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Abstract

A popular approach to pixel labeling problems, such as
multiclass image segmentation, is to construct a pairwise
conditional Markov random field (CRF) over image pixels
where the pairwise term encodes a preference for smooth-
ness within local 4-connected or 8-connected pixel neigh-
borhoods. Recently, researchers have considered higher-
order models that encode soft non-local constraints (e.g.,
label consistency, connectedness, or co-occurrence statis-
tics). These new models and the associated energy mini-
mization algorithms have significantly pushed the state-of-
the-art for pixel labeling problems.

In this paper, we consider a new non-local constraint
that penalizes inconsistent pixel labels between disjointim-
age regions having similar appearance. We encode this
constraint as a truncated higher-order matching potential
function between pairs of image regions in a conditional
Markov random field model and show how to perform effi-
cient approximate MAP inference in the model. We experi-
mentally demonstrate quantitative and qualitative improve-
ments over a strong baseline pairwise conditional Markov
random field model on two challenging multiclass pixel la-
beling datasets.

1. Introduction
The task of labeling each pixel in an image for the pur-

pose of semantic understanding is a key challenge in com-
puter vision that has received increasing attention in recent
years [11, 26, 18, 10]. Here the aim is to provide a semantic
(or geometric) segmentation of the image where each pixel
is assigned a label from a pre-defined set of classes,e.g.,
sky, road, tree, etc. The most successful approaches use
conditional Markov random fields (CRFs), which allow lo-
cal appearance information (such as color and texture) to be
combined with a smoothness prior that favors labelings in
which neighboring pixels are assigned the same class label.

There has been a recent trend to improve results for pixel
labeling problems by incorporating higher-order terms into
the CRF models. These terms bias the energy-minimizing

solution of the model towards one that has a more desirable
label configuration. For example, in figure-ground segmen-
tation a preference for global connectivity [27, 22] or seg-
mentation “tightness” [20] may be encoded. These prefer-
ences need not be hard constraints and thus can be overrid-
den given enough contrary evidence.

In the context of multiclass image segmentation, Ladicky
et al. [18] proposed using higher-order terms, known as
consistency potentials, to promote smoothness over large
superpixel regions rather than relying on the simple pair-
wise smoothness terms encoded by traditional CRF mod-
els. While their approach encourages a uniform label as-
signment over large regions, it does not allow long-range
similarity constraints to be encoded,e.g., that a patch in one
part of the image resembles a patch in another part of the
image and therefore should be labeled consistently.

Consider the side view of a car. In that view, not only
do the two visible wheels of the car have similar appear-
ance, but they also suggest similar labeling pattern for their
surroundings—i.e. car body above and road below. In this
paper, we investigate a novel higher-order potential func-
tion for encoding this type of non-local symmetry infor-
mation. Specifically, we incorporate, into a unified CRF
model, terms that encourage consistent pixelwise labelings
between pairs of image patches with similar appearance.

Our model is motivated by the idea that appearance-
based symmetry within an image plays an important part
in scene understanding and can be exploited to improve seg-
mentation of the image (e.g. see [1, 29]). In other words, our
model is based on the observation thatsimilar appearance
of disjoint image regions suggests similar semantic meaning
for pairs of corresponding pixels in the regions.

Our contributions are two-fold: First, we introduce a
new kind of higher-order term—thetruncated higher-order
matching potential—that captures long-range similarity be-
tween image regions as soft constraints in a CRF model
for pixel labeling. Second, we show how to approximately
minimize the resulting energy function efficiently using a
graph-cut construction. Experimental results on two chal-
lenging datasets validate our approach.
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2. Background and Related Work

Many recent works on multiclass pixel labeling build on
the conditional Markov random field (CRF) models intro-
duced by Heet al. [11] and Shottonet al. [26] (although the
basic idea of constructing a Markov random field over im-
age pixels dates back even further,e.g., [2, 9]). In these
works, each pixel in the image is associated with a ran-
dom variable and the distribution over the joint assignment
to all random variables is defined by both local features
(encoded as unary potentials) and pairwise correlations be-
tween neighboring variables.

These pairwise CRF models perform remarkably well
and the introduction of efficient inference algorithms, such
asα-expansion andαβ-swap [6], for finding good approxi-
mate maximum a posteriori (MAP) solutions, has solidified
CRFs as the dominant method for multiclass image segmen-
tation and as the foundation for more sophisticated scene
understanding tasks,e.g., [10, 28].

