superior to those provided by the original datasets. Images
and labels are available for download from the �rst author's
website.

Baselines. To validate our method and provide strong
baselines for comparison, we performed experiments on
independent multi-class image segmentation and geometry
prediction using standard pixelwise CRF models. Here the
pixel classSp (or surface geometryGp) is predicted sepa-
rately for each pixelp 2 I given the pixel's appearance� p

(see Section 3.1). A contrast-dependent pairwise smooth-
ness term is added to encourage adjacent pixels to take the
same value. The models have the form

E(S j I ) =
X

p

 p(Sp; � p) + �
X

pq

 pq(Sp; Sq; � p; � q)

and similarly forE(G j I ). In this model, each pixel can be
thought of as belonging to its own region. The parameters
are learned as described above with p a multi-class logis-
tic over boosted appearance features and pq the boundary
penalty. The baseline results are shown in Table 1.



Figure 2. Examples of typical scene decompositions produced by
our method. Show for each image are regions (top right), seman-
tic class overlay (bottom left), and surface geometry with horizon
(bottom right). Best viewed in color.

Region-based Approach.Multi-class image segmenta-
tion and surface orientation results from our region-based
approach are shown below the baseline results in Table 1.
Our improvement of 2.1% over baseline for multi-class seg-
mentation and 1.9% for surface orientation is signi�cant.
In particular, we observed an improvement in each of our
�ve folds. Our horizon prediction was within an average of
6.9% (relative to image height) of the true horizon.

In order to evaluate the quality of our decomposition, we
computed the overlap score between our boundary predic-
tions and our hand annotated boundaries. To make this met-
ric robust we �rst dilate both the predicted and ground truth
boundaries by �ve pixels. We then compute the overlap
score by dividing the total number of overlapping pixels by
half the total number of (dilated) boundary pixels (ground
truth and predicted). A score of one indicates perfect over-
lap. We averaged 0.499 across the �ve folds indicating that
on average we get about half of the semantic boundaries
correct. For comparison, using the baseline class predic-
tions gives a boundary overlap score of 0.454.

The boundary score result re�ects our algorithm's ten-
dency to break regions into multiple segments. For exam-
ple, it tends to leave windows separated from buildings and
people's torsos separated from their legs (as can be seen in
Figure 2). This is not surprising given the strong appearance
difference between these different parts. We hope to extend
our model in the future with object speci�c appearance and
shape models so that we can avoid these types of errors.

Figures 3 and 4 show some good and bad examples, re-
spectively. Notice the high quality of the class and geome-
try predictions particularly at the boundary between classes
and how our algorithm deals well with both near and far ob-
jects. There are still many mistakes that we would like to

CLASS GEOMETRY

Pixel CRF (baseline) 74.3 (0.80) 89.1 (0.73)
Region-based energy 76.4 (1.22) 91.0 (0.56)

Table 1. Multi-class image segmentation and surface orientation
(geometry) accuracy. Standard deviation shown in parentheses.

MSRC GC
TextonBoost [17] 72.2 Hoiemet al. [10]:
Yanget al. [24] 75.1 � pixel model 82.1
Gouldet al. [5] 76.5 � full model 88.1
Pixel CRF 75.3 Pixel CRF 86.5
Region-based 76.4 Region-based 86.9

Table 2. Comparison with state-of-the-art MSRC and GC results
against our restricted model. Table shows mean pixel accuracy.

address in future work. For example, our algorithm is often
confused by strong shadows and re�ections in water as can
be seen in some of the examples in Figure 4. We hope that
with stronger geometric reasoning we can avoid this prob-
lem. Also, without knowledge of foreground subclasses,
our algorithm sometimes merges a person with a building
or confuses boat masts with buildings.

Comparison with Other Methods. We also compared
our method with state-of-the-art techniques on the 21-class
MSRC [2] and 3-class GC [10] datasets. To make our
results directly comparable with published works, we re-
moved components from our model not available in the
ground-truth labels for the respective datasets. That is,
for MSRC we only use semantic class labels and for GC
we only use (main) geometry labels. Neither model used
horizon information. Despite these restrictions, our region-
based energy approach is still competitive with state-of-the-
art. Results are shown in Table 2.

