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Abstract solution of the model towards one that has a more desirable
. . label configuration. For example, in figure-ground segmen-
A popular approach to pixel labeling problems, such as tation a preference for global connectivity/ 27] or seg-

mt:}lgﬁliazs Iml\jlaglf ﬁ%g?? Td '%SFCOT/St:uif; a pa|ir)\(N||se mentation “tightness”{0] may be encoded. These prefer-
co onal Markov random field ( ) ove age PIXEIS o1 -es need not be hard constraints and thus can be overrid-

where t_he_ pairwise term encodes a preference f_or smo_oth-den given enough contrary evidence.
ness within local 4-connected or 8-connected pixel neigh- . . . .
borhoods. Recently, researchers have considered higher- In the context ofmultllclassilmage segmentation, Ladicky
order models that encode soft non-local constraimsy ( et al.. [14] proposeq using higher-order terms, known as
label consistency, connectedness, or co-occurrencesstati consistency potentials, to promote smoothness over large

tics). These new models and the associated energy mini-Sl_”OerpiXeI regions rather than relying on_t_he simple pair-
mization algorithms have significantly pushed the state-of wise smpothngss terms encoded by tradltlolnal CRF mod-
the-art for pixel labeling problems. els. While their approach encourages a uniform label as-

In this paper, we consider a new non-local constraint signment over large regions, it does not allow long-range

that penalizes inconsistent pixel labels between disjoint similarity constraints to be encodaglg, that a patch in one

age regions having similar appearance. We encode this_part of the image resembles a patch in another part of the

constraint as a truncated higher-order matching potential '™29€ and therefore should be labeled consistently.
function between pairs of image regions in a conditional ~ Consider the side view of a car. In that view, not only
Markov random field model and show how to perform effi- do the two visible wheels of the car have similar appear-
cient approximate MAP inference in the model. We experi- 21C€, but they also suggest similar labeling pattern far the
mentally demonstrate quantitative and qualitative imgrov ~ Surroundings—-e. car body above and road below. In this
ments over a strong baseline pairwise conditional Markov Paper, we investigate a novel higher-order potential func-

random field model on two challenging multiclass pixel la- tion for encoding this type of non-local symmetry infor-
beling datasets. mation. Specifically, we incorporate, into a unified CRF

model, terms that encourage consistent pixelwise lak®ling
) between pairs of image patches with similar appearance.
1. Introduction Our model is motivated by the idea that appearance-
The task of labeling each pixel in an image for the pur- based symmetry within an image plays an important part
pose of semantic understanding is a key challenge in com-in scene understanding and can be exploited to improve seg-
puter vision that has received increasing attention inmece mentation of the images(g see [, 29). In other words, our
years [L1, 26, 18, 10]. Here the aim is to provide a semantic model is based on the observation teahilar appearance
(or geometric) segmentation of the image where each pixelof disjointimage regions suggests similar semantic megnin
is assigned a label from a pre-defined set of classggs,  for pairs of corresponding pixels in the regions
sky road, tree, etc  The most successful approaches use  Our contributions are two-fold: First, we introduce a
conditional Markov random fields (CRFs), which allow lo- new kind of higher-order term—thteuncated higher-order
cal appearance information (such as color and texture) to bematching potential-that captures long-range similarity be-
combined with a smoothness prior that favors labelings in tween image regions as soft constraints in a CRF model
which neighboring pixels are assigned the same class labelfor pixel labeling. Second, we show how to approximately
There has been a recent trend to improve results for pixelminimize the resulting energy function efficiently using a
labeling problems by incorporating higher-order terms int graph-cut construction. Experimental results on two chal-
the CRF models. These terms bias the energy-minimizinglenging datasets validate our approach.



2. Background and Related Work

Many recent works on multiclass pixel labeling build on q= _77_7/(19)
the conditional Markov random field (CRF) models intro- Lot T
duced by Heet al. [11] and Shottoret al. [26] (although the :

basic idea of constructing a Markov random field over im-
age pixels dates back even furtherg, [2, 9]). In these
works, each pixel in the image is associated with a ran-

dom variable and the distribution over the joint assignment P Q
to all random variables is defined by both local features
(encoded as unary potentials) and pairwise correlations be
tween neighboring variables.

