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Abstract

We consider the problem of estimating the depth of each
pixel in a scene from a single monocular image. Unlike tra-
ditional approaches [18, 19], which attempt to map from
appearance features to depth directly, we first perform a
semantic segmentation of the scene and use the semantic
labels to guide the 3D reconstruction. This approach pro-
vides several advantages: By knowing the semantic class
of a pixel or region, depth and geometry constraints can
be easily enforced (e.g., “sky” is far away and “ground”
is horizontal). In addition, depth can be more readily pre-
dicted by measuring the difference in appearance with re-
spect to a given semantic class. For example, a tree will
have more uniform appearance in the distance than it does
close up. Finally, the incorporation of semantic features
allows us to achieve state-of-the-art results with a signifi-
cantly simpler model than previous works.

1. Introduction
Recovering the 3D structure of a scene from a single

image is a fundamental problem in computer vision that
has application in robotics, surveillance and general scene
understanding—if we can estimate scene structure then we
can better understand the scene by knowing the 3D rela-
tionships between the objects within it. However, estimat-
ing structure from raw image features is notoriously diffi-
cult since local appearance is insufficient to resolve depth
ambiguities (e.g., sky and water regions in an image can
have similar appearance but dramatically different geomet-
ric placement within the scene). Intuitively, semantic un-
derstanding of a scene plays an important role in our own
perception of scale and 3D structure.

Producing spatially plausible 3D reconstructions of a
scene from monocular images annotated with geometric
cues (such as horizon, vanishing points, and surface bound-
aries) is a well understood problem [3]. However, to
uniquely determine absolute depths, additional information
such as texture, relative depth, and camera parameters (pose
and focal length) is needed. Much recent work on auto-

Figure 1. Example output from our model showing how semantic
class prediction (center) strongly informs depth perception (right).
Semantic classes are shown overlayed on image. Depth indicated
by colormap (red is more distant). See Figure 6 for color legend.

mated 3D scene reconstruction [19, 12, 4, 11, 18] has fo-
cuses on extracting these geometric cues and additional in-
formation from novel images.

These works largely ignore the task of semantic under-
standing and jump straight to estimating depth or geometry
from image features. Using machine learning techniques,
these approaches determine a direct mapping from image
features to depth. However, this puts an enormous burden
on the learning algorithm, which must now implicitly rea-
son about semantic context (e.g., the difference between vi-
sually similar patches of sky and water) to accurately learn
depth. Thus, much effort in these approaches is in the de-
sign of sophisticated image features to unburden the learn-
ing algorithm.

In this paper we propose a different approach that rea-
sons about the semantic content of a scene and uses this in-
formation as context for depth reconstruction (see Figure 1).
The incorporation of semantic class knowledge allows us to
do two things: First, we can take advantage of class-related
depth and geometry priors. For example, sky is always at
the farthest depth possible; grass and road form supporting
ground planes for other objects. Second, by conditioning
on semantic class, we can better model depth as a function
of local pixel appearance. For example, uniformity of tex-
ture may be a good indicator for the depth of a tree, but not
useful when estimating the depth of a building. Our model
is therefore able to use much simpler image features while
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still achieving state-of-the-art depth perception results.
Our approach reflects the current trend in computer vi-

sion to combine multiple tasks for holistic scene under-
standing [9, 13, 6, 14]. Ours is a two-phase approach. In
the first phase, we use a learned multi-class image labeling
MRF [21, 7, 6] to infer the semantic class for each pixel in
the image. We currently label pixels as one of:sky, tree,
road, grass, water, building, mountain, andforeground ob-
ject. The first seven classes cover a large portion of back-
ground regions in outdoor scenes while the last class cap-
tures the eclectic set of foreground objects such as cars,
street signs, people, animals,etc.

