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Abstract. We address the problem of counting cells in time-lapse mi-
croscopy images of developing human embryos. Cell counting is consid-
ered as an important step in analyzing biological phenomenon such as
embryo viability. Traditional approaches to counting cells rely on hand
crafted features and cannot fully take advantage of the growth in data
set sizes. In this paper, we propose a framework to automatically count
the number of cells in developing human embryos. The framework em-
ploys a deep convolutional neural network model trained to count cells
from raw microscopy images. We demonstrate the effectiveness of our ap-
proach on a data set of 265 human embryos. The results show that the
proposed framework provides robust estimates of the number of cells in a
developing embryo up to the 5-cell stage (i.e., 48 hours post fertilization).

1 Introduction

Counting the number of objects in an image is an important and challenging
computer vision problem that arises in many real-world applications ranging
from crowd monitoring to biological research. In biological research counting
cells is a fundamental first step for further analysis (e.g., cell mitosis detection
and cell lineage analysis). In this paper we focus on the problem of determining
the number of cells in time-lapse microscopy images of developing human em-
bryos. We are primarily interested in images of embryos up to the 5-cell stage,
which have been used in other works for computing biomarkers (e.g., cell tim-
ing parameters) to assess embryo viability in the context of in vitro fertilization
(IVF) treatments [14, 19].

Manual cell counting, is an extremely tedious process that is prone to error
and subject to intra- and inter-individual variability. Automating the process
has the benefit of reducing time and cost, minimizing errors, and improving
consistency of results between individuals and clinics. To simplify the task and
improve robustness, many researchers stain the cells prior to automatic count-
ing [1, 4, 5, 20]. However, cell staining is not feasible for many applications (such
as IVF embryo assessment).

Counting non-stained cells in dark-field microscopy images is difficult because
of constraints in the imaging process. For example, the exposure time, the light
intensity and the transparency of the specimen all cause variations in the image
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Fig. 1. Examples of developing embryos: (a) one-cell stage, (b) two-cell stage, (c) three-
cell stage, (d) four-cell stage and (e) 5-or-more cell stage.

quality and result in faint cell boundaries. Analysis of human embryonic cells is
further challenged by the fact that the cells exhibit variability in appearance and
shape. Also, each embryo grows (cells undergo divisions) in a compact manner
where cells severely overlap with each other. Moreover, cells are surrounded
by distracting noise such as extra cellular material (fragments) attached to the
growing embryo and surrounding gel material (see Fig. 1 and Fig. 2 (e)–(f) for
examples). All these difficulties make hand crafted algorithms for automated cell
counting brittle.

In this paper, we utilize non-stained dark-field microscopy images of devel-
oping human embryos. Our goal is to automatically count the number of cells
in the developing embryos up to the 5-cell stage (with higher cardinality being
grouped into a “5-or-more” category). We do so using a convolutional neural net-
work (CNN) that can learn from vast amount of training data to overcome the
difficulties presented above. Our network significantly outperform the previous
state-of-the-art is this task.

2 Related Work

Counting objects in images is typically achieved by training either an object de-
tector or directly a counter. Detection-based methods first localize the individual
objects in the input image and then simply count them. In the context of cell bi-
ology, this strategy was employed in [5, 7, 15]. One of the main drawbacks of this
approach, however, is that it requires training data labeled with the locations
of the objects of interest, which is time-consuming and expensive to acquire, if
possible at all. A different, yet related approach, consists of predicting object
density instead of precise object locations. This was proposed by Lempitsky and
Zisserman [13] in the general context of computer vision and by Xie et al. [20]
for microscopy images. While effective, this again suffers from the fact that it
requires detailed annotations, if not of the objects themselves, then of their local
density.

By contrast, directly learning a counter bypasses the hard detection prob-
lem and reduces labelling cost by only requiring the true number of objects in
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each training image. When the number of such objects can be arbitrarily large,
and thus not all possible numbers can be observed during training, such as for
people counting in crowds [21], regression approaches are typically best-suited.
By contrast, when the number of object instances that can appear in an im-
age is small, classification becomes the method of choice. This approach has
recently become popular in the context of human embryonic cell counting. For
example, Wang et al. [18] proposed a 3-level classification method to predict the
embryo cell stage without performing detection. In Khan et al. [8], a conditional
random field (CRF) framework was developed to count the cells in sequences of
microscopy images. Thanks to their accuracy, these methods have become a key
ingredient in cell detection and early-stage embryo development analysis algo-
rithms [7, 9, 15]. Following their success, in this paper, we introduce a method
to directly count the number of cells in an early-stage embryo without requiring
any detection phase.

