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ABSTRACT

This paper proposes a new blind algorithm, based on Mixture
Kalman Filtering (MKF), for joint carrier recovery and channel
estimation in time-selective Rayleigh fading channels. MKF is a
powerful tool for estimating unknown parameters in non-linear,
non-Gaussian, real-time applications. We use a combination of
Kalman filtering and Sequential Monte Carlo Sampling to estimate
the channel fading coefficients and joint posterior probability density
of the unknown carrier offset and transmitted data respectively. We
study the effect of Signal to Noise Ratio (SNR) and doppler shift on
Mean Square Error (MSE) and Bit Error Rate (BER) performance of
the proposed algorithm through computer simulations. The results
show that BER of the proposed algorithm achieves the theoreti-
cal performance slope for the full acquisition range of normalized
carrier frequency offset.

Index Terms— Synchronization, Mixture Kalman Filtering, Se-
quential Importance Sampling, Frequency offset, Channel Estima-
tion estimation.

1. INTRODUCTION

In mobile wireless communication channels, loss of synchronization
may occur due to Carrier Frequency Offset (CFO) and/or Doppler
effects. The CFOs arise due to the mismatch between transmitter and
receiver oscillators. Its correction is a fundamental requirement for
reliable data transmission in any wireless communication system [1].
Mitigation of such offsets becomes more sensitive in time-selective
fading channels.

The existing CFO estimators in fading channels can be classified
as either data-aided [2, 3] or blind [1, 4, 5]. Data aided schemes use
training or pilot symbols and are not bandwidth efficient [5]. Blind
schemes do not require any initial training sequences. Existing blind
CFO estimators exploit cyclostationary statistics of the received sig-
nal [1, 4] or use transmitter-induced cyclostationary precoders [5].
These algorithms assume either oversampling of the received sig-
nal [4] or large number of symbols in the transmission frame [1, 4]
or work under limited range of frequency offset estimation [1, 4, 5].

There has been growing interest in the application of Mixture
Kalman Filtering (MKF) to different problems in wireless commu-
nication systems [6, 7]. MKF is a combination of Kalman filtering
and Sequential Monte Carlo Sampling techniques (also referred to
as particle filtering methods) [7]. MKF draws Monte Carlo samples
only in the indicator space and uses a mixture of Gaussian distri-
butions to approximate the target distribution [6]. Prior work in this
area has looked at problems for joint channel estimation and data de-
tection [6] and joint blind timing estimation and data detection [7],
respectively. To the best of author’s knowledge, the use of MKF
for joint carrier frequency offset estimation and channel tracking in

time-selective Rayleigh fading channels has not been considered be-
fore.

In this paper, we propose a combination of Kalman filtering and
Sequential Importance Sampling (a popular particle filtering tech-
nique) to estimate the channel fading coefficients and joint poste-
rior probability density of the unknown carrier offset and transmit-
ted data respectively. We adapt the parameter estimates using sym-
bol by symbol processing, which does not require long transmis-
sion frames. We demonstrate robust Bit Error Rate (BER) and Mean
Square Error (MSE) performance of the proposed algorithm for full-
range acquisition of carrier frequency offset |f | < 1/2, without the
need for oversampling of the received signal. Moreover, the BER of
our proposed algorithm achieves the theoretical performance slope
for all values of SNR.

2. SYSTEM MODEL

2.1. Received Signal

We consider a digital communication system where the transmit-
ter sends the data symbols, chosen from a discrete alphabet of size
M , over time-selective Rayleigh fading channel. The kth sample of
complex-baseband received sequence, yk, can be written as

yk = hke
j2πfksk + wk, (1)

where hk is the kth complex multiplicative noise introduced by the
frequency-flat Rayleigh fading channel, wk is the Additive White
Gaussian Noise (AWGN), sk ∈ S, is the kth transmitted symbol,
k = {0, 1, . . . ,K − 1}, K is the frame length and f is the digi-
tal frequency offset between transmitter and receiver oscillators, in
cycles/sample. S belongs to the set of possible transmitted symbols
S = {S0, S1, . . . , SM−1} for M -PSK constellation.

