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Abstract. Quantitative analysis of the dynamics of tiny cellular and
subcellular structures in time-lapse cell microscopy sequences requires
the development of a reliable multi-target tracking method capable of
tracking numerous similar targets in the presence of high levels of noise,
high target density, maneuvering motion patterns and intricate interac-
tions. The linear Gaussian jump Markov system probability hypothesis
density (LGJMS-PHD) filter is a recent Bayesian tracking filter that
is well-suited for this task. However, the existing recursion equations
for this filter do not consider a state-dependent transition probability
matrix. As required in many biological applications, we propose a new
closed-form recursion that incorporates this assumption and introduce
a general framework for particle tracking using the proposed filter. We
apply our scheme to multi-target tracking in total internal reflection flu-
orescence microscopy (TIRFM) sequences and evaluate the performance
of our filter against the existing LGJMS-PHD and IMM-JPDA filters.

1 Introduction

Recent developments in time-lapse cell microscopy imaging systems have had
a great impact on the analysis of cellular and intracellular dynamics. However,
visual inspection of data acquired by these imaging techniques requires manual
tracking of large and time-varying numbers of tiny structures in noisy images.
Therefore, automated tracking methods have been extensively used in differ-
ent biological applications in the last decade [1–9]. Despite significant technical
advances made in automatically tracking moving objects, particle tracking re-
mains a challenging task due to the complex nature of biological applications.
The microscopic sequences are usually populated with visually similar tiny struc-
tures having intricate motion patterns and sophisticated interactions with other
structures such as spawning (mitosis) and merging. Moreover, the structures may
enter, exit, or temporarily disappear from the field of view or be occluded by
other cellular objects. In addition in some imaging techniques, e.g. fluorescence
microscopy imaging, the sequences are contaminated with high levels of noise
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which complicates detection. Thus for success in biological applications, particle
tracking methods should be able to track an unknown and time-varying number
of similar structures in the presence of clutter noise and detection uncertainty.

To this end, many tracking approaches have been proposed. Bayesian track-
ing approaches are a class of probabilistic tracking algorithms that have become
popular for many cell tracking applications in recent years [1–9]. These tracking
methods can theoretically deal with the aforementioned difficulties by incorpo-
rating prior knowledge of object dynamics and measurement models. Recently, a
new generation of Bayesian filters based on Random Finite Set (RFS) theory has
been proposed in the literature [10, 11]. In this approach, the state of targets and
measurements are modeled as random finite sets. Then, the Bayesian filtering
framework is used to recursively estimate and update the joint posterior density
of the targets’ states as a random finite set. This elegant formulation avoids
explicit track management and associations between measurements and targets
which makes this approach advantageous compared to the traditional Bayesian
tracking algorithms such as Kalman [1–3] and Particle [4–7] filters. Mahler [11]
recently proposed a computationally tractable RFS filter which propagates the
first statistical moment of the RFS probability density function of targets, the
so called Probabilistic Hypothesis Density (PHD). Due to its good performance
and significantly low processing time, the filter has been recently used in various
applications such as computer vision [12]. In biological applications, we know of
only two published applications of this filter to cell tracking [8, 9]. In these pa-
pers, the motion of their microscopic structures are modeled using single linear
Gaussian dynamics. However, in many biological applications, a single motion
model cannot mimic maneuvering dynamics of subcellular structures. Therefore,
these approaches cannot be extended to other similar applications.

In this paper, we propose a general framework for tracking cellular and sub-
cellular structures using the multiple model approach or the jumpMarkov system
(JMS) implementation of the PHD filter [13]. To our knowledge, this is the first
application of the multiple model approach of the PHD filer to biological imag-
ing. The main contribution of this paper is a new closed-form for the multiple
model Gaussian mixture PHD (LGJMS-PHD) filter. As required for biological
applications, this new form is more general than the closed-form suggested by
Pasha et al. [13]. Moreover, since the identity of trajectories is not considered in
the PHD filter formulation, we propose a scheme for identity propagation in this
filter. To show the efficiency of the proposed framework, we apply it to parti-
cle tracking in a specific biological application and compare the tracking results
against the results of the existing LGJMS-PHD filter [13] and the IMM-JPDA
filter [1], which is the most relevant traditional filter for this task.