In the second phase, we use the predicted semantic class
labels to inform our depth reconstruction model. Here, we
first learn a separate depth estimator for each semantic class.
We incorporate these predictions in a Markov random field
(MRF) that includes semantic-aware reconstruction priors
such as smoothness and orientation of different semantic
classes. Motivated by the work of Saxenaet al. [19], we ex-
plore both pixel-based and superpixel-based variants of our
model. In the pixel-based variant, we construct a second-
order MRF over individual pixels with a preference for
smoothness. Our second variant constructs an MRF over
small regions (or superpixels) where each region is assumed
to be planar. This formulation reduces the number of vari-
ables in the model (and hence computational cost). It also
allows more global constraints such as the orientation of in-
dividual superpixels, and connectivity and co-planarity be-
tween neighboring superpixels. These constraints are con-
ditioned on the semantic class of the region and are learned
from data.

We test our model on a challenging set of 534 outdoor
scenes made publicly available by Saxenaet al. [19] and
compare to other published results on this dataset. Re-
sults show that our model outperforms state-of-the-art ap-
proaches and yields qualitatively excellent reconstructions.

2. Background and Related Work

There have been many different approaches to the prob-
lem of 3D scene reconstruction from monocular images.
These can be roughly partitioned into two groups: geomet-
ric models and depth perception models.

For indoor environments, Delageet al. [4] use an MRF
for reconstructing the location of walls, ceilings and floors
using geometric cues (such as long straight lines) derived
from the scene. More recently, Hedauet al. [8] recover
the spatial layout of cluttered rooms using similar geomet-
ric cues. Both models make strong assumptions about the
structure of indoor environments (such as the “box” model
of a room [8]) and are not suitable to the less structured
outdoor scenes that we consider.

An early approach to outdoor scene reconstruction is the
innovative work of Hoiemet al. [10] who cast the problem

as a multinomial classification problem. In their work, pix-
els are classified as either ground, sky, or vertical. A simple
3D model can then be constructed by “popping up” vertical
regions. The model was later improved [12] to incorporate
a broader range of geometric subclasses (porous, solid, left,
center, right). Unlike our approach, these models make no
attempt to estimate absolute depth. Furthermore, many ob-
jects commonly found in everyday scenes (e.g., cars, trees,
and people) do not neatly fit into the broad classes they de-
fine. A car, for example, consists of many angled surfaces
that cannot be modeled as vertical.

It is interesting to note that our semantic classes loosely
correspond to the geometric subclasses defined by Hoiemet
al. [12]: trees are generally porous; buildings are vertical;
and road, grass and water are horizontal. Indeed, the scene
decomposition model of Gouldet al. [6] demonstrates the
strong correlation between geometry and semantics in out-
door scenes. However, unlike these models which use hard
geometric labels, our model allows the soft prior on the ori-
entation of the various semantic classes to be overridden
given sufficient contradictory evidence.

A more semantically motivated approach was recently
adopted by Russellet al. [17] who utilize detailed human-
labeled segmentations to infer the geometric class of regions
(ground, standing, attached) and region edges (support, oc-
clusion, attachment). In their model, depth inference is
done by modeling support and attachment relationships rel-
ative to a ground plane. Currently, their model relies on de-
tailed human annotation of regions (and in particular, their
polygonal boundaries) within the scene. Our model, on the
other hand, infers semantic content from image features.

Our work is most heavily influenced by the work of Sax-
ena and colleagues [19, 18] who take a very different ap-
proach to the task of 3D reconstruction. Instead of inferring
geometric class labels, they infer absolute depth of the pix-
els in the image. However, unlike their approach, which
completely ignores semantic context, our work makes use
of semantic information to guide depth perception. This
has a number of advantages: First, we can use simpler fea-
tures, since depth perception in our model is conditioned on
semantic class and thus avoid the need for features that cor-
relate with depth in all classes. Second, we avoid the need
for modeling occlusions and folds since these can be easily
obtained from the semantic labels (sky is always occluded;
ground plane classes “fold” into foreground classes). Last,
co-planarity and connectivity constraints can be imposed
differently within each semantic class. For example, a
building is more likely to be planar than a tree.

