Darwin  1.10(beta)
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
Configuration Settings

drwnCodeProfiler

enabled :: enable profiling (default: false)

drwnLogger

logLevel :: verbosity level. Can be one of (ERROR, WARNING, MESSAGE (default), STATUS, VERBOSE, METRICS or DEBUG)
logFile :: name of file for logging message

drwnThreadPool

threads :: maximum number of concurrent threads

drwnXMLUtils

encoder :: blob encoding method (TEXT, BASE64 (default))
prettyBase64 :: produce 80-column base64 encoding (default: false)

drwnBoostedClassifier

method :: boosting method (DISCRETE (default), GENTLE, or REAL)
numRounds :: maximum number of boosting rounds (default: 100)
maxDepth :: maximum depth of each decision tree (default: 2)
skrinkage :: boosting shrinkage (default: 0.95)

drwnCompositeClassifier

baseClassifier :: base binary classifier (default: drwnBoostedClassifier)
method :: composition method (0: one-vs-all, 1: one-vs-one)

drwnConfusionMatrix

colSep :: column separator (default: tab)
rowBegin :: start of row token (default: tab)
rowEnd :: end of row token (default: newline)

drwnDecisionTree

maxDepth :: maximum depth of each decision tree (default: 2)
maxThresholds :: maximum number of thresholds to try during learning (default: 1000)
minSamples :: minimum number of samples after first split (default: 10)
leakage :: probability that a training sample leaks to both sides of a split (default: 0.0)
split :: split criterion for learning (ENTROPY (default), MISCLASS, GINI)
cacheSortIndex :: pre-cache sorted feature indexes for faster learning (default: true)

drwnGaussian

autoRidge :: apply ridge-regression automatically if log-det too small

drwnGaussianMixture

maxIterations :: maximum number of training iterations (default: 100)

drwnKMeans

K :: default number of clusters
maxIterations :: maximum number of training iterations

drwnLinearRegressor

beta :: huber penalty threshold (default: 1.0e-3)
lambda :: regularization strength (default: 1.0e-9)
maxIterations :: maximum number of training iterations (default: 1000)

drwnMultiClassLogistic

lambda :: regularization strength (default: 1.0e-9)
maxIterations :: maximum number of training iterations (default: 1000)

drwnRandomForest

numTrees :: maximum number of trees in the forest (default: 100)
maxDepth :: maximum depth of each decision tree (default: 2)
maxFeatures :: number of features for each tree (default: 10)

drwnADLPInference

maxIterations :: maximum number of iterations (default: 1000)
epsilon :: smallest difference in value to be considered as equal (default: 1.0e-6)
rho :: initial penalty parameter (rho) value (default: 1.0)

drwnMAPInference

maxIterations :: maximum number message passing iterations (default: 1000)
damping :: damping factor for message updates (default: 0.0)
warmStartIterations :: maximum number of iterations after adding constraints, Sontag et al., UAI 2008 (default: 20)
initialAlpha :: initial step-size for dual-decomposition (default: 0.5)

drwnTRWSInference

convergenceStep :: number of iterations included in convergence check (default: 10)
epsilon :: smallest difference in value to be considered as equal (default: 1.0e-6)
thetaConst :: constant parameter (theta) value (default: 0.0)

drwnGrabCut

visualize :: visualization (default: false)
maxIterations :: maximum segmentation iterations (default: 10)
maxSamples :: maximum samples for learning GMM colour models (default: 5000)
numMixtures :: number of mixture components in GMM colour models (default: 5)
pseudoCounts :: pseudo-counts for colour histogram models (default: 1.0)
channelBits :: number of bits per RGB colour channel in histogram colour models (default: 3)

drwnHOGFeatures

cellSize :: cell size in pixels (default: 8)
blockSize :: block size in cells (default: 2)
blockStep :: block step in cells (default: 1)
numOrientations :: number of orientations (default: 9)
normMethod :: normalization method (L2_NORM (default), L1_NORM, L1_SQRT)
normClippingLB :: lower clipping after normalization (default: 0.1)
normClippingUB :: upper clipping after normalization (default: 0.5)
dimReduction :: analytic dimensionality reduction (default: false)