Despite their success, pairwise CRF models still leave
much room for improvement,e.g., correctly labeling pix-
els near object boundaries, and a number of recent works
address these problems through the introduction of higher-
order terms and the associated energy minimization (or
MAP inference) algorithms.

Some works, for example, enforce constraints on the
number of distinct labels appearing in a solution [21, 8],
label co-occurrence [19], or region connectivity [27, 22]. In
contrast to our approach, these works aim to encode a pref-
erence for the structure of the solution without regard to
pixel appearance. As such, the models are complementary
to the higher-order terms developed in our work.

Kohli et al. [14] introduce the idea of higher-order po-
tentials that enforce label consistency over superpixel re-
gions. The higher-order potentials are instantiations of
the so-called robustPn model [13] that imposes a linear
penalty on the number of pixels that disagree with the most
frequently occurring label within the superpixel. The term
is truncated by some maximum possible penalty. Ladickyet
al. [18] extend this image segmentation model by allowing
class label predictions at the superpixel level to influence
pixel-level labels.

Our model for multiclass pixel labeling is strongly moti-
vated by the these works, but unlike the robustPn model,
our model does not attempt to enforce label consistency
over a region. Rather our model enforces a consistent la-
belpatternbetween two separate regions.

At a conceptual level, our ideas relate to the work of
Bagonet al. [1] on interactive figure-ground segmentation.
In that work, the authors suggest that good segments are
self-similar,i.e. can be composed from other chunks of the
same segment. Our model can be thought of as an extension
of this broad idea to the multiclass labeling case.

Perhaps most similar to our research are works that con-

Figure 1. Schematic showing the mapping between two regionsP

andQ. We wish to penalize labelings in which the two regions
disagree on corresponding pixel assignments,yp andyq.

sider pattern templates. The work of Zhuet al. [30] intro-
duce segmentation templates into a multiclass pixel label-
ing CRF model. A similar notion are the pattern potentials
introduced by Rotheret al. [24] and Komodakis and Para-
gios [16]. However, these templates and patterns are chosen
a priori and attempt to constrain the label pattern within an
image region rather than match the configuration of labels
between image regions.

3. Higher-order Matching Potential

In this section we present our higher-order term for en-
forcing consistency between labels of corresponding pixels
from two disjoint regions in the image. We also show how
this term can be optimized in the context of move-making
MAP inference for the CRF model. In Section4 we will
show how we incorporate this higher-order term into a stan-
dard CRF model for multiclass pixel labeling.

3.1. Problem Setup

Our framework for developing the higher-order match-
ing potential is the problem of multiclass pixel labeling. In
this problem every pixel in aW × H image is assigned a
label from a discrete label setL. The joint labeling over all
pixels is denoted byy ∈ LW×H .

Typically, the labelyp for any given pixelp will depend
on both local appearance features derived from the image
anda priori knowledge encoded in the model. For example,
most pixel labeling models incorporate a smoothness prior
that encodes the fact that, in real images, neighboring pixels
usually take the same label.

For our problem, we wish to encode the constraint that
corresponding pixels between two matching regions in the
image agree on their label. We will defer discussion of how
these regions are discovered in a specific image until Sec-
tion 4. For now, consider two equal-size sets of pixelsP
andQ. Letm : P → Q be a one-to-one mapping (bijec-
tion) from the pixelsp ∈ P to the pixelsq ∈ Q. This is
depicted in Figure1. We define ourtruncated higher-order



Figure 2. Truncated higher-order matching potential. The potential
penalizes disagreement between labels,yp andyq, of correspond-
ing pixels within matched regions,P andQ, up to some maximum
penalty,Mmax.

matching potentialbetweenP andQ as

M(y;P,Q) , min




∑

p∈P

[[yp 6= ym(p)]]wp, M
max



 (1)

wherewp is a non-negative per-pixel weight, and [[T ]] is the
indicator function, taking the value one ifT is true and zero
otherwise. The potential function is illustrated in Figure2.

Intuitively, M(y;P,Q) penalizes the (weighted) num-
ber of disagreements between labels of pixels inP and the
corresponding pixels inQ up to some maximum penalty
Mmax. The rate at which pixel disagreements are penalized
is controlled by the parameterswp, which can be set differ-
ently for each matching pair of pixels. The potential allows
us to encode a preference for two patches in an image to
take the samelabel configuration. It is not necessary, how-
ever, that all variables in the scope of the potential take the
same label as enforced by other higher-order approaches,
e.g., [14]. For example, some pixels in the patch could be
labeled as car and others as road. The potential is truncated
so that we only pay a maximum penalty when this prefer-
ence is wrong (i.e., outweighed by other evidence).