The success of holistic scene understanding models has
also been a key motivation for this work. These mod-
els combine multiple computer vision tasks with the goal
of mutual improvement across all tasks [13, 9, 14]. Most
closely related to our work is the model of Heitzet al. [9],



who combine object detection, multi-class image labeling,
and depth perception. However, their model only uses local
semantic class information around each pixel as a feature
in their linear-regression model. This essentially acts asa
simple global depth prior for the semantic class. Our ap-
proach, on the other hand, conditions on the semantic label
so that different model parameters can be tuned to differ-
ent semantic classes. Furthermore, we incorporate global
features that reason about the structure of semantic classes
such as the co-planarity of building regions.

3. Depth Estimation Model

As discussed above, we make use of semantic informa-
tion to constrain the possible 3D reconstructions of a scene.
Our algorithm works in two phases. The first phase predicts
the semantic class of each pixel and the location of the hori-
zon. Given this semantic and geometric context, the second
phase then estimates depth. We begin the discussion of our
approach by describing our method of producing a seman-
tic decomposition of the image and estimating the horizon.
Then, we present a brief overview of the geometry of im-
age formation, from which we derive our depth perception
models. Finally, we present two variants of the depth re-
construction model—one pixel-based and one superpixel-
based—that make use of the semantic information.

3.1. Semantic Labeling and Horizon Prediction

Our model can use any multi-class image labeling
method that produces pixel-level semantic annotations [21,
7, 6]. Concretely, we require a model that will assign to
each pixelp, in the imageI, a class labelLp from some
fixed label set{L} (currentlysky, road, water, grass, tree,
building, mountainandforeground object).

In our implementation, we use a standard pairwise MRF
over pixel labelingL. Briefly, the MRF is defined by

E (L | I) =
∑

p

ψp(Lp) + λ
∑

pq

ψpq(Lp, Lq) (1)

whereψp is the unary potential for assigning labelLp to
pixel p andψpq is a contrast-dependent smoothing prior that
penalizes adjacent pixelsp andq for taking different labels.

Our unary potentials are learned boosted decision tree
classifiers over a standard set of 17 filter response fea-
tures [21] computed in a small neighborhood around each
pixel.1 Our pairwise potential is also standard:ψpq =
exp

(
−c−1‖xp − xq‖2

)
if Lp 6= Lq and 0 otherwise, where

xp andxq are the color vectors for pixelsp andq, respec-
tively, andc is the mean square-difference between color

1Our filter-bank consists of Gaussians (on all three color channels) at
scales 1, 2 and 4,x- andy-derivatives of Gaussians (on the luminance color
channel) at scales 2 and 4, and Laplacian of Gaussians (on theluminance
color channel) at scales 1, 2, 4 and 8.

vectors over all adjacent pixels in the image. The parame-
ter λ determines the strength of this smoothness prior and
is chosen by cross-validation on the training set. We useα-
expansion [1] to find an approximate solution to the energy
function giving us the semantic labels.

Many semantic decomposition models also predict the
location of the horizon (e.g., [6, 11]). When this is not the
case, a simple adaption of the ideas from Gouldet al. [6] can
be used to produce a good estimate of the horizon from the
semantic labeling itself. Here, we assume that the horizon
vhz can be modeled as a row within the image and define a
prediction model as

E
(
vhz | I,L

)
= logN (vhz;µ, σ) +

∑

p

ψp(v
hz;Lp) (2)

whereN (vhz;µ, σ) is a normal distribution reflecting our
prior estimate of the horizon location andψp(v

hz;Lp) pe-
nalizes inconsistent relative location between the horizon
and pixels with a given semantic class (e.g., ground plane
pixels should be below the horizon and sky pixels above).
The location of the horizon is determined as the minimizing
assignment tovhz.