6. Application to 3D Reconstruction

The output of our model can be used to generate novel
3D views of the scene. Our approach is very simple and ob-
tains its power from our region-based decomposition rather
than sophisticated features tuned for the task. Nevertheless,
the results from our approach are surprisingly good com-
pared to the state-of-the-art (see Figure 5 for some exam-
ples). Since our model does not provide true depth estimates
our goal here is to produce planar geometric reconstructions
of each region with accurate relative distances rather than
absolute distance. Given an estimate of the distance be-
tween any two points in the scene, our 3D reconstruction
can then be scaled to the appropriate size.

Our rules for reconstruction are simple. Brie�y, we as-
sume an ideal camera model with horizontal (x) axis paral-
lel to the ground. We �x the camera origin at 1.8m above
the ground (i.e.,y = 1 :8). We then estimate theyz-rotation
of the camera from the location of the horizon (assumed to
be at depth1 ) as� = tan � 1( 1

f (vhz � v0)) wherev0 is half



Figure 3. Representative results when our model does well. Each cell shows original image (left), overlay of semantic class label (center),
and surface geometry (right) for each image. Predicted location of horizon is shown on the geometry image. Best viewed in color.

Figure 4. Examples of where our algorithm makes mistakes, such as mislabeling of road as water (top left), or confusing boat masts as
buildings (bottom right). We also have dif�culty with shadows and re�ections. Best viewed in color.

the image height andf is the focal length of the camera.
Now the 3D location of every pixelp = ( u; v) lies along
the rayr p = R (� ) � 1K � 1 [u v 1]T , whereR (� ) is the ro-
tation matrix andK is the camera model [6]. It remains to
scale this ray appropriately.

We process each region in the image depending on its se-
mantic class. For ground plane regions (road, grass and wa-
ter) we scale the ray to make the height zero. We model each
vertical region (tree, building, mountain and foreground)as
a planar surface whose orientation and depth with respect
to the camera are estimated by �tting a robust line over
the pixels along its boundary with the ground plane. This
produced good results despite the fact that not all of these
pixels are actually adjacent to the ground in 3D (such as
the belly of the cow in Figure 5). When a region does not
touch the ground (that is, it is occluded by another object),
we estimate its orientation using pixels on its bottom-most

boundary. We then place the region half way between the
depth of the occluding object and maximum possible depth
(either the horizon or the point at which the ground plane
would become visible beyond the occluding object). The
3D location of each pixelp in the region is determined by
the intersection of this plane and the rayr p. Finally, sky
regions are placed behind the last vertical region.4

7. Discussion and Future Work

In this work, we addressed the problem of decompos-
ing a scene into geometrically and semantically coherent
regions. Our method combines reasoning over both pixels
and regions through a uni�ed energy function. We proposed

4Technically, sky regions should be placed at the horizon, but since the
horizon has in�nite depth, we choose to render sky regions closer, so as to
make them visible in our viewer.



Figure 5. Novel views of a scene with foreground objects gener-
ated by geometric reconstruction.

an effective inference technique for optimizing this energy
function and showed how it could be learned from data. Our
results compete with state-of-the-art multi-class image seg-
mentation and geometric reasoning techniques. In addition,
we showed how a region-based approach can be applied to
the task of 3D reconstruction, with promising results.

Our framework provides a basis on which many valu-
able extensions can be layered. With respect to 3D recon-
struction, our method achieves surprising success given that
it uses only simple geometric reasoning derived from the
scene decomposition and location of the horizon. These
results could undoubtedly be improved further by integrat-
ing our method with state-of-the-art approaches that reason
more explicitly about depth [16] or occlusion [12].