2 Background

Let xk,1, ..., xk,Nk
and zk,1, ..., zk,Mk

be the states of all Nk targets and all Mk

measurements at time k, respectively. Over time, some of these targets may
disappear, new targets may appear, and the surviving targets evolve to new
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states based on their dynamics. Moreover, due to sensor limitations, only some
targets are detected at each time step and many measurements are spurious
detections (clutter). We can conveniently describe each time slice by two random
finite sets, Xk = {xk,1, ..., xk,Nk

} and Zk = {zk,1, ..., zk,Mk
}.

In the RFS based Bayesian tracking approach, the goal is to estimate the joint
multi-target posterior density of the states at each time step k using the set of
all measurements up to this time step. This posterior density, p(Xk|Z1:k), can be
described by a discrete probability distribution and a joint probability density
on the targets’ cardinality and state, respectively [10]. The Bayesian filtering
framework is used to recursively estimate this combinational posterior density
using multi-target transition density f(Xk|Xk−1) and multi-target measurement
likelihood g(Zk|Xk). Although the filter provides an elegant Bayesian formula-
tion of the multi-target filtering problem, it is computationally intractable [10].
To overcome this problem, Mahler [11] proposed to propagate the probability
hypothesis density, or posterior intensity, of the targets vk(x) which is the first
statistical moment of the probability density function p(Xk|Z1:k). This alleviates
the computational burden of the RFS based filter while still using the RFS con-
cept. It has been shown that this posterior intensity can be calculated using the
following recursive equations [11],

vk|k−1(x)=

∫
pS,k(x́)fk|k−1(x|x́)vk−1(x́)dx́+

∫
βk|k−1(x|x́)vk−1(x́)dx́+γk(x),

(1)

vk(x) = [1−pD,k(x)]vk|k−1(x)+
∑
z∈Zk

pD,k(x)gk(z|x)vk|k−1(x)

κk(z)+

∫
pD,k(x)gk(z|x)vk|k−1(x)dx

,
(2)

where pS,k(·) and pD,k(·) are survival and detection probabilities, and κk(·),
βk|k−1(·) and γk(·) denote the intensities of clutter, spawn and birth, respectively.

3 Our framework for particle tracking

Since the PHD filter recursion accommodates complexities such as the birth and
spawn models, data association uncertainty, clutter noise, and detection uncer-
tainty in its formulation, it is a suitable tracker for many the biological applica-
tions. However, this recursion involves integrals and does not have a closed-form
solution in general. The Sequential Monte Carlo implementation of this filter,
so called SMC-PHD (or particle-PHD) filter [10], is a generic solution for prop-
agating the intensity distribution. However, the drawback of this approach is
the high computational cost due to the large number of required particles [14].
In the case where the target dynamics and measurement model are both linear
and Gaussian, and the birth and spawn terms can be expressed as a mixture of
Gaussians, there is a closed-form for this recursion so called Gaussian mixture
PHD (GM-PHD) filter which is computationally efficient [14].

We now tailor a framework using this filter for the complexities of particle
tracking in biological applications. To propose a practical tracker for densely
populated particles with reasonable processing time, we assume linear Gaussian
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models. Moreover, we model maneuvering dynamics of the particles with multiple
such models. Although, the JMS multi-target model for the PHD filter was
previously proposed by Pasha et al. [13], we introduce a more general closed-
form implementation.

The state and measurement vectors: Sequences acquired from time-
lapse cell microscopy imaging systems usually contain hundreds of cellular struc-
tures appearing as similar tiny particles occupying few pixels in the image. Thus,
using shape similarity between objects in order to associate the measurements to
the tracks may not be helpful. Typically in this approach, the (kinematic) state
vector, ξ ∈ Rn, includes basic features such as position x, velocity ẋ, acceleration
ẍ, intensity I, and direction ϕ of particles [1–3, 5–9].

The observation (or measurement) vector z contains what can be measured
from the sequences, i.e., the intensity of each pixel. However, the intensity of
each pixel is usually a non-linear function of the state vector [6, 7]. Therefore
in this case, SMC-PHD filter which is computationally intensive, is required for
the tracking framework. In contrast, a simple detection approach can be usually
applied for calculation of an estimated position x̂ or an estimated intensity Î
of each particle. Although the detections may be noisy and include many false
alarms, the PHD filter can properly deal with this. Moreover, we can now use
the more efficient Gaussian mixture.

