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Abstract
Within a rational framework, a decision-maker selects actions based on the reward-maximization principle, which stipulates
that they acquire outcomes with the highest value at the lowest cost. Action selection can be divided into two dimensions:
selecting an action from various alternatives, and choosing its vigor, i.e., how fast the selected action should be executed.
Both of these dimensions depend on the values of outcomes, which are often affected as more outcomes are consumed
together with their associated actions. Despite this, previous research has only addressed the computational substrate of
optimal actions in the specific condition that the values of outcomes are constant. It is not known what actions are optimal
when the values of outcomes are non-stationary. Here, based on an optimal control framework, we derive a computational
model for optimal actions when outcome values are non-stationary. The results imply that, even when the values of outcomes
are changing, the optimal response rate is constant rather than decreasing. This finding shows that, in contrast to previous
theories, commonly observed changes in action rate cannot be attributed solely to changes in outcome value. We then
prove that this observation can be explained based on uncertainty about temporal horizons; e.g., the session duration. We
further show that, when multiple outcomes are available, the model explains probability matching as well as maximization
strategies. The model therefore provides a quantitative analysis of optimal action and explicit predictions for future testing.

Keywords Choice · Response vigor · Reward learning · Optimal actions

Introduction0

According to normative theories of decision-making,

Q1

1

actions made by humans and animals are chosen with the2

aim of earning the maximum amount of future reward whilst3

incurring the lowest cost (Marshall, 1890; von Neumann4

& Morgenstern, 1947). Within such theories individuals5

optimize their actions by learning about their surrounding6

environment so as to satisfy their long-term objectives.7

The problem of finding the optimal action is, however,8

argued to have two aspects: (1) choice, i.e., deciding9

which action to select from several alternatives; and (2)10

vigor, i.e., deciding how fast the selected action should11
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be executed. For a rat in a Skinner box, for example, the 12

problem of finding the optimal action involves selecting 13

a lever (choice) and deciding at what rate to respond 14

on that lever (vigor). High response rates can have high 15

costs (e.g., in terms of energy consumption), whereas a 16

low response rate could have an opportunity cost if the 17

experimental session ends before the animal has earned 18

sufficient reward. Optimal actions provide the right balance 19

between these two factors and, based on the reinforcement- 20

learning framework and methods from optimal control 21

theory, the characteristics of optimal actions and their 22

consistency with various experimental studies have been 23

previously elaborated (Dayan, 2012; Niv, Daw, Joel, & 24

Dayan, 2007; Niyogi, Shizgal, & Dayan, 2014; Salimpour 25

& Shadmehr, 2014). 26

These previous models have assumed, however, that 27

outcome values are stationary and do not change on-line 28

over the course of a decision-making session. To see the 29

limitations of such an assumption, imagine the rat is in 30

a Skinner box and has started to earn outcomes (e.g., 31

food pellets) by taking actions. One can assume that, as a 32

result of consuming rewards, the motivation of the animal 33
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to earn more food outcomes will decrease (e.g., because34

