47 virtual bool valid()
const {
return _bValid; }
51 virtual void initialize(
unsigned n);
54 virtual bool save(drwnXMLNode& xml)
const;
55 virtual bool load(drwnXMLNode& xml);
61 virtual double train(
const vector<vector<double> >& features,
62 const vector<double>& targets);
64 virtual double train(
const vector<vector<double> >& features,
65 const vector<double>& targets,
const vector<double>& weights);
67 virtual double train(
const char *filename);
71 virtual double getRegression(
const vector<double>& features)
const = 0;
74 virtual void getRegressions(
const vector<vector<double> >& features,
75 vector<double>& outputTargets)
const;
Provides an abstract interface for dynamic properties.
Definition: drwnProperties.h:338
Implements the interface for a generic machine learning regression, e.g. see drwnLinearRegressor.
Definition: drwnRegression.h:27
virtual bool valid() const
return true if the regressor has valid parameters (i.e., has been trained)
Definition: drwnRegression.h:47
int _nFeatures
number of features
Definition: drwnRegression.h:29
int numFeatures() const
return the dimensionality of the feature space
Definition: drwnRegression.h:45
bool _bValid
true if regression parameters are trained or loaded
Definition: drwnRegression.h:30
Implements a cacheable dataset containing feature vectors, labels and optional weights.
Definition: drwnDataset.h:43
standard Darwin object interface (cloneable and writeable)
Definition: drwnInterfaces.h:72