Modeling maneuvering behavior of particles: In many biological ap-
plications, the cellular structures exhibit intricate motion patterns and maneu-
vering dynamics which cannot properly described by a single linear Gaussian
motion model. Instead, the motions can appropriately model by several linear
dynamic models [1–3, 6]. Therefore, we propose a multiple model approach for
simulating the motion model of these structures as follows.

For notational convenience, we remove the time index k in our formulation.
However, the random variables and intensity distributions are generally time-
indexed variables and distributions. All random variables (·)k at time k and

(·)k−1 at time k − 1 are simply shown by (·) and (́·), respectively.
Assume that the maneuvering dynamics of the structures can be properly

modeled by M linear Gaussian models and measurement likelihood has also
a linear Gaussian form for each model r = {1, ...,M} such that f̃(ξ|ξ́, r) =

N
(
ξ;F (r)ξ́, Q(r)

)
and g(z|ξ, r) = N (z;H(r)ξ,R(r)), where F (r), H(r), Q(r)

and R(r) are the transition, the measurement, and the process and measurement
noise covariance, matrices for model r, respectively.

In some biological applications [1, 15], the transition from a dynamic model
to another model depends not only on the current model but also on the state
of the structures, i.e., its position or velocity. Therefore, a more accurate model
includes a state-dependent transition probability t(r|ŕ, ξ́). Therefore, the tran-
sition density f(·|·) for the augmented state vector x = (ξ, r) can be written as

f(x|x́) = f̃(ξ|ξ́, r)t(r|ŕ, ξ́) (3)

where f̃(·|·) is the state transition density for a specific model r. In this approach,

it is supposed that t(r|ŕ, ξ́) can be expressed by an affine mixture of Gaussians,
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t(r|ŕ, ξ́) = w
(0)
t (r, ŕ) +

Jt(r,ŕ)∑
j=1

w
(j)
t (r, ŕ)N

(
ξ́;µ

(j)
t (r, ŕ), Σ

(j)
t (r, ŕ)

)
, (4)

where w
(j)
t ,Jt(r, ŕ),µ

(j)
t (r, ŕ) and Σ

(j)
t (r, ŕ) are given model parameters and are

tuned based on prior knowledge about the application. Note 0 6 t(r|ŕ, ξ́) 6 1 and∑
r t(r|ŕ, ξ́) = 1, ∀ξ́, ŕ. The w

(j)
t (·) can be negative so that these conditions are

met. Instead of having a constant transition probability matrix, the definition
t(·|·) as the form of Eq. 4 lets us to adaptively change the transition probability

weights w
(j)
t (·) based an a set of Gaussian functions of the state ξ́.

Modeling spawn term: Similarly, the state of spawned structures may be
affected by the state of their parents in these applications [16]. Therefore, the
spawned intensity for the augmented state x = (ξ, r) is given by

β(x|x́) = β̃(ξ|ξ́, ŕ)π(r|ŕ, ξ́), (5)

where β̃(·|·) is the spawned intensity of the state ξ for the model r and π(r|ŕ, ξ́)
is the state-dependent spawned transition probability. In this approach, it is
assumed that the β̃(·|·) and π(·|·) can be represented by a Gaussian mixture and
an affine mixture of Gaussians, respectively.

β̃(ξ|ξ́, ŕ) =
Jβ(ŕ)∑
j=1

w
(j)
β (ŕ)N

(
ξ;F

(j)
β (ŕ)ξ́ + d

(j)
β (ŕ), Q

(j)
β (ŕ)

)
, (6)

π(r|ŕ, ξ́) = w(0)
π (r, ŕ) +

Jπ(r,ŕ)∑
l=1

w(l)
π (r, ŕ)N

(
ξ́;µ(l)

π (r, ŕ), Σ(l)
π (r, ŕ)

)
, (7)

where Jβ(·),w(j)
β (·), F (j)

β (·), d(j)β (·), Q(j)
β (·), Jπ(·), w(l)

π (·), µ(l)
π (·) and Σ

(l)
π (·) are

given parameters for these models [13] and are set based on a prior knowledge of

the spawn phenomena in the application and such that 0 6 π(r|ŕ, ξ́) 6 1, ∀ξ́, ŕ.
The interpretation for π(·|·) is similar to t(·|·) in Eq. 4.