3.2. Image Formation and Scene Geometry

Consider an ideal camera model (i.e., with no lens distor-
tion). Then, a pixelp with coordinates(up, vp) (in the cam-
era plane) is the image of a point in 3D space that lies on the
ray extending from the camera origin through(up, vp) in the
camera plane. The rayrp in the world coordinate system is
given byrp ∝ R

−1
K

−1[up vp 1]T , whereR ∈ SO(3) de-
fines the transformation (rotation) from camera coordinate
system to world coordinate system, andK ∈ R

3×3 is the
camera matrix [16].2 In the sequel, we will assume thatrp
has been normalized (i.e.,‖rp‖2 = 1). For an ideal camera,
the camera matrix has the form

K =





fu 0 u0

0 fv v0
0 0 1



 (3)

wherefu and fv are the (u- and v-scaled) focal lengths
of the camera, and the principal point(u0, v0) is the cen-
ter pixel in the image. As in Saxenaet al. [19] we as-
sume a reasonable value for the focal length (in our ex-
periments we setfu = fv = 348 for a 240 × 320 im-
age). We further assume that the image was taken with the
camera’s horizontal (x) axis parallel to the ground, and we
estimate theyz-rotation of the camera plane from the pre-
dicted location of the horizon (assumed to be at depth∞)

2In our model, we assume that there is no translation between theworld
coordinate system and the camera coordinate system, and that the images
were taken from approximately the same height above the ground.



(a) Image view (b) Side view
Figure 2. Illustration of semantically derived geometric con-
straints. See text for details.

asθ = tan−1( 1

fv
(vhz−v0)). This yields the rotation matrix

R =





1 0 0
0 cos θ sin θ
0 − sin θ cosθ



 (4)

With the camera raysrp in the world coordinate system
we can now easily encode constraints about the geometry
of a scene. Consider, for example, the simple scene in
Figure 2, and assume that we would like to estimate the
depth of some pixelp on a vertical objectA attached to the
ground. We define three key points that are strong indica-
tors of the depth ofp. First, letg be the topmost ground
pixel in the same column belowp. The depth ofg is a lower
bound on the depth ofp. Second, letb be the bottommost
visible pixelb on the objectA. By extending the camera ray
throughb to the ground, we can calculate an upper bound
on the depth ofp. Third, the topmost pointt on the object
may also be useful since a non-sky pixel high in the image
(e.g., an overhanging tree) tends to be close to the camera.

Simple geometric reasoning allows us to encode the first
two constraints as

dg

(

rT
g e3

rT
p e3

)

≤ dp ≤ dg

(

rT
g e2

rT
b e2

)(

rT
b e3

rT
p e3

)

(5)

wheredp and dg are the distances to the pointsp and g,
respectively, andei is thei-th canonical vector (i.e., vector
with i-th element one and the rest zero). The third constraint
can be similarly encoded asdtr

T
t e3 ≈ dpr

T
p e3.

In the following sections we show how these constraints
are incorporated as features and potential terms in our depth
perception MRF models.

3.3. Features and Pointwise Depth Estimation

Our goal is to predict the depth of every pixel in the im-
age. We begin by constructing a descriptorfp ∈ R

n for
each pixel, which includes local appearance features and
global geometry features derived from our semantic under-
standing of the scene (discussed below). Standard depth
perception models utilize the fact that the local appearance
of a pixel changes with depth and attempt to learn a function
that describes this relationship. However, this relationship

depends on the semantic class (e.g., a distant tree will ap-
pear less textured than a nearby one, but not necessarily so
with more uniform classes such as building or road). Fur-
thermore, the distance of some classes is tightly constrained
by the class itself (e.g., sky). Accordingly, we learn a dif-
ferent local depth predictor for each semantic class.

Motivated by the desire to more accurately model the
depth of nearby objects and the fact that relative depth is
more appropriate for scene understanding, we learn a model
to predict log-depth rather than depth itself. We thus esti-
mate pointwise log-depth as a linear function of the pixel
features (given the pixel’s semantic class),

log d̂p = θT
Lp
fp (6)

whered̂p is the pointwise estimated depth for pixelp, Lp is
its semantic class label predicted from Equation (1),fp ∈
R

n is a local feature vector, and{θl}l∈L are the learned
parameters of the model.