These pairwise CRF models perform remarkably well
and the introduction of efficient inference algorithms,tsuc
asa-expansion andS-swap [], for finding good approxi-
mate maximum a posteriori (MAP) solutions, has solidified sider pattern templates. The work of Zhtial. [30] intro-
CRFs as the dominant method for multiclass image segmenduce segmentation templates into a multiclass pixel label-
tation and as the foundation for more sophisticated sceneing CRF model. A similar notion are the pattern potentials
understanding tasks,g, [10, 2€]. introduced by Rotheet al. [24] and Komodakis and Para-

Despite their success, pairwise CRF models still leave gios [16]. However, these templates and patterns are chosen
much room for improvemeng.g, correctly labeling pix-  a priori and attempt to constrain the label pattern within an
els near object boundaries, and a number of recent workmage region rather than match the configuration of labels
address these problems through the introduction of higher-petween image regions.
order terms and the associated energy minimization (or

Figure 1. Schematic showing the mapping between two regfons
and Q. We wish to penalize labelings in which the two regions
disagree on corresponding pixel assignmegpandy,.

MAP inference) algorithms. 3. Higher-order Matching Potential

Some works, for example, enforce constraints on the ) ) )
number of distinct labels appearing in a soluticii,[8], In this section we present our higher-order term for en-
label co-occurrencelf], or region connectivity$7, 27). In forcing consistency between labels of corresponding pixel

contrast to our approach, these works aim to encode a preffrom two disjoint regions in the image. We also show how

erence for the structure of the solution without regard to this term can be optimized in the context of move-making

pixel appearance. As such, the models are complementanMAP inference for the CRF model. In Sectidnwe will

to the higher-order terms developed in our work. show how we incorporate this higher-order term into a stan-
Kohli et al. [14] introduce the idea of higher-order po- dard CRF model for multiclass pixel labeling.

tgntials that eqforce label consis_tency over supgrpixel '® 3 1 Problem Setup

gions. The higher-order potentials are instantiations of

the so-called robusP™ model [L3] that imposes a linear Our framework for developing the higher-order match-

penalty on the number of pixels that disagree with the mosting potential is the problem of multiclass pixel labeling. |

frequently occurring label within the superpixel. The term this problem every pixel in & x H image is assigned a

is truncated by some maximum possible penalty. Ladatky label from a discrete label sét The joint labeling over all

al. [19] extend this image segmentation model by allowing pixels is denoted by € £V *#,

class label predictions at the superpixel level to influence  Typically, the labely, for any given pixelp will depend

pixel-level labels. on both local appearance features derived from the image
Our model for multiclass pixel labeling is strongly moti- anda priori knowledge encoded in the model. For example,
vated by the these works, but unlike the robixét model, most pixel labeling models incorporate a smoothness prior

our model does not attempt to enforce label consistencythat encodes the fact that, in real images, neighborindpixe
over a region. Rather our model enforces a consistent la-usually take the same label.
bel patternbetween two separate regions. For our problem, we wish to encode the constraint that
At a conceptual level, our ideas relate to the work of corresponding pixels between two matching regions in the
Bagonet al. [1] on interactive figure-ground segmentation. image agree on their label. We will defer discussion of how
In that work, the authors suggest that good segments arghese regions are discovered in a specific image until Sec-
self-similar,i.e. can be composed from other chunks of the tion 4. For now, consider two equal-size sets of pixEls
same segment. Our model can be thought of as an extensioand Q. Letm : P — Q be a one-to-one mapping (bijec-
of this broad idea to the multiclass labeling case. tion) from the pixelsp € P to the pixelsq € Q. This is
Perhaps most similar to our research are works that con-depicted in Figuré.. We define outruncated higher-order



with the robust?”™ model introduced by Kohlet al. [13].
However, unlike their model our terms encode a prefer-
ence for matching labels between two distinct sets of pix-
els rather than a set of pixels and single label. Like, the
robust" model, our formulation can be extended to an
arbitrary non-decreasing concave function over the number
- z w, of mismatching labelse.g, by replacing Equatiod with
pEP a minimization over a set of linear functions of the form
Ol ar Y pep [Yp 7 Ymp]wp + br. However, we do not con-

. : : _ . sider this extension further in this paper.
Figure 2. Truncated higher-order matching potential. The potential e max .
penalizes disagreement between labglsandy,, of correspond- Note that ifM™ > 3_ , w, then Equatiorl rec_juces
ing pixels within matched region® andQ, up to some maximum O M (4P, Q) =>_ cp [Yp # Ym(p)]wp, Which is simply
penalty,M ™, a sum of individual Potts potentials. In this case the poten-

tial is not truncated, and the energy function can be solved

efficiently by well-known techniques(g, a-expansion or
matching potentiabetweer” andQ as af-swap B]). Furthermore, ifw, > M™for all p € P
then M (y; P, Q) = M™* for all assignments tg. The
case ofM™ < 57w, < M™{P|is more interesting
and requires a specialized optimization approach.

