52 virtual bool valid()
const {
return _bValid; }
56 virtual void initialize(
unsigned n,
unsigned k = 2);
60 virtual bool save(drwnXMLNode& xml)
const;
61 virtual bool load(drwnXMLNode& xml);
67 virtual double train(
const vector<vector<double> >& features,
68 const vector<int>& targets);
71 virtual double train(
const vector<vector<double> >& features,
72 const vector<int>& targets,
const vector<double>& weights);
74 virtual double train(
const char *filename);
78 virtual void getClassScores(
const vector<double>& features,
79 vector<double>& outputScores)
const = 0;
81 virtual void getClassScores(
const vector<vector<double> >& features,
82 vector<vector<double> >& outputScores)
const;
86 virtual void getClassMarginals(
const vector<double>& features,
87 vector<double>& outputMarginals)
const;
89 virtual void getClassMarginals(
const vector<vector<double> >& features,
90 vector<vector<double> >& outputMarginals)
const;
94 virtual int getClassification(
const vector<double>& features)
const;
96 virtual void getClassifications(
const vector<vector<double> >& features,
97 vector<int>& outputLabels)
const;
106 static void staticRegistration();
Some classes may provide default factory registration (e.g., built-in classes such as drwnClassifier ...
Definition: drwnFactory.h:32
Provides an abstract interface for dynamic properties.
Definition: drwnProperties.h:338
bool _bValid
true if the classifier has been trained or loaded
Definition: drwnClassifier.h:35
Templated factory for creating or cloning objects for a particular base class.
Definition: drwnFactory.h:59
virtual bool valid() const
returns true if the classifier is valid (has been initialized and trained)
Definition: drwnClassifier.h:52
int _nFeatures
number of features
Definition: drwnClassifier.h:33
int _nClasses
number of classes
Definition: drwnClassifier.h:34
int numClasses() const
returns the number of classes predicted by the classifier object
Definition: drwnClassifier.h:50
int numFeatures() const
returns the number of features expected by the classifier object
Definition: drwnClassifier.h:48
Implements the interface for a generic machine learning classifier.
Definition: drwnClassifier.h:31
Implements a cacheable dataset containing feature vectors, labels and optional weights.
Definition: drwnDataset.h:43
standard Darwin object interface (cloneable and writeable)
Definition: drwnInterfaces.h:72