The variation of the fading coefficient hk can be modeled by
a second order autoregression driven by a complex white Gaussian
process [8]

hk = β1hk−1 + β2hk−2 + vk, (2)

where the values of the coefficients of the autoregressive process β1

and β2 and the variance of the zero-mean complex white Gaussian
noise vk are functions of the fading rate of the channel [7]. The
channel model in (2) can be expressed as

hk = B hk−1 + cvk, (3)

where

B =

[
β1 β2

1 0

]
,

hk = [hk, hk−1]
T , c = [1, 0]T and (·)T denotes the transpose op-

erator. Thus, received sequence in (1) can be written as

yk = cThke
j2πfksk + wk, (4)
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2.2. Estimation Objective

The general objective is to jointly estimate the transmitted sym-
bols s0:K−1 = {s0, s1, . . . , sK−1}, the complex fading coefficients
h0:K−1 = {h0, h1, . . . , hK−1} and the static frequency offset f ,
using the received sequence y0:K−1 = {y0, y1, . . . , yK−1}.

3. PROPOSED ALGORITHM
( MIXTURE KALMAN FILTERING )

We use Mixture Kalman Filtering (MKF) based algorithm to esti-
mate the system state (sk,hk, f ) at time k. We handle the fad-
ing coefficients, hk, using Kalman filtering and update the reduced
systems state, (sk, f ) using a popular particle filtering technique,
known as Sequential Importance Sampling (SIS). According to the
Bayesian perspective, all the necessary information for the estima-
tion of unknown parameters (sk, f) at time k, is contained in the
joint posterior probability distribution function (pdf) p(s0:k, f |y0:k).
The particle filter approximates the posterior pdf of unknown vari-
ables, p(s0:k, f |y0:k), by a set of N particles, {(s0:k, f0:k)(n)}Nn=1,

with associated weights {w(n)
k }Nn=1. Since new particles are gener-

ated for every received symbol depending on the weight distribution
of previous particles, we have introduced subscripts “0 : k” with
f variable to distinguish among the particles at each time step. We
use SIS to build a recursive empirical approximation of a desired
PDF, p(s0:k, f |y0:k), by drawing samples from a different distribu-
tion (called the importance function) and assign appropriate normal-
ized importance weights to these samples. According to SIS, the
weights can be computed as

w
(n)
k ∝ p

(
s
(n)
0:k , f

(n)
0:k |y0:k

)
π
(
s
(n)
0:k , f

(n)
0:k |y0:k

) (5)

where the importance function, π(·), is chosen to admit a factoriza-
tion of the form

π
(
s
(n)
0:k , f

(n)
0:k |y0:k

)
= p

(
fk|f (n)

0:k−1, s
(n)
0:k−1, y0:k−1

)
× p

(
sk|s(n)

0:k−1, f
(n)
0:k , y0:k

)
(6)

By resorting to a recursive decomposition of the posterior distribu-
tion, the numerator in (5) can be expressed as

p
(
s
(n)
0:k , f

(n)
0:k |y0:k

) ∝ p
(
sk|s(n)

0:k−1, f
(n)
0:k , y0:k

)×p
(
yk|s(n)

k−1, f
(n)
k

)
× p

(
fk|f (n)

0:k−1, s
(n)
0:k−1, y0:k−1

)× p
(
s
(n)
0:k−1, f

(n)
0:k−1|y0:k−1

)
(7)

We can identify that two PDFs in (7) are the same as in (6). Substi-
tuting (7) and (6) in (5) and after some manipulation, we obtain

w
(n)
k = w

(n)
k−1 p

(
yk|s(n)

k−1, f
(n)
k

)
(8)

The algorithm can be described using following steps.

3.1. Initialization

We assume that the prior distribution of the transmitted symbol and
frequency offset, p(s−1, f−1), is known. The density of the fre-
quency offset, f−1, is considered to be uniform in the range (− 1

2
, 1
2
).