M(y;P, Q) £ min Z [yp + ym(p)]wp7 My (1)
peEP

wherew, is a non-negative per-pixel weight, andJis the 3.2. Move-making Optimization
indicator function, taking the value oné€iifis true and zero

. . N - A popular approach to minimizing energy functions aris-
otherwise. The potential function is illustrated in Fig@re

itivel | h ioh ing in computer vision is to use a class of algorithms known
Intuitively, M(y; P, Q) penalizes the (weighted) num- o&" \ve making algorithms. Here optimization is per-

ber of disagreements between labels of pixel®iand the formed by a series of moves, each of which projects the

corrnrispondmg pixels i up to some maximum penalty oh1em onto a restricted state-space and finds an optimal
M. The rate at which pixel disagreements are penalizedy naar.optimal solution in the reduced space. When the

is controlled by the paramgte@,_whlch can be se.t differ- subproblems can be solved exactly strong convergence and
ent![y for eagh matcr;lng palrfof F;'de' -[hr? potential aIIowst optimality conditions can sometimes be guaranteed.
us 1o encode a preterence for two palches In an Image 10 - 50 ¢ the most successful move-making algorithm for

take the samtab_el conf_|gurat|on Itis not necessary, how- energy functions appearing in multiclass labeling proldem
ever, that all variables in the scope of the potential take th . : :
is the a-expansion algorithm of Boykoet al. [6]. Here,

same label as enforced by othgr higher-order approacheseach move considers keeping a random variable’s current
e.g, [14]. For example, some pixels in the patch could be ssignment or switching its assignment to a giver £
labeled as car and others as road. The potential is truncateﬁ :

<o that we onlv pay a maximum penalty when this prefer- is well-known that when the energy function defined over
. Y pay . P Y P the restricted state-space is submodular (and pairwige) th
ence is wrongi(e., outweighed by other evidence).

. : = ] . optimala-expansion move can be found by finding the min-
By introducing an auxiliary binary variable the trun- . 1
. . 7 st-cut on a suitably constructed grapgh [5].
cated higher-order matching potential in Equatiocan be rev .
; Concretely, lety®™ be the current best assignment to the
re-written as ) . . !
variables i.e., before then-expansion move) and lgt"®

M(y; P, Q) be the assignment to the variables after the move. We de-
) max fineyy € {0,1} to be the binary variable associated with
T Loy Z 2Lyp # Ymplwp + (1 —2)M ) multiclass variabley, € £ for a givena-expansion move
PEP where the valué indicates no change in the corresponding

= min Z Fo(Ups Ym(p)> 25 wp) + (1 — 2)M™ (3) variable’s assignment and the valumdicates changing the
2€{0,1} correspondin iable’ i tto Theref ft
peP p g variable’s assignmentato Therefore, after

Lo , ) the move we have
where for brevity in the subsequent discussion we have re-

placed the summand in Equati@rby the functionf, over next ypif g =0
variablesy,, y,,(,), andz, and parameterized hy,,. Y% = a if g0 = 1. )

As discussed in SectioB, our truncated higher-order
r_natChmg potential and ItS. transformatlon to a minimiza-  1gyrthermore, for computer vision applications, very efficienple-
tion over the sum of terms in Equati@shares similarities  mentations of graph-cut algorithms exist and are publiclylaivke [5].