of satiety) and, therefore, over time, the outcomes earned35

will have a lower value. Such changes in value should36

affect both optimal choice and vigor (Killeen, 1995) but37

have largely been ignored in previous models. Nevertheless,38

in most experimental and real-world scenarios, outcome39

values are affected by the history of outcome consumption,40

a phenomenon known as the “law of diminishing marginal41

utility”1 in the economics literature, and as “drive reduction42

theory” in psychological accounts of motivation, which43

suppose that the drive for earning an outcome decreases44

as the consequence of its prior consumption (Keramati &45

Gutkin, 2014; Hull, 1943).46

Here, building on previous work, we introduce the47

concept of a reward field, which captures non-stationary48

outcome values. Using this concept and methods from49

optimal control theory, we derive the optimal response50

vigor and choice strategy without assuming that outcome51

values are stationary. In particular, the results indicate52

that, even when the values of outcomes are changing,53

the optimal response rate in a free-operant procedure2 is54

a constant response rate. This finding rules out previous55

suggestions that the commonly observed decrease in within-56

session response rates is due to decreases in outcome value57

(Killeen, 1995). Instead, we show that decreases in within-58

session response rates can be explained by uncertainty59

regarding session duration. This later analysis is made60

possible by explicitly representing session duration in the61

current model, which is another dimension in which the62

current model extends previous work. The framework is63

then extended to choice situations and specific predictions64

are made concerning the conditions under which the optimal65

strategy involves maximization or probability matching.66

Model Specification67

The outcome space68

We define the outcome space as a coordinate space with69

n dimensions, where n is the number of outcomes in the70

environment. For example, in a free-operant procedure in71

which the outcomes are water and food pellets, the outcome72

space will have two dimensions corresponding to water73

and food pellets. Within the outcome space, the state of74

the decision-maker at time t is defined by two factors:75

(i) the amount of earned outcome up to time t , which is76

denoted by xt and can be thought of as the position of77

1Also known as “First Law of Gossen” named for Hermann Heinrich
Gossen (1810–1858).
2In a free-operant procedure an animal is free to make responses
continuously and repeatedly to earn outcomes.

the decision-maker in outcome space; e.g., in the above 78

example, xt = [1, 2] would indicate that one unit of water 79

and two units of food pellet have been gained up to time 80

t ; and (ii) the outcome rate at time t , denoted by vt , which 81

can be considered the velocity of the decision-maker in 82

the outcome space (vt = dxt /dt); e.g., if a rat is earning 83

two units of water and one unit of food pellet per unit 84

of time, then vt = [2, 1]. In general, we assume that the 85

outcome rate cannot be negative (v≥ 0), which means that 86

the cumulative number of earned outcomes cannot decrease 87

with time. 88

The reward 89

We assume that there exists an n-dimensional reward field, 90

denoted by Ax,t , where each element of Ax,t represents the 91

per unit value of each of the outcomes. For example, the 92

element of Ax,t corresponding to food pellets represents 93

the value of one unit of food pellet at time t , given that x 94

units of outcome have been previously consumed. As such, 95

Ax,t is a function of both time and the amount of outcome 96

earned. This represents the fact that (i) the reward value 97

of an outcome can change value as a result of consuming 98

previous outcomes, e.g., due to satiety (depending on x) and 99

(ii) the reward value of an outcome can change purely with 100

the passage of time; e.g., an animal can get hungrier over 101

time causing the reward value of food pellets to increase 102

(depending on t). 103

In general, we assume that Ax,t has two properties: 104

∂Ax,t

∂x
≤ 0,

∂Ax,t

∂t
≥ 0, (1)

which entail that (i) the outcome values decrease (or 105

remain constant) as more outcomes are earned, and (ii) 106

that outcome values do not decrease with the passage of 107

time. The latter assumption for example entails that, a rat 108

experiences a higher amount of reward from consuming 109

food pellets as it gets hungrier over time (even if no action is 110

taken) due to the baseline metabolic rate at which the subject 111

turns calories to energy. 112

Cost 113

Within the context of free-operant experiments, previous 114

studies have expressed the cost of earning outcomes as a 115

function of the delay between consecutive responses made 116

to earn outcomes. For example, if a rat is required to make 117

several lever presses to earn outcomes, then the cost will 118

be higher if the delay between lever presses is short. More 119

precisely, if the previous response has occurred τ time steps 120

ago, then the cost of the current lever press will be: 121

Cτ = a

τ
+ b, (2)
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where a and b are constants (Dayan, 2012; Niv et al.,122

2007). b is the constant cost of each lever press, which is123

independent of the delay between lever presses whereas the124

factor a controls the rate-dependent component of the cost.125

Previous research has established that predictions derived126

from this definition of cost are consistent with experimental127

data (Dayan, 2012; Niv et al., 2007). Note that costs such128

as basal metabolic rate and the cost of operating the brain,129

although consuming a high portion of energy produced by130

the body, are not included in the above definition because131

they are constant and independent of response rate and,132

therefore, are not directly related to the analysis of response133

vigor and choice.134

Here, we express cost as a function of rate of earning135

outcomes rather than the rate of action execution.3 We136

define the cost function Kv as the cost paid at each time137

step for earning outcomes at rate v. In the specific case138

that the outcome space has one dimension (there is only139

one outcome), and under ratio schedules of reinforcement140

(fixed-ratio, variable-ratio, random-ratio) in which the141

decision-maker is required to perform either precisely or on142

average k responses to earn one unit of outcome, the cost143

defined in Eq. 2 will be equivalent to:144

Kv = ak2v2 + kbv. (3)