Our basic pixel appearance features are the 17 raw fil-
ter responses used in the semantic model and also the log
of these features. We also include the(u, v) coordinates
of the pixel and an a priori estimated log-depth for pixel
coordinates(up, vp) and semantic labelLp. These are all
adjusted to a consistent world coordinate system. The prior
log-depth is learned, for each semantic class, by averaging
the log-depth at each(u, v)-pixel location over the set of
training images. Since not all semantic class labels appear
in all pixel locations, we smooth the priors with a global
log-depth prior (the average of the log-depths over all the
classes at the particular location).

Figure 3 illustrates these features for the eight semantic
classes in our model. It is interesting to note the differences
between the semantic classes. A tree pixel towards the top
of the image, for example, is likely to be closer than a tree
pixel near the horizon (center of the image). This supports
the observation made in Section 3.2 that the topmost pixel in
a region may be a more useful (a priori) indicator for region
depth than a pixel within the region.

We encode additional geometric constraints as features
by examining the three key pixels discussed in Section 3.2.
For each of these pixels (bottommost and topmost pixel
with classLp and topmost ground pixel), we use the pixel’s
prior log-depth to calculate a depth estimate forp (assuming
that most objects are roughly vertical) and include this es-
timate as a feature. We also include the (horizon-adjusted)
vertical coordinate of these pixels as features. Note that our
verticality assumption is not a hard constraint, but rathera
soft one that can be overridden by the strength of other fea-
tures. By including these as features, we allow our model
to learn the strength of these constraints.

Finally, we add the square of each feature, allowing us to
learn quadratic depth correlations.



(a) sky (b) tree (c) road (d) grass (e) water (f) building (g) mountain(h) fg. obj.

Figure 3. Smoothed per-pixel log-depth prior for each semantic class with horizon rotated to center of image. Colors indicate distance (red
is further away and blue is closer). The classes “water” and “mountain”had very few samples and so are close to the global log-depth prior
(not shown). See text for details.

We learn the parameters of the model{θl}l∈L by linear
regression on the log-depths from a set of training images.
For numerical stability, we first normalize each feature to
zero mean and unit variance.

3.4. MRF Models for Depth Reconstruction

The pointwise depth estimation provided by Equation (6)
is somewhat noisy and can be improved by including pri-
ors that constrain the structure of the scene. We de-
velop two different MRF models—one pixel-based and one
superpixel-based—for the inclusion of such priors. The pri-
ors constrain the depth relationships between two or more
pixels (superpixels) and will usually be weighted by the
contrast between the pixels (superpixels), e.g., we would
like to allow for depth discontinuities at strong boundaries.

3.4.1 Pixel-based Markov Random Field

Our pixel-based MRF includes a prior for smoothness.
Here, we add a potential over three consecutive pixels (in
the same row or column) that prefers co-linearity. We also
encode semantically-derived depth constraints which pe-
nalize vertical surfaces from deviating from geometrically
plausible depths (as described in Section 3.2). Formally, we
define the energy function over pixel depthsD as

E (D | I,L) =
∑

p

ψp(dp)

︸ ︷︷ ︸

data term

+
∑

pqr

ψpqr(dp, dq, dr)

︸ ︷︷ ︸

smoothness

+
∑

p

ψpg(dp, dg) +
∑

p

ψpb(dp, db) +
∑

p

ψpt(dp, dt)

︸ ︷︷ ︸

geometry (see§3.2)

(7)

where the data term,ψp, attempts to match the depth for
each pixeldp to the pointwise estimatêdp, andψpqr rep-
resents the co-linearity prior. The termsψpg, ψpb andψpt

represent the geometry constraints described in Section 3.2
above. Recall that the pixel indicesg, b andt are determined
from p and the semantic labels.