State-dependent survival and detection probabilities: The probabili-
ties that a target survives, pS,k(·), or is detected by the detection scheme, pD,k(·),
may depend on its state. For example, the cellular structures may fuse or may
disappear from the field of view around specific locations. Similarly, the prob-
ability of detection may vary such that the structures with faint intensity may
not be detected as well as other structures [8]. Therefore, state-dependent sur-
vival and detection probabilities, pS,k(·) and pD,k(·), can enhance the tracking
results. In our framework, we assume that these probabilities can be represented
by Gaussian mixture models.

pS(ξ́, ŕ)=w
(0)
S (ŕ)+

JS(ŕ)∑
l=1

w
(l)
S (ŕ)N

(
F (r)ξ́;µ

(l)
S (ŕ), Σ

(l)
S (ŕ)

)
, 06pS(ξ́, ŕ)6 1 ∀ξ́, ŕ (8)

pD(ξ, r)=w
(0)
D (r)+

JD(r)∑
l=1

w
(l)
D (r)N

(
ξ;µ

(l)
D (r), Σ

(l)
D (r)

)
, 06pD(ξ, r)6 1 ∀ξ, r. (9)

The parameters of the survival and detection probabilities such as w
(l)
S (·), JS(·),

µ
(l)
S (·), Σ(l)

S (·), w(l)
D (·), JD(·), µ(l)

D (·) and Σ
(l)
D (·) are set based on the application.
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Modeling birth term: In most of the previous applications, the locations
of spontaneous births are either unknown or uniformly distributed everywhere
in the image background [1, 6–8]. However in this filtering framework, a prior on
birth locations is required to estimate the birth intensity distribution. To address
this, we use a Gaussian term with very high variance, as the birth intensity
distribution of the state ξ such that γ̃(ξ) = wγN (ξ;µγ , Σγ), where wγ represents
the expected number of new born structures. This allows that any detected
measurement has the same chance to be detected as new born targets. The
birth intensity distribution for the augmented state x = (ξ, r) is then given by
γ(ξ, r) = γ̃(ξ)πγ(r), where πγ(r) is the probability of birth for model r [13].

A closed-form PHD recursion: Our model differs from Pasha et al. [13]
by the introduction of state-dependent models for t(·|·) and π(·|·). Therefore,
the closed-form for the predicted intensity vk|k−1(·) will be different from [13].
However, the updated intensity vk(·) are obtained similar to the general closed-
form proposed in their paper. In order to show that there is a closed-form for the
predicted intensity (Eq. 1) using the above models, two Lemmas are required:

Lemma 1: The product of a Gaussian and a conditional Gaussian has a weighted
Gaussian form such that N (x;µ,Σ)N (z;Hx + d,R) = λbN (x;µb, Σb), where
λb = N (z;Hµ+d,R+HΣHT ), µb = µ+K(z−d−Hµ), and Σb = (I−KH)Σ,
where K = ΣHT (HΣHT +R)−1.

Lemma 2: The product of two Gaussian distributions is a weighted Gaussian such
thatN (x;µ1, Σ1)N (x;µ2, Σ2) = λcN (x;µc, Σc), where λc = N (µ1;µ2, Σ1+Σ2),
Σc = (Σ−1

1 +Σ−1
2 )−1 and µc = Σc(Σ

−1
1 µ1 +Σ−1

2 µ2).

According to Eq. 1, the vk|k−1(·) is composed of three terms including intensity
distributions due to existing targets vf (·), spawned targets vβ(·) and spontaneous
births vγ(·) as vk|k−1(x) = vf (x) + vβ(x) + vγ(x). Supposing that the posterior
intensity vk−1 at time k − 1 has a Gaussian mixture form

vk−1(x́) = vk−1(ξ́, ŕ) =

J(ŕ)∑
i=1

w(i)(ŕ)N
(
ξ́;µ(i)(ŕ), Σ(i)(ŕ)