See Appendix A for the proof. The cost is composed of two145

terms: a linear term (kbv), and a quadratic term (ak2v2).146

The linear term is coming from the constant cost of lever147

presses, i.e., for earning v amount of outcome, kv responses148

are required each at cost b (k is the average number of149

responses required for earning one unit of the outcome)150

and therefore the total cost will be kbv. The quadratic term151

comes from the rate-dependent component of the cost. That152

is, earning outcomes are rate v implies that kv responses153

were made at one unit of time, and therefore the delay154

between responses will be 1/kv. The cost of each response155

is inversely proportional to the delay between responses,156

and therefore the cost of each response will be akv. Since157

kv responses are required to earn one unit of the outcome,158

the total cost will be akv × kv = ak2v2, which is the159

quadratic term in Eq. 3. Such a quadratic form, independent160

of its connections to Eq. 2, is further motivated by the fact161

that quadratic forms are typically used to represent motor162

costs across optimal control studies (e.g., Berniker, O’Brien,163

Kording, & Ahmed, 2013; Salimpour & Shadmehr, 2014;164

Uno, Kawato, & Suzuki, 1989), which is partially due to the165

its simplicity while providing a reasonable approximation to166

more complex cost functions.167

3Note that the rate of earning outcomes is a function of the rate of
action execution. For example, if k is the average number of responses
required for earning one unit of the outcome, then the outcome rate is
1/k times the rate of action execution.

This definition of cost implies that it is only a function 168

of outcome rate and is time-independent (∂Kv/∂t = 0). 169

Although, in general, it may seem reasonable to assume 170

that, as time passes within a session, the cost of taking 171

actions will increase because of factors such as effector 172

fatigue, here we made a time-independence assumption 173

based on previous studies showing that factors such as 174

effector fatigue have a negligible effect on response rate 175

(McSweeney, Hinson, & Cannon, 1996). In general, we 176

assume that at least one response is required to earn an 177

outcome (k > 0), and the cost of earning outcomes is 178

non-zero (a > 0). 179

Value 180

The reward earned in each time step can be calculated as 181

the reward produced by one unit of each outcome (Ax,t ) 182

multiplied by the amount earned from each outcome, which 183

will be v.Ax,t . The cost of earning this amount of reward is 184

Kv, and therefore the net amount of reward earned (in dt 185

time step) will be: 186

Lx,v,t = v.Ax,t − Kv. (4)

A decision-making session starts at t = 0 and the total 187

duration of that session is T . We denote the total reward 188

gained in this period as S0,T , which is the sum of the net 189

rewards earned at each point in time: 190

S0,T =
∫ T

0
Lx,v,t dt . (5)

The quantity S0,T is called the value function, and the goal 191

of the decision-maker is to find the optimal rate of earning 192

outcomes that yields the highest value. The optimal rates 193

that maximize S0,T can be found using different variational 194

calculus methods, such as the Euler–Lagrange equation or 195

the Hamilton–Jacobi–Bellman equation (Liberzon, 2011). 196

The results presented in the next sections are derived using 197

the Euler–Lagrange equation (see Appendix A for details of 198

the value function in non-deterministic schedules). 199

Results 200

Optimal response vigor 201

In this section, we use the model presented above to analyze 202

optimal response vigor when there is one outcome and 203

one response available in the environment. The analysis 204

is divided into two sections. In the first section, we 205

assume that the decision-maker is certain about session 206

duration, i.e., that the session will continue for T time 207

units, and we will extend this analysis in the next section 208
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Fig. 1 Total amount of reward and total cost paid during the session
in two different conditions. Left panel: In the first condition (variable
response rates), response rates are initially high at the beginning of the
session, and then gradually decrease toward the end of the session. In
the second condition, (constant response rates), response rates stay the
same throughout the session. The unit of the y-axis is responses per
minute. Middle panel: Total reward since the beginning of the session