By introducing an auxiliary binary variablez, the trun-
cated higher-order matching potential in Equation1 can be
re-written as

M(y;P,Q)

= min
z∈{0,1}

∑

p∈P

z[[yp 6= ym(p)]]wp + (1− z)Mmax (2)

= min
z∈{0,1}

∑

p∈P

fp
(
yp, ym(p), z;wp

)
+ (1− z)Mmax (3)

where for brevity in the subsequent discussion we have re-
placed the summand in Equation2 by the functionfp over
variablesyp, ym(p), andz, and parameterized bywp.

As discussed in Section2, our truncated higher-order
matching potential and its transformation to a minimiza-
tion over the sum of terms in Equation3 shares similarities

with the robust-Pn model introduced by Kohliet al. [13].
However, unlike their model our terms encode a prefer-
ence for matching labels between two distinct sets of pix-
els rather than a set of pixels and single label. Like, the
robust-Pn model, our formulation can be extended to an
arbitrary non-decreasing concave function over the number
of mismatching labels,e.g., by replacing Equation1 with
a minimization over a set of linear functions of the form
ak

∑
p∈P [[yp 6= ym(p)]]wp + bk. However, we do not con-

sider this extension further in this paper.
Note that ifMmax ≥

∑
p∈P wp then Equation1 reduces

toM(y;P,Q) =
∑

p∈P [[yp 6= ym(p)]]wp, which is simply
a sum of individual Potts potentials. In this case the poten-
tial is not truncated, and the energy function can be solved
efficiently by well-known techniques (e.g., α-expansion or
αβ-swap [6]). Furthermore, ifwp ≥ Mmax for all p ∈ P
thenM(y;P,Q) = Mmax for all assignments toy. The
case ofMmax <

∑
p∈P wp < Mmax|P| is more interesting

and requires a specialized optimization approach.

3.2. Move-making Optimization

A popular approach to minimizing energy functions aris-
ing in computer vision is to use a class of algorithms known
as move-making algorithms. Here optimization is per-
formed by a series of moves, each of which projects the
problem onto a restricted state-space and finds an optimal
or near-optimal solution in the reduced space. When the
subproblems can be solved exactly strong convergence and
optimality conditions can sometimes be guaranteed.

One of the most successful move-making algorithm for
energy functions appearing in multiclass labeling problems
is theα-expansion algorithm of Boykovet al. [6]. Here,
each move considers keeping a random variable’s current
assignment or switching its assignment to a givenα ∈ L.
It is well-known that when the energy function defined over
the restricted state-space is submodular (and pairwise) the
optimalα-expansion move can be found by finding the min-
st-cut on a suitably constructed graph [3, 15].1

Concretely, letyprev be the current best assignment to the
variables (i.e., before theα-expansion move) and letynext

be the assignment to the variables after the move. We de-
fine ỹαp ∈ {0, 1} to be the binary variable associated with
multiclass variableyp ∈ L for a givenα-expansion move
where the value0 indicates no change in the corresponding
variable’s assignment and the value1 indicates changing the
corresponding variable’s assignment toα. Therefore, after
the move we have

ynext
p =

{
y

prev
p if ỹαp = 0
α if ỹαp = 1.

(4)

1Furthermore, for computer vision applications, very efficient imple-
mentations of graph-cut algorithms exist and are publicly available [5].



Now let f̃αp (ỹ
α
p , ỹ

α
q , z;wp) be the projection offp onto

the restricted (binary) move-space. We identify five cases
for this projection and partitionP =

⋃5
i=1 Pi into five dis-

joint sets corresponding to each case defined as follows:

P1 =
{
p ∈ P : yprev

p = α andyprev
q = α

}
(5)

P2 =
{
p ∈ P : yprev

p = α andyprev
q 6= α

}
(6)

P3 =
{
p ∈ P : yprev

p 6= α andyprev
q = α

}
(7)

P4 =
{
p ∈ P : yprev

p 6= yprev
q andyprev

p , yprev
q 6= α

}
(8)

P5 =
{
p ∈ P : yprev

p = yprev
q 6= α

}
(9)

whereq = m(p) is the pixel inQ matched to pixelp ∈ P. It
is easy to show that̃fαp can be represented by the following
pseudo-Boolean function [3]:

f̃αp =





0 if p ∈ P1

wpz
(
1− ỹαq

)
if p ∈ P2

wpz
(
1− ỹαp

)
if p ∈ P3

wpz
(
1− ỹαp ỹ

α
q

)
if p ∈ P4

wpz
(
ỹαp + ỹαq − 2ỹαp ỹ

α
q

)
if p ∈ P5

(10)

