21 #include "drwnFeatureTransform.h"
22 #include "drwnSuffStats.h"
25 using namespace Eigen;
54 VectorXd _translation;
65 const char *
type()
const {
return "drwnFisherLDA"; }
70 bool save(drwnXMLNode& node)
const;
71 bool load(drwnXMLNode& node);
75 int numInputs()
const {
return _projection.cols(); }
84 double train(
const vector<vector<double> >& features,
const vector<int>& labels);
85 double train(
const vector<vector<double> >& features,
86 const vector<int>& labels,
const vector<double>& weights);
87 double train(
const vector<vector<double> >& features,
const vector<int>& labels,
89 double train(
const vector<vector<double> >& features,
const vector<int>& labels,
94 void transform(
const vector<double>& x, vector<double>& y)
const;
Implements a class for accumulating conditional first- and second-order sufficient statistics...
Definition: drwnSuffStats.h:150
int numOutputs() const
feature vector size for the output space
Definition: drwnFisherLDA.h:77
drwnFisherLDA * clone() const
returns a copy of the class usually implemented as virtual Foo* clone() { return new Foo(*this); } ...
Definition: drwnFisherLDA.h:66
Fisher's linear discriminant analysis (LDA).
Definition: drwnFisherLDA.h:52
int numInputs() const
feature vector size for the input space
Definition: drwnFisherLDA.h:75
const char * type() const
returns object type as a string (e.g., Foo::type() { return "Foo"; })
Definition: drwnFisherLDA.h:65