The data term in our model is given by

ψp(dp) = h(dp − d̂p;β) (8)

whereh(x;β) is the Huber penalty, which takes the value
x2 for −β ≤ x ≤ β andβ(2|x| − β) otherwise. We choose
the Huber penalty because it is more robust to outliers than
the more commonly usedℓ2-penalty and, unlike the robust
ℓ1-penalty, is continuously differentiable (which simplifies
inference). In our model, we setβ = 10−3.

Our smoothness prior encodes a preference for co-
linearity of adjacent pixels within uniform regions. Assum-
ing pixelsp, q, andr are three consecutive pixels (in any
row or column), we have

ψpqr = λsmooth· √γpqγqr · h(2dq − dp − dr;β) (9)

where the smoothness penalty is weighted by a contrast-
dependent term and the prior strengthλsmooth. Here,γpq =
exp

(
−c−1‖xp − xq‖2

)
measures the contrast between two

adjacent pixels, wherexp andxq are the CIELab color vec-
tors for pixelsp and q, respectively, andc is the mean
square-difference over all adjacent pixels in the image. Note
that this is the same contrast term used by the semantic
model. We choose the prior strength by cross-validation on
a set of training images.

The soft geometry constraintsψpg, ψpt andψpb model
our prior belief that certain semantic classes are vertically
oriented (e.g., buildings, trees and foreground objects).
Here, we impose the soft constraint that a pixel within
such a region should be the same depth as other pixels in
the region (i.e., via the constraint on the topmost and bot-
tommost pixels in the region), and be between the near-
est and farthest ground plane pointsg and g′ defined in
Section 3.2. The constraints are encoded using the Huber
penalty, (e.g.,h(dp − dg;β) for the nearest ground pixel
constraint). Each term is weighted by a semantic-specific
prior strength{λg

l , λ
t
l, λ

b
l}l∈L.

3.4.2 Superpixel-based Markov Random Field

While the pixel-based model described above allows us to
incorporate semantic information by learning different pa-
rameters for mapping pixel appearance to depth and a pref-
erence for smoothness, it does not allow us to easily incor-
porate higher-order geometric constraints such as the pla-
narity of an entire region. We now develop a superpixel-
based model that allows the incorporation of such priors.



We segment the image into a set of non-overlapping su-
perpixels using a bottom-up over-segmentation algorithm.
In our experiments we use mean-shift [2], but could equally
have used other approaches [5, 20]. Each superpixelSi is
assumed to be planar, a constraint that we strictly enforce.
The plane parameters{αi} are unnormalized so that any
pointx ∈ R

3 on the plane satisfiesαT
i x = 1. In particular,

the depth of pixelp corresponds to the intersection of the
ray rp and the plane, and is given by(αT

i rp)
−1.

Our superpixel-based depth reconstruction model aims
to infer the plane parameters of each superpixel given the
semantic class. We define an energy function that includes
terms that penalize the distance between the superpixel
planes and the pointwise depth estimatesd̂p (Equation (6))
and terms that enforce soft connectivity, co-planarity, and
orientation constraints over the planes. All of these are con-
ditioned on the semantic class of the superpixel (taken as
the majority vote over the superpixel’s constituent pixels).
Formally, we have

E (α | I,L,S) =
∑

p

ψp(αi∼p)

︸ ︷︷ ︸

data term

+
∑

i

ψi(αi)

︸ ︷︷ ︸

orientation prior

+
∑

ij

ψij(αi, αj)

︸ ︷︷ ︸

connectivity and
co-planarity prior

(10)

Hereαi∼p indicates theαi associated with the superpixel
containing pixelp, i.e.,αi : p ∈ Si.

Region Data Term. The data term penalizes the plane
parameters from deviating away from the pointwise depth
estimates. It takes the form

ψp(αi) =
1

d̂p

h
(

d̂p · αT
i rp − 1;β

)

(11)

where h(x;β) is the Huber penalty as defined in Sec-
tion 3.4.1 above. We weight each pixel term by the inverse
pointwise depth estimate to prefer nearby regions.