Unfortunately, forp ∈ P5 the pseudo-Boolean function
f̃αp is non-submodular. Typical approaches for dealing with
non-submodular terms are:

• approximate the potential by one that is submodular;
• relax the problem (e.g., using QPBO [25] or dual

decomposition [17]) and round the (fractional) result
onto the variable state-space;

• coordinate descent (e.g., hold thez’s for each higher-
order term fixed and optimize overy, then holdy fixed
and optimize over thez’s) or exhaustive search over the
z’s (if the number of higher-order potentials is small).

We take the first approach and approximate thefp term as

fp
(
yp, ym(p), z;wp

)
≈ wp[[yp 6= ym(p)]] (11)

whenever this situation occurs during anα-expansion move,
i.e., when the labels forp andq are equal before the move
(and not equal toα). We stress that this approximation is
only applied to the subset of terms meeting the above condi-
tion (i.e., p ∈ P5), and note that it is an over-approximation
of the original potential functionfp (and is tight when
z = 1). The effect is to favor configurations where the
corresponding pixels continue to agree on their labels.

With this approximation our energy function is always
graph-representable and an optimalα-expansion move
(with respect to the approximate energy function) can be
found. Forp ∈ P4 we use the construction of Ishikawa [12]
to convertf̃αp from a cubic pseudo-Boolean function to a
quadratic one. Specifically we introduce an auxiliary binary
variableap for all p ∈ P4 and writef̃αp as

wp

(
z + min

ap∈{0,1}
2ap − ỹαp ap − ỹαq ap − zap

)
. (12)

Figure 3. Graph construction for performing anα-expansion move
on the truncated higher-order matching potential,M(y;P,Q).
Theap are auxiliary nodes introduced by the Ishikawa construc-
tion for p ∈ P4. The other nodes correspond to variables in the
potential function. The minimumst-cut in the graph corresponds
to the optimal assignment toy. Variables corresponding to nodes
in theS partition are assigned label 1. The remaining variables are
assigned label 0.

Figure3 shows the completest-graph construction for a
single truncated higher-order matching potential. As is stan-
dard for approximate moves, at the end of eachα-expansion
step we compare the solution found with the current best as-
signment, and keep the one with lower energy. This process
is continued, repeatedly iterating through allα ∈ L, until
no improvement in the energy can be found. This approach
appears to work well in practice even though we cannot pro-
vide a formal guarantee on the quality of the solution at con-
vergence due to our over-approximation of terms fromP5.

4. Multiclass Pixel Labeling Model

In this section we describe our multiclass pixel labeling
model. We begin by describing the components of the stan-
dard pairwise energy function. We then introduce the trun-
cated higher-order matching potentials into this model.

4.1. Pairwise CRF Model

Our model extends the standard pairwise CRF model for
multiclass pixel labeling [11, 26]. Here the energy for a
pixel labelingy ∈ LW×H given image featuresx is defined
over unary and pairwise terms as

E (y;x) =
∑

p

ψp(yp) + λ
∑

pq

ψpq(yp, yq) (13)

whereψp is the unary potential for assigning labelyp to
pixel p andψpq is a contrast-dependent smoothing prior that
penalizes adjacent pixelsp andq for taking different labels.2

2For brevity we omit the featuresx from the arguments of the potential
functionsψp andψpq . It should be understood that all potential functions
are conditioned onx.



The non-negative constantλ trades-off the strength of the
smoothness prior against the unary potential and is chosen
by cross-validation on the training set.

An implementation of the model we use is provided by
the Darwin software library (version 0.9)3. Briefly, the
unary termψp is constructed by learning one-versus-all
boosted decision tree classifiers for each label inL. The
input to the boosted classifiers are 669-element per-pixel
feature vectors comprised of 17-dimensional filter bank re-
sponses, dense HOG descriptors, RGB color, and the nor-
malizedx andy coordinates of the pixel. For the filter bank
and HOG features we also compute the mean and standard
deviation over pixels within the same row and column asp

and over5 × 5 pixel regions in a3 × 3 grid centered on
p. Once the one-versus-all boosted decision tree classifiers
are learned, their outputs are calibrated via a multiclass lo-
gistic classifier [23] andψp(yp) taken as the negative log-
likelihood predicted by the multiclass logistic for classyp.