Now let f;g*@g,ﬂg’ z;wy) be the projection off, onto

the restricted (binary) move-space. We identify five cases
for this projection and partitio® = Ule P; into five dis-
joint sets corresponding to each case defined as follows:
Pr={peP:yf'¥=aandyf’® = o} (5)
={peP: ygrev = aandyl™™ # o} (6)
Ps={peP:yf'+# aandyl® = a} @)
Py = {p cP: prev# yprev a‘ndyprev7 grev# Oz} (8)
Py = {p cPp . ygrev qrev# a} (9)

whereg = m(p) is the pixel inQ matched to pixeb € P. It . . . .

is easy to show thaﬂﬁ‘ can be represented by the following Figure 3. Graph con_structlon for perfor_mlng@fexpansmn move

pseudo-Boolean functiors on the truncatgq hlgher-orQer matching potentM(y;P, Q).
The a, are auxiliary nodes introduced by the Ishikawa construc-

0 if pe Py tion for p € P4. The other nodes correspond to variables in the
(1 v ) if pePy potential function. The minimunat-cut in the graph corresponds
fa _ (1 ya> if pePs (10) to the optimal assignment tp. Variables corresponding to nodes
P (1 707 ) ifpep, in theS partition are assigned label 1. The remaining variables are
i4

- assigned label 0.
(yp+yq 2707e) ifpePs g

Unfortunately, forp € P5 the pseudo-Boolean function
[, is non-submodular. Typical approaches for dealing with
non-submodular terms are:

Figure3 shows the completet-graph construction for a
single truncated higher-order matching potential. Asdast
dard for approximate moves, at the end of eagdxpansion
e approximate the potential by one that is submodular; - step we compare the solution found with the current best as-

o relax the problem €g, using QPBO 15 or dual  signment, and keep the one with lower energy. This process
decomposition {7]) and round the (fractional) result  js continued, repeatedly iterating through alle £, until
onto the variable state-space; no improvement in the energy can be found. This approach

e coordinate descene(g, hold thez's for each higher-  appears to work well in practice even though we cannot pro-
order term fixed and optimize ovgr then holdy fixed  vide a formal guarantee on the quality of the solution at con-

and optimize over the's) or exhaustive search over the vergence due to our Over-approximaﬂon of terms frBm
z's (if the number of higher-order potentials is small).

We take the first approach and approximate fhéerm as 4. Multiclass Pixel Labeling Model

Fo(Yps Ymp)» 2 0p) = wplyp 7 Ym(p)] (11) In this section we descnt?e our multiclass pixel labeling
o ) i model. We begin by describing the components of the stan-
whenever this situation occurs during@®@xpansion move,  qarq pairwise energy function. We then introduce the trun-

i.e., when the labels fop andg are equal before the move  ateq higher-order matching potentials into this model.
(and not equal tex). We stress that this approximation is

only applied to the subset of terms meeting the above condi-4.1. Pairwise CRF Model
tion (i.e., p € Ps), and note that it is an over-approximation
of the original potential functionf, (and is tight when
z = 1). The effect is to favor configurations where the
corresponding pixels continue to agree on their labels.
With this approximation our energy function is always
graph-representable and an optimalexpansion move
(with respect to the approximate energy function) can be Bty Z% (o) + )\Zw’) a(Up: Ya) (13)
found. Forp € P, we use the construction of Ishikawa’]
to convertf;* from a cubic pseudo-Boolean function to a wherey), is the unary potential for assigning labg) to
quadratic one. Specifically we introduce an auxiliary bjnar  pixel p andq,,, is a contrast-dependent smoothing prior that
variablea,, for all p € P, and write:f;?‘ as penalizes adjacent pixetsandg for taking different labels.

Our model extends the standard pairwise CRF model for
multiclass pixel labeling 11, 26]. Here the energy for a
pixel labelingy € £ *# given image features is defined
over unary and pairwise terms as

Pq

~ _ 2For brevity we omit the features from the arguments of the potential
wp | 2+ mln1 2ap — Gpap — Jgap —zap | . (12) functionsy;, andy,. It should be understood that all potential functions
ap€{0,1} are conditioned ore.



The non-negative constanttrades-off the strength of the

we compute

smoothness prior against the unary potential and is chosen

by cross-validation on the training set.

An implementation of the model we use is provided by
the Darwin software library (version 09) Briefly, the
unary terms, is constructed by learning one-versus-all
boosted decision tree classifiers for each labeLinThe

input to the boosted classifiers are 669-element per-pixel

feature vectors comprised of 17-dimensional filter bank re-

sponses, dense HOG descriptors, RGB color, and the nor

malizedx andy coordinates of the pixel. For the filter bank

and HOG features we also compute the mean and standar

deviation over pixels within the same row and columrpas
and over5 x 5 pixel regions in a x 3 grid centered on
p. Once the one-versus-all boosted decision tree classifier
are learned, their outputs are calibrated via a multiclass |
gistic classifier 23] and ¢, (y,) taken as the negative log-
likelihood predicted by the multiclass logistic for clags

As is typical for pixel labeling CRFs/], our contrast-
dependent smoothness prigy, takes the form

Tp—xq||? [
o (~12555). g
0, otherwise

Vpq(Yp Yq) = {

wherez,, andzx, are the RGB color vectors for pixeisand
q, respectively, and is the mean square-difference between
color vectors over all adjacent pixels in the image.