Orientation Prior. The orientation prior enables us to
encode a preference for orientation of different semantic
surfaces, e.g., ground plane surfaces (“road”, “grass”,etc.)
should be horizontal while buildings should be vertical. We
encode this preference as

ψi(αi) = Ni · λl · ‖Pl (αi − ᾱl) ‖2 (12)

wherePl projects onto the planar directions that we would
like to constrain and̄αl is the prior estimate for the orien-
tation of a surface with semantic class labelLi = l. We
weight each superpixel by its number of pixels (Ni) and a
semantic-class-specific prior strength (λl). The latter cap-
tures our confidence in a semantic class’s orientation prior
(e.g., we are very confident that ground is horizontal, but we
are less certain a priori about the orientation of tree regions).

Connectivity and Co-planarity Prior. The connectiv-
ity and co-planarity term captures the relationship between
two adjacent superpixels. For example, we would not ex-
pect adjacent “sky” and “building” superpixels to be con-
nected, whereas we would expect “road” and “building” to
be connected. DefiningBij to be the set of pixels along the
boundary between superpixelsi andj, we have

ψij(αi, αj) =
Ni +Nj

2|Bij |
λconn

lk ·
∑

p∈Bij

‖αT
i rp − αT

j rp‖2

+
Ni +Nj

2
λ

co-plnr
lk · ‖αi − αj‖2 (13)

where we weight each term by the average number of pixels
in the associated superpixels and pairwise semantic-class-
specific prior strength (λconn

lk andλco-plnr
lk ).

3.5. Inference and Learning

Both of our MRF formulations (Equation (7) and Equa-
tion (10)) define convex objectives which we solve using
the L-BFGS algorithm [15] to obtain a depth prediction for
every pixel in the image—for the superpixel-based model
we compute pixel depths asdp = 1

αT
i

rp
whereαi are the in-

ferred plane parameters for the superpixel containing pixel
p. In our experiments, inference takes about 2 minutes per
image for the pixel-based MRF and under 30 seconds for
the superpixel-based model (on a240 × 320 image).

The various prior strengths (λsmooth, etc.) are learned by
cross-validation on the training data set. To make this pro-
cess computationally tractable, we add terms in an incre-
mental fashion, freezing each weight before adding the next
term. This coordinate-wise optimization seemed to yield
good parameters.

4. Experimental Results
We ran experiments on the publicly available dataset

from Saxenaet al. [19]. The dataset consists of 534 im-
ages with corresponding depth maps and is divided into 400
training and 134 testing images. We hand-annotated the
training images with semantic class labels. The 400 training
images were used for learning the parameters of the seman-
tic and depth models. All images were resized to240× 320
before running our algorithm.

We report results on the 134 test images. Since the
maximum range of the sensor used to collect ground truth
measurements was 81m, we truncate our predictions to the
range[0, 81]. Table 4 shows our results compared against
previous published results. We compare both the average
log-error and average relative error, defined as| log

10
gp −

log
10
dp| and |gp−dp|

gp
, respectively, wheregp is the ground

truth depth for pixelp. We also compare our results to our
own baseline implementation which does not use any se-
mantic information.



METHOD log
10

REL.
SCN [18]† 0.198 0.530
HEH [11]† 0.320 1.423
Pointwise MRF [19]† 0.149 0.458
PP-MRF [19]† 0.187 0.370
Pixel MRF Baseline 0.206 0.464
Pixel MRF Model (§3.4.1) 0.149 0.375
Superpixel MRF Baseline 0.209 0.471
Superpixel MRF Model (§3.4.2) 0.148 0.379
† Results reported in Saxenaet al. [19].

Figure 4. Quantitative results comparing variants of our “semantic-
aware” approach with strong baselines and other state-of-the-art
methods. Baseline models do not use semantic class information.