in each condition. In both conditions, the total amount of reward dur-
ing the session is the same. The unit of the y-axis is arbitrary. Right
panel: Total cost paid since the beginning of the session in each con-
dition. The cost paid in the variable response rates condition is higher
than the cost in the constant response rates condition, despite the fact
that the amount of reward in both conditions at the end of the session
is the same. The unit of the y-axis is arbitrary

to a condition in which the decision-maker assumes a209

probabilistic distribution of session lengths.210

Response vigor when the session duration is known211

We maintain the following theorem:

Q2

212

Theorem 1 If the duration of the session is fixed and213

the time-dependent change in the reward field is zero214

(∂Ax,t /∂t = 0), then the optimal outcome rate is constant215

(dv/dt = 0). If the time-dependent change in the reward216

field is positive (∂Ax,t /∂t > 0), then the optimal outcome217

rate will be accelerating (dv/dt > 0).218

See Appendices B, C for a proof of this theorem. Note219

that the assumption ∂Ax,t /∂t = 0 implies that the passage220

of time has no significant effect on the reward value of221

the outcome; e.g., a rat is not getting hungrier during an222

instrumental conditioning session,4 which is a reasonable223

assumption given the short duration of such experiments224

(typically less than an hour). Within this condition, the225

above theorem states that the optimal response rate is226

constant throughout the session, even under conditions in227

which the reward value of the outcome decreases within228

the session as a result of earning outcomes, e.g., because of229

satiety. As an intuitive explanation for why a constant rate230

is optimal, imagine a decision-maker who chooses a non-231

constant outcome rate that results in a total of xT outcomes232

during the session. If, instead of the non-constant rate, the233

decision-maker selects a constant rate v = xT /T , then the234

total outcomes earned will be the same as before; however,235

the cost will be lower because it is a quadratic function of the236

4In an instrumental conditioning experiment an animal learns to
perform specific actions on which the delivery of valued outcomes are
contingent

outcome rate and, therefore, it is better to earn outcomes at a 237

constant rate (Fig. 1). Nevertheless, although this prediction 238

is clear enough, it is not consistent with the experimental 239

results, described next. 240

Within-session pattern of responses It has been established 241

that in various schedules of reinforcement, including 242

variable-ratio (McSweeney, Roll, & Weatherly, 1994) and 243

fixed-ratio (Bouton, Todd, Miles, León, & Epstein, 2013) 244

schedules, the rate of responding within a session adopts a 245

particular pattern: the response rate reaches its maximum 246

a short time after the session starts (warm-up period), and 247

then gradually decreases toward the end of the session 248

(Fig. 2: left panel). Killeen (1994) proposed a mathematical 249

description of this phenomenon, which can be expressed as 250

follows (Killeen & Sitomer, 2003): 251

β = r

δr + 1/α
, (6)

where β is the response rate, δ is the minimum delay 252

between responses, r is the resulting outcome rate, and α 253

is called specific activation.5 The model suggests that as 254

the decision-maker earns outcomes during the session, the 255

value of α gradually declines due to satiety, which will 256

cause a decrease in response rate.6 Although this model 257

has been shown to provide a quantitative match to the 258

experimental data, it is not consistent with Theorem 1 which 259

posits that, even under conditions in which outcome values 260

are changing within a session, the optimal response rate 261

should not decrease during the session. As a consequence, 262

5Note that in the original notation in Killeen and Sitomer (2003), α is
denoted by a and β is denoted by b.
6Here satiety refers to both post-ingestive factors (such as blood
glucose level; Killeen, 1995) and/or pre-ingestive factors (for example
sensory specific satiety; McSweeney, 2004).
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Fig. 2 The pattern of within-session response rates (responses per
minute). Left panel: Experimental data. The rate of responding per
minute during successive intervals (each interval is 5 min) in a
variable-ratio (VR) schedule (k = 15; VR15). The figure is adopted