We assume that the first two symbols in the transmitted frame are
known. The knowledge of the first symbol helps to avoid the use of
differential modulation and provides the appropriate initial channel

estimate, which is further tracked by kalman filtering. The assump-
tion of the second symbol knowledge helps to avoid the M -fold am-
biguity of the constellation and to acquire the full-range acquisition
of the frequency offset. Note that the use of an initial pilot sym-
bol or pilot space-time block transmission is common to many blind
schemes to resolve such ambiguities [9, 10]. Thus, we initialize the

algorithm at time k = −1 as s
(n)
−1 = s−1 and f

(n)
−1 ∼ U(− 1

2
, 1
2
),

n = 1, 2, . . . , N . We initialize the weights of all the particles to be

equal, i.e., w
(n)
−1 = 1/N .

3.2. Importance Sampling and Kalman Filtering

The sampling from the importance function in (6) is accomplished
in two steps. First, we obtain the frequency offset sample from

p
(
fk|f (n)

0:k−1, s
(n)
0:k−1, y0:k−1

)
. Following the approach in [11], we

approximate this distribution by a beta distribution. Since beta dis-
tribution has the range [0, 1], we introduced a new frequency variable
f = f +0.5, such that f has the same range [0, 1]. Thus, we draw the
frequency offset sample from

fk ∼ β(fk;Uk, Vk) (9)

where beta distribution parameters are Uk = f̄k
(
(̄fk(1− f̄k)/σ

2
fk
)−

1
)

and Vk = (1 − f̄k)
(
(̄fk(1 − f̄k)/σ

2
fk
) − 1

)
, with f̄k =∑N

n=1 w
(n)
k−1f

(n)
k−1 and σ2

fk
=

∑N
n=1 w

(n)
k−1

(
f
(n)
k−1 − f̄k

)2
[11].

After drawing a carrier frequency offset sample, f = fk − 0.5,
we draw a sample of the transmitted symbol from the second term

of the proposal distribution in (6) i.e., p
(
sk|s(n)

0:k−1, f
(n)
0:k , y0:k

)
. This

sampling density can be rewritten as

p
(
sk = Sm|s(n)

0:k−1, f
(n)
0:k , y0:k

)
∝ p

(
yk|sk = Sm, s

(n)
0:k−1, f

(n)
0:k , y0:k−1

)
=

∫
hk

p
(
yk|sk = Sm, fn

k ,hk

)
p
(
hk|s(n)

0:k−1, f
(n)
0:k , y0:k−1

)
dhk (10)

where Sm is one of the possible transmitted symbol, p
(
yk|sk =

Sm, fn
k ,hk

)
= N (

yk;hkSmej2πf
(n)
k

k, σ2
w

)
, p
(
hk|s(n)

0:k−1, f
(n)
0:k , y0:k−1

)
=

N (
hk;μ

(n)

k|k−1,Σ
(n)

k|k−1

)
and N (

x;μ,Σ
)

denotes the multivariate

Gaussian pdf with mean μ and covariance Σ. We assume a Gaus-
sian prior for the fading process, i.e., h−1 ∼ N (

x;μ−1,Σ−1

)
.

Note that the predictive channel mean

μ
(n)

k|k−1 = E
p(hk|s(n)

0:k−1
,f

(n)
0:k

,y0:k−1)
[hk] (11)

and the predictive channel covariance matrix

Σ
(n)

k|k−1 = E
p(hk|s(n)

0:k−1
,f

(n)
0:k

,y0:k−1)

× [
(hk − μ

(n)

k|k−1)(hk − μ
(n)

k|k−1)
H]

(12)

can be obtained in the closed form using a Kalman filter for each
nth particle [12], current observation and the nth state trajectory
(sk, fk)

(n). Hence, integral in (10) can be solved to yield

p
(
yk|sk = Sm, s

(n)
0:k−1, f

(n)
0:k , y0:k−1

)
= N (yk, ȳ

(n)
k (Sm), σ2

yk )
(13)

where ȳ
(n)
k (Sm) = cTμ

(n)

k|k−1Sm ej2πf
(n)
k

k and σ2
yk = cTΣ

(n)

k|k−1c+

σ2
w. Using (10) and (13), we can derive the probability mass function
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Table 1. Proposed Algorithm