4.2. Higher-Order CRF Model

We append to the pairwise CRF (Equatibs) one trun-
cated higher-order matching potential (Equatlyfior each
pair of matching regiongP), Q) to give

prq(ym Yq)

pq

E(y;z) = Z VYp(Yp) +A

unary term smoothness term

+py My(y; PO, QW) (15)
t

higher-order term

wheret indexes the region pairs. The constarttades-off

the strength of the truncated higher-order matching poten-

tials against other terms in the model and is set by finding
the optimal value on the training set of images.

In our experiments, we find matching regions by densely
sampling rectangular patches of sk« 32 t0 96 x 96 in 16

S

T
2_peP Tp Tm(p)

v ver 2l - X e llaall?

NCC(P,Q) = (16)

wherez, is the 3-element RGB feature vector for pixet
The mappingn : P — Q is defined in the obvious way,
i.e., ¢ = m(p) is pixel ¢ that has the same relative off-
set from the top-left of rectangular regighas pixelp has
from the top-left of rectangular regioR. To capture re-
(f}lective symmetry, we also compute the normalized cross-
correlation with a horizontally flipped version of the patch

We discard any candidate p&iP, Q) whose NCC is be-
low 0.9 and then perform non-maximal neighborhood sup-
pression (with 0.5 area-of-overlap criterion) on the remai
ing pairs to remove densely overlapping matches. The re-
sulting pairs of matched regions are used to construct the
truncated higher-order matching potential terms.

To make our approach robust to small deformations in
object boundaries and misalignments within a matched re-
gion we weight each pixelwise match by how well the indi-
vidual pixel colors agree (see Figufe Specifically, for a

given pair of regiongP(), 9(1)), we set

1
POL lzpll? + lzme 17

22T,
wz()t) _ pm(p)

(17)

We then set the maximum penalty for the potential to

MM = g g wf,t)
peP®

(18)

wherex € [0,1] is a parameter shared between all higher-
order potentials. In our work we set to 0.85. This
completes the specification for each truncated higherrorde
matching term.

5. Experimental Results

We performed experiments on the multiclass pixel la-
beling task and compared results on CRF models with
and without our truncated higher-order matching potestial
Our experiments were conducted on two standard datasets:
(i) the 21-class MSRC dataseéf [consisting of 591 images,
and (ii) the 8-class Stanford Background datasét gon-
sisting of 715 images. We use the same train/test split as
[26] for the MSRC dataset (335 training and 256 evaluation

pixel increments. Patches with nearly uniform appearanceiMages). For the Stanford Background dataset we follow

were discarded. For each remaining paithwe compute

previous works and randomly partition the images into sets

the normalized cross-correlation (NCC) between the patch®f 572 and 143 images for training and testing, respectively

and image in a sliding-window fashion (excluding the orig-
inal location of the patch),e., for each candidate mated,

Shttp: //drwn. anu. edu. au/

4The use of RGB features is not critical to our approach anddcou
have been replaced with other pixelwise featueeg, CIELab, HOG etc
Moreover, our algorithm does not appear to be sensitivegchoice of
NCC matching score.


http://drwn.anu.edu.au/
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(a) images with matched region&l) weightsw, | (g) weightsw,,
Figure 5. Plot showing percentage agreement between correspond-
Figure 4. lllustration of weights ((d) and (g)) assigned to pixels ing pixels in matched regions with respect to (i) ground-truth la-
within matched regions ((b) and (c), and (e) and (f), respectively). pels, (ii) output from our model with higher-order matching po-
Panels (d) and (g) are colored with red indicating a higher weight. tentials, (iii) baseline CRF output, and (iv) unary model output.