)
, (10)

and by substituting Eqs. 3, 8 and 10 into the first term of Eq. 1 and using
Lemmas 1 and 2, it can be shown that vf (·) has Gaussian mixture form,

vf (ξ, r) =
∑
ŕ

J(ŕ)∑
i=1

JS(ŕ)∑
l=0

Jt(r,ŕ)∑
j=0

w
(i,l,j)
f (r, ŕ)N

(
ξ;µ

(i,l,j)
f (r, ŕ), Σ

(i,l,j)
f (r, ŕ)

)
. (11)

The equations for w
(i,l,j)
f , µ

(i,l,j)
f and Σ

(i,l,j)
f can be easily calculated using the

aforementioned lemmas and we omit them here due to space restrictions. Sim-
ilarly by substituting Eqs. 5 and 10 into the second term of Eq. 1 and using
Lemmas 1 and 2, it can be shown that vβ(·) also has a Gaussian mixture form
given by

vβ(ξ, r)=
∑
ŕ

J(ŕ)∑
i=1

Jβ(r,ŕ)∑
j=1

Jπ(r,ŕ)∑
l=0

w
(i,j,l)
β (r, ŕ)N

(
ξ;µ

(i,j,l)
β (r, ŕ), Σ

(i,j,l)
β (r, ŕ)

)
. (12)
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As above, equations for w
(i,j,l)
β , µ

(i,j,l)
β and Σ

(i,j,l)
β can be calculated using the

lemmas. Finally, the last term in Eq. 1 is Gaussian term equal to

vγ(x) = γ(ξ, r) = wγπγ(r)N (ξ;µγ , Σγ) . (13)

Consequently, vk|k−1(·), which is sum of Eqs. 11, 12 and 13, is a Gaussian mix-
ture. The closed-form suggested here for vk|k−1(·) is more general than what is
proposed in [13] and is applicable for an enhanced particle tracking in biolog-
ical applications where the transition probability t(·|·), the spawned transition
probability π(·|·) and survival and detections probabilities, pS(·|·) and pD(·|·),
are state-dependant functions. The proposed scheme, however, is completely
general and supports simpler models where some or all of these terms are state-
independent.

Tag propagation scheme: In the PHD filtering framework, the identity of
trajectories is not considered in the filter recursions and thus, the dynamics of
an individual target cannot be evaluated. A method for propagating the identity
of the tracks in Gaussian mixture probability hypothesis density (GM-PHD)
filter is proposed in [17]. However, the method uses a heuristic technique to find
the identity of crossing targets that is only applicable for the GM-PHD filter.
Here, we propose a better solution for propagating track identities and solving
crossing targets. Our solution applies to both GM-PHD and LGJMS-PHD filters.
Supposing the identity of each Gaussian term in the posterior intensity vk−1 is
known, the tags are propagated in our framework as follows.

Prediction step: The Gaussian terms in vf (·) keep the identities of their
parents vk−1 as these terms are related to existing targets which move based
on their dynamics. For each Gaussian term spawned by an existing term with
index i in the spawned term vβ(·), a new tag is assigned. For Gaussian terms
introduced by the birth model, no tag is assigned in this step.

Update step: The Gaussian terms with existing identities, initially keep their
tags after the update step. For each updated Gaussian term introduced by the
birth model, a new tag is assigned in this step. This idea is based on the assump-
tion that each generated measurement is either due to the targets or clutter and
a single target cannot generate more than one measurement at each time frame.

Next, the state estimation procedure (i.e. thresholding on Gaussian terms) [14]
is applied to revise the tags. Noting that an existing target cannot have more
than one state at each time frame, if multiple target states are assigned with
Gaussian terms having identical tags, the term with the highest weight keeps its
identity and the remaining terms are assigned by a new tag.