PROPOSED ALGORITHM

Draw f
(n)
−1 ∼ U(0, 1) ∀ n = {1, 2, . . . , N}

Set w(n)
−1 = 1/N , μ(n)

−1|−1 = [0 0]T , Σ(n)

−1|−1 = I ∀ n

For k = 0 to K − 1 (total number of symbols)
Compute f̄k, σ2

fk
, Uk & Vk as defined in Sec. 3.0.2

For n = 1 to N (total number of particles)
Kalman Prediction: {μ(n)

k|k−1,Σ
(n)

k|k−1} [10]
Draw fk ∼ β(fk;Uk, Vk)

Draw s
(n)
k ∼ ρ(n)(sk) ∝ N (yk, ȳ

(n)
k (Sm), σ2

yk )

Weights w̃
(n)
k = w

(n)
k−1

∑M−1
m=0 N (yk, ȳ

(n)
k (Sm), σ2

yk )

Kalman Update: {μ(n)

k|k,Σ
(n)

k|k} [10]
end
Normalize weights w

(n)
k =

w̃
(n)
k

∑N
n=1 w̃

(n)
k

Resample if Neff =
1

∑N
n=1(w

(n)
k

)2
≤ N/2

Frequency Estimate: f̂k =
∑N

n=1 f
(n)
k w

(n)
k

Channel Estimate: ĥk =
∑N

n=1 c
Thkw

(n)
k

Detect Symbol: ŝk = argmax
S∈S

{∑N
n=1 w

(n)
k δ

(
s
(n)
k − S

)}
end

for each symbol of S as

ρ(n)(sk) = p
(
sk = Sm|s(n)

0:k−1, f
(n)
0:k , y0:k

)

=
N (yk, ȳ

(n)
k (Sm), σ2

yk )
M−1∑
m=0

N (yk, ȳ
(n)
k (Sm), σ2

yk )

(14)

Hence, we draw the transmitted symbol according to

s
(n)
k ∼ ρ(n)(sk) (15)

3.3. Weight update and Resampling

After obtaining the new particles, we update their corresponding im-
portance weights. Since all the possible transmitted symbols are
equiprobable and current observation does not depend on the pre-
vious time states, given the current time state, we can rewrite the
weight update expression (8) as

w̃
(n)
k ∝ w

(n)
k−1

M−1∑
m=0

p
(
yk|Sm, s

(n)
k−1, f

(n)
k

)

= w
(n)
k−1

M−1∑
m=0

N (yk, ȳ
(n)
k (Sm), σ2

yk ) (16)

where w̃
(n)
k is the non-normalized importance weight for the nth

particle. Finally, we normalize the weights as

w
(n)
k =

w̃
(n)
k∑N

n=1 w̃
(n)
k

(17)

A well known problem in the practical implementation of the SIS
algorithm is the degeneracy of the algorithm [13]. The common
solution to this problem is to resample the particles. We consider
resampling in our algorithm as described in [7].
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Fig. 1. Mean Square Error of frequency offset estimation (a) as a
function of SNR (dB) with fd = 22 Hz. (b) as a function of doppler
with SNR = 30 dB.

3.4. Frequency Offset, Data and Channel Estimation

The importance weights and the drawn samples for the carrier fre-
quency offset are used to compute the Minimum Mean Square Error

(MMSE) estimate, f̂k, of the true frequency offset as

f̂k =
N∑

n=1

f
(n)
k w

(n)
k (18)

In addition, we compute the maximum a posteriori (MAP) estimates
of the kth transmitted symbol as

ŝk = argmax
S∈S

{ N∑
n=1

w
(n)
k δ

(
s
(n)
k − S

)}
(19)

where δ(·) denotes Dirac’s delta function. Finally, the channel esti-
mate at the kth instant is given by

ĥk =
N∑

n=1

cTμ
(n)

k|kw
(n)
k (20)

The proposed algorithm is summarized in Table 1.