Traditional counting methods rely on hand crafted feature descriptors [7,
8, 9, 15, 18]. Recently, however, learning features via deep convolutional neural
network (CNN) models [12] has proven highly effective for a variety of tasks, such
as recognizing handwritten digits [3], handwritten characters [2], faces [17] and
natural images [11], and, in the biomedical domain, detecting cell mitosis [1, 4].
CNNs were also recently applied to the problem of cell counting [16, 20]. In
both cases, however, the networks were trained to perform in well-controlled
environments, with clean background and little cell overlap on synthetic images.
In practice, however, and in particular in the case of human embryos, the images
background contains a lot of noise, such as fragments, and the cells of the growing
embryo greatly overlap each other.

In this paper, we therefore address the cell counting problem in this chal-
lenging scenario. To this end, we introduce a CNN-based counting approach
that requires minimal annotations, i.e., only the number of cell in each image.
Furthermore, we incorporate temporal information via a CRF, which smoothes
the individual CNN predictions across the entire sequence. Our experiments
demonstrate that our approach outperforms, by a large margin, the state-of-
the-art method on the challenging task of counting cells in early stage human
embryo development.

3 Deep Learning Based Cell Counter

Our goal is to count cells directly from the microscopy images of developing hu-
man embryos. We formulate cell counting as a classification problem and employ
an end-to-end deep CNN framework. The main objective for our cell counting
model is to learn a mapping F : Rm×n → L, where m× n is the size of the mi-
croscopy image and L = {1, . . . , Nmax} is the cell cardinality of the image, with
the last label corresponding to Nmax-or-more cells in the embryo. In practice,
we use Nmax = 5.

Our framework uses raw pixel intensity as input and, in contrast to previous
cell counting approaches [5, 13, 20], only uses the cell count in each training image
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as annotation, without requiring any information about the objects shape, size
and location. In this setting, our goal is to learn a mapping from an input image
to the number of cells in this image, which we propose to do with a CNN, as
discussed below.

3.1 CNN-based Embryonic Cell Counting

In this work, we make use of images of developing embryos that were acquired
using the Eeva SystemTM , for capturing microscopy images developed by Aux-
ogyn, Inc. Embryos are placed in a petri dish inside an incubator and image
acquisition software acquires a single-plane image every five minutes over a five
day period. Below, we first present our approach to obtaining the training data
and then discuss our CNN framework.

Computing embryo bounding boxes. The microscopy images that we used
as input contain a well boundary, which we remove by applying a pre-calculated
boundary mask (see Fig. 2(b) for boundary-removed image). These images also
contain extracellular material and noise that could easily confuse a classifier.
To reduce the impact of this noise, we introduce a fully automatic approach
to select a region of interest by computing a bounding box that encloses the
embryo. To this end, we first determine the largest connected component in the
thresholded boundary-removed intensity image and compute the centroid of this
component. Each image contains one embryo only (in our application only one
embryo is grown per well as shown in Fig. 2), so the centroid can be computed as
the point within the component with maximum shortest distance to the region
boundary [10]. We then crop the image around this centroid to obtain an image
of size 151 × 151 pixels. The result is shown in Fig. 2(c). The dimension of the
bounding box reflects the size of a fully developed embryo and is determined by
the known optical setup of the image acquization system. After processing all
the training images in this manner, we normalize the results by subtracting the
mean intensity taken over the whole dataset. The same mean is subtracted from
test images.

Cell counting is invariant to rotation. Therefore, we generate additional train-
ing instances by applying arbitrary rotations and mirroring to the original data.
This reduces overfitting and, as shown in our experiments, improves accuracy.

Our CNN framework. We follow the architecture of Krizhevsky et al. [11].
Our CNN model contains eight layers (five convolutional ones and three fully
connected ones). The first convolutional layer (Conv1) filters the 151×151 input
image with 96 kernels of size 11× 11. Conv2 has 256 filters of size 5× 5, Conv3
and Conv4 have 384 filters of size 3 × 3, and the last Conv5 layer has 256
filters of size 3× 3. The fully connected layers have 4096 neurons each with 50%
dropout ratio used during training. Max pooling layers with a 3× 3 kernel size
are used after Conv1, Conv2 and Conv5. We employ a Rectified Linear Unit
(ReLU) activation function after every convolutional and fully connected layer.
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Fig. 2. Example of (a) raw intensity image; (b) boundary-removed image; (c) cropped
image; and (d) masked cropped image [10]. Notice that the noise at the right of the
image (c) is removed in (d) but that some boundary pixels are also affected. Also shown
is (e) surrounding gel material; and (f) fragments attached to the embryo.