A solution for crossing targets: From the PHD recursion, it can be seen that
the number of intensity components increases as time progresses. Therefore, this
filter is usually followed by a pruning step that eliminates and merges Gaussian
terms [13, 14]. This step is applied to decrease computational burden and remove
unlikely intensity distributions. However, it leads to identity loss in crossing
targets. To avoid this, we simply suggest that merging between intensity terms
can be performed only if their tags are identical. More precisely, the merging for
the Gaussian terms with the different tags is not allowed in this approach.
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4 Experimental results

We applied the proposed scheme for multi-target tracking in 2-D Total Internal
Reflection Fluorescence Microscopy (TIRFM) sequences. TIRFM is an imaging
technique that enables the selective excitation of fluorescently tagged proteins
within a few hundred nanometers of the plasma membrane of a cell. This selec-
tive excitation characteristic of TIRFM has made it an ideal imaging technique
for visualizing subcellular structures such as vesicles that are on or close to the
plasma membrane [18]. The vesicles are very tiny subcellular structures and are
seen in TIRFM sequences as small bright spots moving with different dynamics
while appearing or disappearing from the field of view or are occluded by or
spawned from other structures. Moreover, due to limitations in TIRFM acquisi-
tion process, the sequences are contaminated with a high level of noise [19].

We modeled the state of each vesicle by its position, x = (xx, xy), and veloc-
ity, ẋ = (ẋx, ẋy). The measurements z = (x̂x, x̂y) were provided by the detection
scheme proposed by Rezatofighi et al. [19]. Then, we applied our LGJMS-PHD
filter using two linear dynamic models including random walk and small acceler-
ation motion model [1, 3, 6]. The transition probability t(·|·) were defined similar
to the function suggested in [1]. This function can be easily represented as an
affine mixture of Gaussians. Since the vesicles are spawned independently from
the state of their parents, a state independent form of the spawned transition
probability was used in this application π(r|ŕ, ξ́) = π(r|ŕ). Moreover, pS(·) in this

current implementation is independent of the state of targets pS(ξ́, ŕ) = pS(ŕ).
Since the main source of noise in this imaging technique is an intensity de-

pendent noise (Poisson noise) [6], the signal to noise ratio (SNR) in the areas
with higher intensity levels is lower. Therefore, the vesicles located in this area
have lower detection probability. To improve the probability of detection, we
defined it as a Gaussian mixture function of the target positions, x. Since the
locations where spontaneous births may occur is unknown in this application,
the birth intensity distribution is set as Gaussian distribution centered on the
image with very high standard deviation.

Evaluation on realistic synthetic data: Due to complexity of the data,
there is no reliable manual ground truth on the TIRFM sequences. To quanti-
tatively evaluate the proposed tracking algorithm, it was first evaluated using
realistic synthetic sequences generated by the framework proposed in [20]. The
sequences simulated using this framework appropriately reflect the difficulties
existing in real TIRFM sequences while providing accurate ground truth.

Moreover, we quantitatively compared the results of our LGJMS-PHD fil-
ter against the result of the IMM-JPDA filter proposed in [1]. Since this filter
is a combination of a multiple model Bayesian filter and a very robust data-
association technique, it is the most relevant traditional Bayesian tracking filter
for comparison with our framework. In addition, our results are also compared
against the result of the previously implemented LGJMS-PHD filter [13] when
the t(·|·), π(·|·), pS(·|·) and pD(·|·) are independent of target state. To maximize
the validity of our experiments, we chose identical parameters and models such
as the same state vector, clutter rate, measurements and dynamic models, for
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Fig. 1. The average CPU time per frame required for tracking the targets using the
IMM-JPDA, the previous LGJMS-PHD and the proposed LGJMS-PHD filters in se-
quences with (a) different target densities and a constant clutter rate and (b) different
clutter rate and a fixed average number of targets.

all filters. For other parameters which are not in common, we attempted to find
the values that resulted in the best performance for the competing models.

In the first experiment, we compared the processing time required for these
filters to track different numbers of targets in a fixed clutter rate. Here, clutter
rate (λc) is defined as the average number of false measurements per pixel per
frame. In Fig. 1(a), we see the both LGJMS-PHD filters require noticeably lower
processing time for tracking large number of targets. However, since our LGJMS-
PHD filter propagates more Gaussian terms for each target in each recursion, its
processing time is higher than the time required for the original LGJMS-PHD
filter. In the second experiment, we evaluated the performance of the tracking
filters in different clutter rates but a fixed average number of targets. Fig. 1(b)
shows that the processing time for the both LGJMS-PHD filters is significantly
less than the IMM-JPDA filter.