4. SIMULATION RESULTS

In this section, we present simulation results to verify the perfor-
mance of our proposed algorithm. We consider a communication
system with Binary Phase Shift Keying (BPSK) modulation and
time-selective Rayleigh fading channel. The symbol time T is as-
sumed to be 10−4 seconds. The random frequency offset is assumed
to be uniformly distributed in the range (−0.48, 0.48), i.e., approxi-
mately full acquisition range acquisition. The simulation results are
averaged over R = 600 Monte Carlo simulations, with each run
consisting of a block of K = 100 transmitted bits and N = 100 and
200 particles respectively.

4.1. Mean Square Error (MSE) of frequency offset estimation

Fig. 1(a) shows the Mean Square Error (MSE) of frequency offset
estimation for different values of SNR, averaged over R simulation
runs. We can see in Fig. 1(a) that the MSE decreases by increasing
SNR and increasing the number of particles results in lower MSE
value. The MSE is below 10−4 at SNR = 35 dB, which is accept-
able result in the worst case scenario with frequency offset randomly
distributed in the full acquisition range. Fig. 1(b) shows the Mean
Square Error (MSE) of frequency offset estimation for different val-
ues of doppler at SNR = 30 dB. The MSE increases by increasing
doppler and increasing the number of particles results in lower MSE
value as expected.
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4.2. Bit Error Rate (BER) performance

Fig. 2(a) shows the BER of the proposed receiver as a function of
SNR. The reference curve in this figure, for the purpose of illus-
trating the slope of the BER curve, is the theoretical BER curve for
BPSK in Rayleigh fading channel with no frequency offset error. We
can see that there is a performance loss compared to the theoretical
curve, e.g., an SNR of 35 dB is required to achieve a BER of 10−3

for N = 200 particles which is approximately 11 dB from the the-
oretical curve. However we can see that slope of the simulated BER
curve for N = 200 particles is same as that of the reference curve
which confirms the correct working of the proposed algorithm. The
advantages of the proposed MKF receiver over existing non-MKF
methods is discussed in Sec. 4.3.
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Fig. 2. Bit Error Rate of the proposed Receiver (a) as a function of
SNR (dB) with fd = 22 Hz. (b) as a function of doppler with SNR =
30 dB.

The apparent loss in performance can be attributed to the fact
that the carrier frequency offset is a very sensitive synchronization
parameter. Even small residual errors in frequency offset estimation
(of the order of 0.01) can lead to huge errors in data detection and
bias the average BER results. The presented BER simulation results
are unbiased results, i.e., we have not artificially discarded any ini-
tial bits to allow the algorithm to converge or 5% extreme results as
suggested in [14]. Also note that the BER result in Fig. 2(a) cor-
responds to the worst case scenario with frequency offset randomly
distributed in the full acquisition range.

Fig. 2(b) shows the BER of the proposed receiver as a function
of doppler. The BER increases by increasing doppler and increas-
ing the number of particles results in lower BER value as expected.
Moreover, MSE in Fig. 1(b) and BER in Fig. 2(b) does not increase
much by increasing the doppler, which shows the robustness of the
algorithm also at higher doppler shifts.

4.3. Comparison with Existing Frequency Offset Estimators

The existing non-MKF based CFO estimators either assumes over-
sampling of the received signal by a factor of 8, [4], or large num-
ber of symbols in the transmission frame, (> 500), [4, 5] or lim-
ited range of frequency offset estimation, ( 1

90
, 1

10
or 1

60
) respec-

tively [1, 4, 5]. We do not assume any oversampling and provide
full range acquisition for frequency offset estimation. Moreover, our
channel and frequency offset estimates converge quickly and does
not require long transmission frames due to adaptive symbol by sym-
bol processing. The above statements provide a brief comparison
between the proposed scheme and existing non-MKF based CFO es-
timators.

5. CONCLUSIONS

In this paper, we have proposed a new blind algorithm for joint chan-
nel and frequency offset estimation, based on the combination of
Kalman Filtering and Sequential Monte Carlo sampling. Our results
have proved that MKF is a powerful tool for estimating unknown
parameters in non-linear, non-Gaussian, real-time applications. We
have studied the Mean Square Error (MSE) and Bit Error Rate (BER)
performance of the proposed algorithm. The results show that BER
of the proposed algorithm achieves the theoretical performance slope
for the full acquisition range of carrier frequency offsets.
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