Furthermore, we apply local response normalization to Conv1 and Conv2. The
output layer encodes an (Nmax = 5)-way classification problem for which we
use a softmax function to produce a distribution over the five class labels. The
network maximizes the multinomial logistic log loss of the softmax output.

We use the Caffe [6] package to implement our model. All the configuration
settings are standard other than those specified here. In particular, we initialize
the learning rate to 0.005 and decrease it by a factor of 10 after half of the
iterations. The momentum term is set to 0.9, and the weight decay to 0.0005.
The network is trained for 5,000 iterations, taking three hours on an Nvidia K40
GPU. These parameters are obtained by cross-validation.

3.2 Enforcing Temporal Constraints

The CNN framework described above provides a cell count for each frame indi-
vidually. However, in sequential data, as ours, adjacent frames are more likely to
have the same number of cells. Considering neighboring frames can thus further
improve the cell count over a complete time-lapse sequence. Following the work
of Khan et al. [10], we capture this by making use of a conditional random field
(CRF) with a unary and pairwise terms.

Formally, we represent the number of cells at time t with a discrete random
variable Nt. Each variable Nt for t ∈ {1, . . . , T} can take a label from the set
L={1, . . . , Nmax}. Let Nt ∈ L denote the label assigned to frame t. Then we
can define the energy of a complete labeling over all frames as

E(N1, . . . , NT ) =

T∑
t=1

ψU
t (Nt) +

T−1∑
t=1

ψP
t,t+1(Nt, Nt+1), (1)

where the unary term (ψU
t ) represents a score for each cell count in each frame

and is obtained from the log of the softmax output of our CNN-based cell counter.
The pairwise term (ψP

t ) enforces consistency between neighboring frames by
imposing a biological constraint encoding the fact that the cell count should be
monotonically non-decreasing over time and is expressed as

ψP
t,t+1(Nt, Nt+1) =

{
0, if Nt ≤ Nt+1

∞, if Nt > Nt+1 .
(2)
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Table 1. Cell stage prediction performance. Here, the average is computed as the
arithmetic mean of the one to five cell predictions, and the overall represents the
fraction of correct instances.

Cell Stage Prediction (%)
Experiments 1-cell 2-cell 3-cell 4-cell 5-cell Avg. Overall

RawImg 98.48 89.36 60.44 77.33 89.08 82.94 87.36

RawImgCRF 98.87 94.18 63.07 81.67 91.11 85.78 90.25

CroppedImg 99.19 94.51 70.41 82.90 92.89 87.98 91.45

CroppedImgCRF 99.48 97.60 73.91 87.30 95.23 90.70 94.05

Khan et al. [8] 95.66 87.93 23.91 65.91 73.12 69.31 77.93

We search for the most likely number of cells in each frame, and ultimately
the most likely sequence. This corresponds to the assignment that minimizes
E(N1, . . . , NT ), which can be obtained efficiently by dynamic programming.

4 Experiments

We evaluated our approach on 265 time-lapse image sequences consisting of a
total of 148,993 frames (with 21%, 24%, 4%, 23%, 28% of samples for 1 to 5-
or-more cell cardinality, respectively). The sequences capture the embryos from
53 different patients and show a high degree of variation, such as extra cellular
material artifacts and cell reabsorption. We used a 10-fold cross validation strat-
egy and report the cell stage prediction accuracy, computed as the percentage of
frames where the correct number of cells was predicted. We compare the results
of our approach against the cell counting results of Khan et al. [8]. To obtain
ground-truth, we manually annotated the sequences with the number of cells in
each frame.

Table 1 compares the results of our approach with different types of in-
put, with and without using the CRF, and against those of the state-of-the-art
method of Khan et al. [8]. Note that, independently of the kind of input and of
the use of a CRF, our approach always significantly outperforms Khan et al. [8].
In particular, our basic CNN cell counter, with raw intensity images as input,
yields on average 13.63% and overall 9.43% improvement over Khan et al. [8].
The performance further improves by 5.04% on average and 4.09% overall by
training our CNN with images cropped around the bounding box. The use of
a CRF yields additional boost of roughly 3% both in average and overall ac-
curacy. We note that the computational cost of the CRF is minimal and that
our running time is well within the 5-minute interval between frames. Analyz-
ing the performance for each cardinality reveals that our approach can reliably
predict the correct number of cells up to the 5-cell stage. The improvement over
the state-of-the-art method of Khan et al. [8] is highest in the 3-cell case (from
23.91% to 73.91%), which is the most challenging one due to the small amount
of data available for this stage. Note that this lack of data also explains why
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Fig. 3. Confusion matrix (CroppedImgCRF) %.

Table 2. Ablation analysis. Here, the average is computed as the arithmetic mean
of the one to five cell predictions, and the overall represents the fraction of correct
instances.