To qualitatively assess the performance of these tracking methods, we used
a metric based on optimal subpattern assignment (OSPA) [21]. This metric is
the sum of two errors: cardinality and location. The cardinality error is related
to missed or false tracks while location error shows track accuracy error and
labeling error. In Table 1, the performance of these tracking filters is compared
using this metric. To this end, we applied the filters for tracking targets in
synthetic sequences including on average 164 targets per frame and clutter rate
λc = 1.01×10−4. According to the table, the overall tracking performance for our
LGJMS-PHD filter using this metric is better than the other filters. Compared
to the previous LGJMS-PHD filter, this is an expected result as we have a better
model for the t(·|·) and pD(·|·).

In comparison with the IMM-JPDA filter, the both PHD filters have slightly
higher location error. This is mostly due to labeling error in very hard scenarios
such as several crossing targets with maneuvering dynamics. Intuitively, JPDA
uses joint probability association of measurements to update the tracks while the
PHD filters use the first statistical moment of this joint probability. Thus, the



10 S. H. Rezatofighi et al.

Method Location error Cardinality error OSPA

IMM-JPDA filter [1] 3.70 3.53 7.23

LGJMS-PHD [13] 3.98 2.12 6.10

Our LGJMS-PHD 3.92 1.80 5.72

Table 1. Comparison of the performance of the IMM-JPDA, the previous LGJMS-
PHD filter and our LGJMS-PHD filters using OSPA metric [21] (lower value is better).

(a) (b)

Fig. 2. An example where the PHD filter fails to accurately track several crossing
targets with maneuvering motions. The ground truth (solid line) and tracking results
(dashed line) for (a) our LGJMS-PHD and (b) the IMM-JPDA filters. The results of the
PHD and IMM-JPDA filters include some labeling errors and false tracks, respectively.

PHD filters can not work as well as the IMM-JPDA filter in these cases (Fig. 2).
In addition, the primary weakness of the PHD recursion is a loss of higher order
cardinality information which causes noisy tracks specially when the density of
targets are very high [22]. Therefore, this also affects track accuracy and increases
the location error. In contrast, both PHD filters have the lower cardinality error
compared to the IMM-JPDA filter due to less false and missed tracks. This is due
to incorporating new born targets and clutter models in their recursions while
there is no principled formulation for the IMM-JPDA filter. Fig. 2(b) shows that
the result of the IMM-JPDA filter includes several false tracks which do not exist
in the result of our PHD filter (Fig. 2(a)).

Evaluation on real data: The three tracking filters were also tested on
real TIRFM sequences. Because manual delineation of trajectories for generating
reliable ground truth for our data is an arduous and subjective task, the results
of the tracking were visually assessed by an expert. The real sequences include
about 300 targets per frame moving through a cell membrane with an effective
region size of 200× 210 pixels.

In this data, there are particles that are barely visible. To detect and track
these particles, the threshold in the detection method should be set low. This
increases clutter rate which dramatically increases the processing time and also
the number of false tracks in the IMM-JPDA filter. In contrast, the proposed
LGJMS-PHD filter allows us to track a significantly larger number of faint vesi-
cles while keeping false track rate low with significantly lower processing time
compared to the IMM-JPDA filter. However, the tracks resulted from the PHD
filters are slightly noisy as previously mentioned. Furthermore, they have more
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Fig. 3. Tracking result of our LGJMS-PHD filter for 100 real TIRFM sequences.

labeling errors in very hard scenarios where there are many crossing targets with
different dynamics.

5 Conclusion

In this paper, we proposed a new closed-form recursion for the LGJMS-PHD fil-
ter by incorporating state-dependent transition probability matrix t(·|·) and the
spawned transition probability π(·|·). This new closed-form is more general than
what was proposed previously in the literature and therefore, allows more accu-
rate PHD trackers for biological applications. Compared to traditional Bayesian
trackers such as IMM-JPDA, the proposed filter has noticeably lower process-
ing time in the cases where there are numerous targets and noisy detections.
Therefore, it can be an accurate particle tracker in these applications especially
when the number of crossing targets with maneuvering motions is reasonably
restricted. In addition, our filter can properly detect and track spawned parti-
cles which is not well-principled in other traditional Bayesian filters. The main
weakness of the PHD filters, including ours, is that they generate noisy trajec-
tories in area with very high target density. To address this problem, we plan to
use an improved version of the PHD filter, so called cardinalized PHD (CPHD)
filter [22], in our future work.
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