Both our pixel- and superpixel-based models achieve
state-of-the-art performance for thelog

10
metric and com-

parable performance to state-of-the-art for the relative error
metric. Importantly, they achieve good results on both met-
rics unlike the previous results which perform well at either
one or the other. This can be clearly seen in Figure 5 where
we have plotted the performance metrics on the same graph.

Having semantic labels allows us to break down our re-
sults by (predicted) class. Our best performing results are
the ground plane classes (especially road), which are eas-
ily identified by our semantic model and tightly constrained
geometrically. We achieve poor performance on the fore-
ground class which we attribute to the lack of foreground
objects in the training set (less than 1% of the pixels).

Unexpectedly, we also perform poorly on sky pixels
which are easy to predict and should always be positioned
at the maximum depth. This is due, in part, to errors in
the groundtruth measurements (caused by sensor misalign-
ment) and the occasional misclassification of the reflective
surfaces of buildings as sky by our semantic model. Note
that the nature of the relative error metric is to magnify these
mistakes since the ground truth measurement in these cases
is always closer than the maximum depth.

Given our heavy reliance on inferred semantic evidence
at the depth estimation stage of both algorithms, it is also
important to consider the robustness of our approach to er-
rors in the semantic labeling. Quantitatively, 8% of pix-
els were incorrectly classified. The depth estimation accu-
racy over these pixels was comparable between our model
and the baseline model (0.209/0.507 versus 0.226/0.499
log

10
/relative error) showing that the depth-estimation stage

of our approach is able to partially overcome mistakes made
in the semantic classification stage.

Finally, we show some qualitative results in Figure 6
and example 3D reconstructions in Figure 7. The results
show that we correctly model co-planarity of the ground
plane and building surfaces. Notice our accurate prediction
of the sky (which is sometimes penalized by misalignment
in the groundtruth, e.g., bottom-right example). Our algo-
rithm also makes mistakes, such as positioning the building
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Figure 5. Plot oflog10 error metric versus relative error met-
ric comparing algorithms from Table 4 (HEH [11] not shown).
Bottom-left indicates better performance.

Figure 7. Example 3d reconstructions from our model.

too close in the middle-left example and missing the ledge
in the foreground (a mistake that many human would also
make). We also miss some low contrast objects such as the
post in the top-right figure.

5. Discussion
This work addresses the problem of depth perception

from a single monocular image through the incorpora-
tion of predicted semantic information. The inclusion
of semantic information allowed us to model appearance
and geometry constraints that were not possible in pre-
vious works (e.g., [19]). With semantic reasoning, we
achieved state-of-the-art results using a geometrically plau-
sible model and simpler image features. Importantly, our
method can use any multi-class semantic labeling model.

There are a number of interesting extensions suggested
by our approach. First, it would be valuable to divide our
foreground class into subcategories to allow the inclusionof
additional modeling constraints (such as the average height
of a person or the average width of a car). Furthermore,
such constraints also inform upon camera parameters such
as camera height, rotation, and focal length, and incorporat-
ing these constraints could enable the model to infer those
parameters automatically and with greater accuracy.

Second, our geometric modeling currently makes strong
assumptions about the location of the supporting pixel for
vertical objects (i.e., the topmost ground pixel below the
object). However, this assumption breaks for overhanging
objects (such as outstretched arms, building arches, and tree
limbs). A model which can more accurately determine a
pixel’s “support point” will allow the geometry priors to be
strengthened and likely result in better performance.



Figure 6. Some qualitative depth reconstructions from our model showing (from left to right) the image, semantic overlay, ground truth
depth measurements, and our predicted depths. Legend shows semantic color labels and depth scale.

Finally, our current approach relies on accurate ground
truth data for learning the parameters of our linear regres-
sion model and prior strengths. This is hampered by the lim-
itation imposed by real-world depth sensors and the quality
of existing datasets. We aim to extend our model to learn
from richer data sources including synthetic data (e.g., from
ray-traced scenes) and weakly labeled images (e.g., with the
height of only a few objects labeled).
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