(%)
Experiments Avg. Overall

CroppedImg w/o aug 80.32 85.82

CroppedImg w/o augCRF 83.65 89.08

CroppedImg w Mirror 83.32 87.79

CroppedImg w MirrorCRF 86.31 91.15

BRmImg 84.54 88.20

BRmCRF 88.09 92.12

MaskedImg 85.98 90.71

MaskedImgCRF 88.98 93.26

the 3-cell stage remains comparatively lower than the other stages even with our
approach. The confusion matrix in Fig. 3 shows that our errors typically occur
with adjacent classes. We show some error cases in Fig. 4.

In Table 2, we analyze the influence of several components of our method
via an ablation study. To this end, we first evaluate the impact of data augmen-
tation. Our results show that augmenting the data by mirroring and rotation
(CroppedImg vs CroppedImg w/o aug) increases the overall performance by
5.63%. In particular, we observed a substantial improvement in the 3-cell case
(17.62%), which, as mentioned above suffers from data scarcity. Note that only
using mirroring augmentation (CroppedImg w Mirror and CroppedImg w Mir-
rorCRF) improves over no augmentation at all, but still does not reach the
accuracy when using rotation and mirroring. In addition to data augmentation,
we also study the influence of our image pre-processing steps, described in the
method section, on our results. In particular, we observed an improvement of
0.84% by training the CNN with the boundary-removed images (RawImg vs.
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(a) (b) (c) (d) (e)

Fig. 4. Examples of cell counting error with CroppedImgCRF variant for 1-cell stage
(a), 2-cell stage (b), 3-cell stage (c), 4-cell stage (d) and 5-or-more cell stage (e). Here,
predicted cell count is mentioned on top left of each image.

Table 3. Cell detection analysis. Here, the average is computed as the arithmetic
mean of the one to four cell predictions, and the overall represents the fraction of
correct instances.

Cell Stage Prediction (%)
Experiments 1-cell 2-cell 3-cell 4-cell 5-cell Avg. Overall

Khan et al. [9] 96.89 89.77 16.48 49.37 65.32 63.57 72.05

detection w CroppedImgCRF 100.00 99.47 89.20 76.06 90.54 91.05 92.18

BRmImg). As a pre-processing step, the method of Khan et al. [8] subtracts
the background from the images by performing embryo segmentation [10] (see
Fig. 2 (d)). To compare the impact of this background subtraction to our sim-
pler bounding boxes, we trained a CNN with such background subtracted images.
This resulted in performance drop of 0.74% (MaskedImg vs. CroppedImg). The
drop can be explained by the errors in the embryo masks, which occasionally in-
clude background and exclude foreground. These results suggest that our simpler
bounding box based approach is more robust to these phenomena.

To summarize, all of the variants of our method yield significantly higher
accuracy than the state-of-the-art (Khan et al. [8]) on this dataset. While the
alternative method of Wang et al. [18] also performs cell counting directly from
the masked microscopy images, they only evaluate on a subset of our data, and,
more importantly, only up to the 4-cell case. A direct comparison is therefore not
truly possible. However, we believe that the fact that their accuracy on the 4-
cell stage was substantially lower than ours (-16.44%) illustrates the superiority
of our approach. Also, comparisons done by Khan et al. [8] showed that their
method performed better than Wang et al. [18].

Finally, we also study the impact of our improved cell counts on the task of
cell detection. To this end, we employed the method of Khan et al. [9] and re-
placed their cell counter with ours. For cell detection, we used the 35 sequences,
consisting of 19,147 frames, in which the ground-truth cell locations were manu-
ally annotated. In Table 3, we can observe a substantial improvement (20.13%)
in cell detection accuracy, thanks to our better counting strategy.
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5 Conclusion

Previous approaches to cell counting in microscopy images of early-stage embryo
development [7, 8, 9, 15, 18] have put a lot of effort in designing features that are
well-suited for the task. These approaches, however, do not scale up to the large
variability observed in ever growing datasets. In this paper, we have therefore
proposed to directly learn the relevant features from images. To this end, we have
introduced a deep CNN approach to cell counting in microscopy images. Our ex-
periments have demonstrated that our basic CNN counter outperforms previous
cell counting methods by a margin of 16.12% in overall accuracy. Furthermore,
we have shown that this performance could be significantly improved by auto-
matically computing a bounding box enclosing the embryo and by incorporating
temporal information via a CRF. Altogether, our approach yields state-of-the-
art results on the task of counting human embryonic cells in microscopy images.
In the future, we plan to apply deep learning to analyze complete embryo se-
quences and find correlations with embryo viability. This will help embryologists
to identify new biomarkers and, eventually, improve IVF success rates.
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