An important and natural extension to our method can be
provided by incorporating object-based reasoning directly
into our model. Here, we can simply re�ne our foreground
class into subclasses representing object categories (person,
car, cow, boat,etc.). Such models would allow us to incor-
porate information regarding the relative location of differ-
ent classes (cars are found on roads), which are very natu-
rally expressed in a framework that explicitly models large
regions and their (rough) relative location in 3D. By reason-
ing about different object classes, we can also incorporate
state-of-the-art models regarding object shape [8] and ap-
pearance features [3]. We believe that this extension would
allow us to address one of the important error modes of our
algorithm, whereby foreground objects are often broken up
into subregions that have different local appearance (a per-
son's head, torso, and legs). Thus, this approach might al-
low us to decompose the foreground class into regions that
correspond to semantically coherent objects (such as indi-
vidual people or cars).

Finally, an important limitation of our current approach
is its reliance on a large amount of hand-labeled training
data. We hope to extend our framework to make use of
large corpora of partially labeled data, or perhaps by using
motion cues in videos to derive segmentation labels.

Acknowledgments. We give warm thanks to Geremy Heitz and
Ben Packer for the many helpful discussions regarding this work.
This work was supported by DARPA T/L SA4996-10929-4 and
MURI contract N000140710747.

References
[1] D. Comaniciu, P. Meer, and S. Member. Mean shift: A robust

approach toward feature space analysis.PAMI, 2002.
[2] A. Criminisi. Microsoft research cambridge object recog-

nition image database. http://research.microsoft.com/vis-
ion/cambridge/recognition, 2004.

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. InCVPR, 2005.

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Chal-
lenge 2007 (VOC2007) Results, 2007.

[5] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller.
Multi-class segmentation with relative location prior.IJCV,
2008.

[6] R. I. Hartley and A. Zisserman.Multiple View Geometry in
Computer Vision. Cambridge University Press, 2004.

[7] X. He, R. Zemel, and M. Carreira-Perpinan. Multiscale
CRFs for image labeling. InCVPR, 2004.

[8] G. Heitz, G. Elidan, B. Packer, and D. Koller. Shape-based
object localization for descriptive classi�cation. InNIPS,
2008.

[9] G. Heitz, S. Gould, A. Saxena, and D. Koller. Cascaded
classi�cation models: Combining models for holistic scene
understanding. InNIPS, 2008.

[10] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface
layout from an image.IJCV, 2007.

[11] D. Hoiem, A. A. Efros, and M. Hebert. Closing the loop on
scene interpretation.CVPR, 2008.

[12] D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert. Recov-
ering occlusion boundaries.ICCV, 2007.

[13] P. Kohli, L. Ladicky, and P. Torr. Robust higher order poten-
tials for enforcing label consistency. InCVPR, 08.

[14] B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and
A. Zisserman. Using multiple segmentations to discover ob-
jects and their extent in image collections. InCVPR, 06.

[15] B. C. Russell, A. B. Torralba, K. P. Murphy, and W. T. Free-
man. Labelme: A database and web-based tool for image
annotation.IJCV, 2008.

[16] A. Saxena, M. Sun, and A. Y. Ng. Learning 3-D scene struc-
ture from a single still image. InPAMI, 2008.

[17] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-
Boost: Joint appearance, shape and context modeling for
multi-class obj. rec. and seg. InECCV, 2006.

[18] A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual
models for object detection using BRFs. InNIPS, 2005.

[19] Z. Tu. Auto-context and its application to high-level vision
tasks. InCVPR, 2008.

[20] Z. Tu, X. Chen, A. L. Yuille, and S.-C. Zhu. Image parsing:
Unifying segmentation, detection, and recognition. InICCV,
2003.

[21] P. Viola and M. J. Jones. Robust real-time face detection.
IJCV, 2004.

[22] J. Winn and N. Jojic. LOCUS: Learning object classes with
unsupervised segmentation. InICCV, 2005.

[23] J. Winn and J. Shotton. The layout consistent random �eld
for recognizing and segmenting partially occluded objects.
In CVPR, 2006.

[24] L. Yang, P. Meer, and D. J. Foran. Multiple class segmenta-
tion using a uni�ed framework over mean-shift patches. In
CVPR, 2007.