drwnImageCache

maxImages :: maximum images stored in cache (default: 1000)
maxMemory :: maximum memory (in bytes) used by cache (default: 500MB)
greyImages :: store images in greyscale (default: false)
bigMemory :: big memory mode (default: false)

drwnGrabCut

defaultRadius :: default patch radius (default: 3)
updateSteps :: number of PatchMatch search steps between updates (default: 10)
doPixelwise :: do pixelwise update rather than patchwise (default: false)
priorityFill :: do priority filling rather than onion filling (default: false)

drwnImagePyramidCache

maxImages :: maximum images stored in cache (default: 1000)
maxMemory :: maximum memory (in bytes) used by cache (default: 500MB)
greyImages :: store images in greyscale (default: false)
bigMemory :: big memory mode (default: false)

drwnMaskedPatchMatch

distance :: distance measure (1, 2 or 4 for L_{\infty}, L1 and L2 norm, resp.)
heightPenalty :: strength of prior for matching to same image row

drwnMultiSegConfig

baseDir :: prepended to all other directory paths (default: )
imgDir :: subdirectory containing images (default: data/images/)
lblDir :: subdirectory containing groundtruth labels (default: data/labels/)
segDir :: subdirectory containing over-segmentations (default: data/superpixels/)
cacheDir :: subdirectory for caching intermediate calculations (default: cached/)
modelsDir :: subdirectory storing models (default: models/)
outputDir :: subdirectory generating output (default: output/)
imgExt :: image extension (default: .jpg)
lblExt :: label extension (default: .txt)
segExt :: superpixel container extension (default: <none>)
useCache :: use feature cache (default: 1)
compressedCache :: compress the feature cache (default: 0)

drwnOpenCVUtils

maxShowHeight :: maximum height for displaying images
maxShowWidth :: maximum width for displaying images

drwnPatchMatch

maxPyramidLevels :: maximum pyramid levels (default: 8)
maxImageSize :: maximum image dimension in pyramid (default: 1024)
minImageSize :: minimum image dimension in pyramid (default: 32)
pyramidScale :: downsample rate for image pyramid (default: 0.71)
patchWidth :: patch width at base scale (default: 8)
patchHeight :: patch height at base scale (default: 8)
K :: matches per pixel (default: 10)
allowMultiple :: allow multiple matches to the same image (default: false)
decayRate :: exponential search decay rate (default: 0.5)
fwdEnrichment :: forward enrichment search depth (default: 3)
invEnrichment :: inverse enrichment (default: yes)
localSearch :: neighbourhood search on dirty pixels (default: yes)
randomExhaustive :: exhaustive search on a random pixel (default: no)
topVarPatches :: initialize highest variance matches to K and others to 1 (default: 1.0)
allowHFlips :: allow patches to be flipped horizontally during search (default: no)
allowVFlips :: allow patches to be flipped vertically during search (default: no)

drwnSegImagePixelFeatures

filterBandwidth :: bandwidth of texton filterbank (default: 1)
featureGridSpacing :: grid spacing for pixel features (default: 5)
includeRGB :: include RGB colour features (default: false)
includeHOG :: include dense HOG features (default: false)
includeLBP :: include LBP features (default: false)
includeRowCol :: include row and column aggregation (default: false)
includeLocation :: include pixel location in feature vector (default: true)
auxFeatureDir :: directory for auxiliary features (default: none)
auxFeatureExt :: space-delimited list of auxiliary feature (default: none)

drwnSegImageRegionFeatures

filterBandwidth :: bandwidth of texton filterbank (default: 1)

drwnNNGraph

K :: matches per node (default: 1)
propagateMove :: execute propagate moves (default: true)
searchMove :: execute random search moves (default: true)
localMove :: execute local neighbourhood moves (default: true)
randProjMove :: execute random projection move to horizon n (default: 100)
enrichmentMove :: execute enrichment moves (default: true)
randExhaustive :: exhaustive search on n random nodes per iteration (default: 1)
imgDir :: directory for loading image (default: data/images)
imgExt :: extension of images (default: .jpg)
lblDir :: directory for loading labels (default: data/labels)
lblExt :: extension of labels (default: .txt)
segDir :: directory for loading regions (default: data/regions)
segExt :: extension of regions (default: .bin)

drwnNNGraphLearner

alpha0 :: initial step size
metricIters :: metric learning iterations
searchIters :: search iterations during learning