As is typical for pixel labeling CRFs [4], our contrast-
dependent smoothness priorψpq takes the form

ψpq(yp, yq) =

{
exp

(
−

‖xp−xq‖
2

2β

)
, if yp 6= yq

0, otherwise
(14)

wherexp andxq are the RGB color vectors for pixelsp and
q, respectively, andβ is the mean square-difference between
color vectors over all adjacent pixels in the image.

4.2. Higher-Order CRF Model

We append to the pairwise CRF (Equation13) one trun-
cated higher-order matching potential (Equation1) for each
pair of matching regions(P(t),Q(t)) to give

E (y;x) =
∑

p

ψp(yp)

︸ ︷︷ ︸
unary term

+λ
∑

pq

ψpq(yp, yq)

︸ ︷︷ ︸
smoothness term

+ µ
∑

t

Mt(y;P
(t),Q(t))

︸ ︷︷ ︸
higher-order term

(15)

wheret indexes the region pairs. The constantµ trades-off
the strength of the truncated higher-order matching poten-
tials against other terms in the model and is set by finding
the optimal value on the training set of images.

In our experiments, we find matching regions by densely
sampling rectangular patches of size32×32 to96×96 in 16
pixel increments. Patches with nearly uniform appearance
were discarded. For each remaining patchP, we compute
the normalized cross-correlation (NCC) between the patch
and image in a sliding-window fashion (excluding the orig-
inal location of the patch),i.e., for each candidate matchQ,

3http://drwn.anu.edu.au/

we compute

NCC(P,Q) =

∑
p∈P x

T
p xm(p)√∑

p∈P ‖xp‖2 ·
∑

q∈Q ‖xq‖2
(16)

wherexp is the 3-element RGB feature vector for pixelp.4

The mappingm : P → Q is defined in the obvious way,
i.e., q = m(p) is pixel q that has the same relative off-
set from the top-left of rectangular regionQ as pixelp has
from the top-left of rectangular regionP. To capture re-
flective symmetry, we also compute the normalized cross-
correlation with a horizontally flipped version of the patch.

We discard any candidate pair(P,Q) whose NCC is be-
low 0.9 and then perform non-maximal neighborhood sup-
pression (with 0.5 area-of-overlap criterion) on the remain-
ing pairs to remove densely overlapping matches. The re-
sulting pairs of matched regions are used to construct the
truncated higher-order matching potential terms.

To make our approach robust to small deformations in
object boundaries and misalignments within a matched re-
gion we weight each pixelwise match by how well the indi-
vidual pixel colors agree (see Figure4). Specifically, for a
given pair of regions(P(t),Q(t)), we set

w(t)
p =

1

|P(t)|
·

2xTp xm(p)

‖xp‖2 + ‖xm(p)‖2
(17)

We then set the maximum penalty for the potential to

Mmax = κ
∑

p∈P(t)

w(t)
p (18)

whereκ ∈ [0, 1] is a parameter shared between all higher-
order potentials. In our work we setκ to 0.85. This
completes the specification for each truncated higher-order
matching term.

5. Experimental Results

We performed experiments on the multiclass pixel la-
beling task and compared results on CRF models with
and without our truncated higher-order matching potentials.
Our experiments were conducted on two standard datasets:
(i) the 21-class MSRC dataset [7] consisting of 591 images,
and (ii) the 8-class Stanford Background dataset [10] con-
sisting of 715 images. We use the same train/test split as
[26] for the MSRC dataset (335 training and 256 evaluation
images). For the Stanford Background dataset we follow
previous works and randomly partition the images into sets
of 572 and 143 images for training and testing, respectively.

4The use of RGB features is not critical to our approach and could
have been replaced with other pixelwise features,e.g., CIELab, HOG,etc.
Moreover, our algorithm does not appear to be sensitive to the choice of
NCC matching score.

http://drwn.anu.edu.au/


(a) images with matched regions

(b) patchP

(c) patchQ

(d) weightswp

(e) patchP

(f) patchQ

(g) weightswp

Figure 4. Illustration of weights ((d) and (g)) assigned to pixels
within matched regions ((b) and (c), and (e) and (f), respectively).
Panels (d) and (g) are colored with red indicating a higher weight.

We learned all parameters of our models from the subset
of training images with the objective of maximizing (global-
averaged) pixelwise accuracy. Results are reported on the
hold-out set of evaluation images. Inference in our model is
very fast, typically taking less than two seconds per image.
Note that this does not include the time taken to compute
image features nor perform the region matching, both of
which take considerably longer.