We learned all parameters of our models from the subsetnal labeling. The remaining matches, however, can result in
of training images with the objective of maximizing (global  significant improvements to the segmentation quality.
averaged) pixelwise accuracy. Results are reported on the While our model allows pixels in the image mislabeled
hold-out set of evaluation images. Inference in our model is by the baseline CRF model to be corrected, it can also re-
very fast, typically taking less than two seconds per image. sult in a degradation in performance, for example, when in-
Note that this does not include the time taken to compute correctly classified pixels on one side of the match have a
image features nor perform the region matching, both of stronger influence oa priori correctly labeled pixels on the
which take considerably longer. other (see, for example, the last two rows of Figéye

Figure 5 shows a cumulative plot of label agreement ) )
between pixels within matching regions (on the MSRC 6. Discussion
dataset). The vast majority of matches demonstrate near Much recent work on pixel labeling problems has fo-
perfect agreement supporting our claim that similarity in cused on the addition of higher-order energy terms to en-
appearance implies similarity in semantic label. However, code preferences for particular label configurations. We
approximately 10% of the matches show very poor agree-have explored one such term that encodes a novel prefer-
ment. Our method is robust to these inconsistent matches. ence for consistent label assignments between two match-

Quantitative results from are shown in TalileFor both ing image regions. We showed how to perform efficient
datasets the inclusion of the truncated higher-order match approxima‘[e inference in models with such terms using a
ing potential provides a small increase in accuraty2%  graph-cut construction. Furthermore, we demonstrated the

for the MSRC dataset and.98% for the Stanford Back-  model on two standard multiclass pixel labeling datasets.
ground dataset. The table also shows results from a vari-  Our work suggest a number of interesting areas for fur-

ant of our model without truncatiori.¢., settingr = 1 ther research. First, it would be interesting to consideelpi
in Eqn. (L8)). We note that our MSRC result is below the  mappings that are not necessarily one-to-one. For example,
state-of-the-art result of 86% by Ladicley al [15]. How- matching two regions at different scales would result in a

ever, as noted in their work, significant improvement comes many-to-one mapping from pixels at the fine scale to those

from strong unary terms as a result of better pixel-level fea at the coarse scale. Non-rectangular matches could also be

tures. The purpose of our work is to explore the higher- exp]ored,e_g, between Superpixe|sl

order matching potential rather than engineer new features A second exciting area for future work is in matching re-
Qualitative results are shown in Figueand Figure7 gions over multiple images instead of within a single image.

for the MSRC and Stanford Background datasets, respec-This may be particularly relevant for videos or collections

tively. Note that for visualization, column (b) only shows of images with significant semantic overlamg, taken in
the top ten non-overlapping matched regions—the modelthe same geographic vicinity.

used to generate the results in column (d) contains many Acknowledgments. This work was supported by the Aus-
more matches. As can be seen, many of the matches argajian Research Council and the NCI National Facility at the

over regions where the baseline CRF model already labelsaNu. We thank the anonymous reviewers for their feedback in
the scene correctly and therefore have no effect on the fi-improving this paper.



GLOBAL-AVERAGED CLASS-AVERAGED
TESTSET BASELINE HIGHER-ORDER BASELINE HIGHER-ORDER
DATASET IMAGES UNARY | PAIRWISE | k=1 | Kk =0.85 || UNARY | PAIRWISE | k=1 | Kk =0.85
MSRC 256 73.83 79.73 80.75 80.97 64.15 69.03 70.76 71.06
Stanford 143 73.01 78.63 79.07 79.61 68.27 72.24 72.45 72.87

Table 1. Pixelwise semantic labeling accuracy for 21-class MSR@&rd 8-class Stanford Background]] datasets. Compares baseline
unary and pairwise CRF model against model with non-truncated ancitied higher-order matching potentials.

(d) w/ match. pot. (e) groutid-

worse
worse

(a) image (c) baseline CRF

- worse -
- worse -

- " i

“-

Figure 6.Best viewed in color. Example results from our multiclass pixel labeling experiments on the 25-8&5RC dataset]. Each

row shows a different instance. The testimage is shown in column @aparten non-overlapping matches shown in (b). Matched regions
are color-coded and the orientation of the match indicated by the dot in frez-lgdt or upper-right corner of the region. Semantic class
predictions for the baseline model and one with truncated higher-oraehing potentials are shown in columns (c) and (d), respectively.
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Figure 7.Best viewed in color. Example results from our multiclass pixel labeling experiments on the 8-8tanford Background

dataset]0]. See Figures for description of panels.
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