Figure 5 shows a cumulative plot of label agreement
between pixels within matching regions (on the MSRC
dataset). The vast majority of matches demonstrate near
perfect agreement supporting our claim that similarity in
appearance implies similarity in semantic label. However,
approximately 10% of the matches show very poor agree-
ment. Our method is robust to these inconsistent matches.

Quantitative results from are shown in Table1. For both
datasets the inclusion of the truncated higher-order match-
ing potential provides a small increase in accuracy:1.2%
for the MSRC dataset and0.98% for the Stanford Back-
ground dataset. The table also shows results from a vari-
ant of our model without truncation (i.e., settingκ = 1
in Eqn. (18)). We note that our MSRC result is below the
state-of-the-art result of 86% by Ladickyet al. [18]. How-
ever, as noted in their work, significant improvement comes
from strong unary terms as a result of better pixel-level fea-
tures. The purpose of our work is to explore the higher-
order matching potential rather than engineer new features.

Qualitative results are shown in Figure6 and Figure7
for the MSRC and Stanford Background datasets, respec-
tively. Note that for visualization, column (b) only shows
the top ten non-overlapping matched regions—the model
used to generate the results in column (d) contains many
more matches. As can be seen, many of the matches are
over regions where the baseline CRF model already labels
the scene correctly and therefore have no effect on the fi-
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Figure 5. Plot showing percentage agreement between correspond-
ing pixels in matched regions with respect to (i) ground-truth la-
bels, (ii) output from our model with higher-order matching po-
tentials, (iii) baseline CRF output, and (iv) unary model output.

nal labeling. The remaining matches, however, can result in
significant improvements to the segmentation quality.

While our model allows pixels in the image mislabeled
by the baseline CRF model to be corrected, it can also re-
sult in a degradation in performance, for example, when in-
correctly classified pixels on one side of the match have a
stronger influence ona priori correctly labeled pixels on the
other (see, for example, the last two rows of Figure6).

6. Discussion
Much recent work on pixel labeling problems has fo-

cused on the addition of higher-order energy terms to en-
code preferences for particular label configurations. We
have explored one such term that encodes a novel prefer-
ence for consistent label assignments between two match-
ing image regions. We showed how to perform efficient
approximate inference in models with such terms using a
graph-cut construction. Furthermore, we demonstrated the
model on two standard multiclass pixel labeling datasets.

Our work suggest a number of interesting areas for fur-
ther research. First, it would be interesting to consider pixel
mappings that are not necessarily one-to-one. For example,
matching two regions at different scales would result in a
many-to-one mapping from pixels at the fine scale to those
at the coarse scale. Non-rectangular matches could also be
explored,e.g., between superpixels.

A second exciting area for future work is in matching re-
gions over multiple images instead of within a single image.
This may be particularly relevant for videos or collections
of images with significant semantic overlap,e.g., taken in
the same geographic vicinity.
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GLOBAL -AVERAGED CLASS-AVERAGED

TEST SET BASELINE HIGHER-ORDER BASELINE HIGHER-ORDER

DATASET IMAGES UNARY PAIRWISE κ = 1 κ = 0.85 UNARY PAIRWISE κ = 1 κ = 0.85
MSRC 256 73.83 79.73 80.75 80.97 64.15 69.03 70.76 71.06
Stanford 143 73.01 78.63 79.07 79.61 68.27 72.24 72.45 72.87

Table 1. Pixelwise semantic labeling accuracy for 21-class MSRC [7] and 8-class Stanford Background [10] datasets. Compares baseline
unary and pairwise CRF model against model with non-truncated and truncated higher-order matching potentials.

(a) image (b) matches (c) baseline CRF (d) w/ match. pot. (e) ground-truth

Figure 6.Best viewed in color.Example results from our multiclass pixel labeling experiments on the 21-class MSRC dataset [7]. Each
row shows a different instance. The test image is shown in column (a) and top ten non-overlapping matches shown in (b). Matched regions
are color-coded and the orientation of the match indicated by the dot in the upper-left or upper-right corner of the region. Semantic class
predictions for the baseline model and one with truncated higher-order matching potentials are shown in columns (c) and (d), respectively.



(a) image (b) matches (c) baseline CRF (d) w/ match. pot. (e) ground-truth

Figure 7.Best viewed in color. Example results from our multiclass pixel labeling experiments on the 8-class Stanford Background
dataset [10]. See Figure6 for description of panels.
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