from McSweeney et al. (1994). Right panel: The theoretical pat-
tern of within-session responses predicted by the model in different
conditions. See text for details of each condition

the present model suggests that the cause of any decrease in263

the within-session response rate cannot be due purely to a264

change in outcome value.265

Note, however, that the optimal response rate advocated266

by Theorem 1 is not consistent with reports of decreasing267

response rates across a session, which implies that some268

of the assumptions made to develop the model may not be269

accurate. Although the form of the cost and reward functions270

is reasonably general, we assumed that the duration of the271

session, T , is fixed and known by the decision-maker. In272

the next section, we show that relaxing this assumption such273

that the duration of the session is unknown results in much274

closer concordance between predictions from the model and275

the experimental data.276

Response vigor when session duration is unknown277

In this section, we assume that the decision-maker is278

uncertain about the session duration, which can be either279

because the session duration is in fact non-deterministic, or280

because of the inherent inaccuracies in interval timing in281

animals (Gallistel & Gibbon, 2000; Gibbon, 1977). Since282

the session length is unknown, the decision-maker assumes283

that the session can end at any point in time (T ) with a284

probability distribution function p(T ). In this condition, a285

plausible way to calculate optimal response rates is to use286

p(T ) to set an expectation as to how long the session will287

last and to calculate the optimal response rate based on288

that expectation. Based on this, if t ′ time step has passed289

since the beginning of the session, then the expected session290

duration is ET ∼p(T )[T |T > t ′] and therefore the value of291

the rest of the session will be St ′,E[T |T >t ′]. The following292

theorem maintains that the optimal rate of outcome delivery293

that maximizes the value function is a decreasing function of294

the current time in the session t ′, and therefore the optimal295

response rates will decrease throughout the session.296

Theorem 2 Assuming St ′,E[T |T >t ′] is the value function and 297

that (i) the time dependent change in the reward field is zero 298

(∂Ax,t /∂t = 0), (ii) the probability that the session ends at 299

each point in time is non-zero (p(T ) > 0), (iii) values of 300

outcomes decrease as more are consumed (∂Ax,t /∂x < 0), 301

then the optimal rate of outcome delivery is a decreasing 302

function of t ′: 303

dv∗
t ′

dt ′
< 0. (7)

Furthermore, if conditions (i) and (ii) hold and the values 304

of outcomes are constant (∂Ax,t /∂x = 0), then the optimal 305

outcome rate is constant (dv/dt = 0). 306

See Appendices B, D for the proof of this theorem. 307

Theorem 2 stems from two bases: (i) the optimal rate of 308

outcome delivery is a decreasing function of session length, 309

i.e., when the session duration is long the decision-maker 310

can afford to earn outcomes more slowly, and (ii) when 311

the session duration is unknown, expected session duration 312

should increase with the passage of time (Fig. 3). This 313

phenomenon, which has been elaborated within the context 314

of delayed gratification (McGuire & Kable, 2013; Rachlin, 315

2000), is more significant if the decision-maker assumes a 316

heavy-tail distribution over T . Putting (i) and (ii) together 317

implies that the optimal response rate will decrease with 318

the passage of time. Importantly, this suggests, from a 319

normative perspective, that uncertainty about the session 320

duration and a decrease in the value of the outcomes 321

are both necessary to explain within-session decreases in 322

response rates. 323

For simulation of the model, we characterized the session 324

duration using a Generalized Pareto distribution following 325

McGuire and Kable (2013). Simulations of the model 326

are depicted in Fig. 2: right panel. The simulations were 327

obtained using analytical equations derived from Theorem 2 328
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Fig. 3 The expected length of the session changes as time
passes within the session. The red areas in the panels show
the probability distribution function of the length of the session
(p(T )). The vertical dashed-lines represent the expected length
of the session (ET ∼p(T )[T |T > t ′]), and the vertical solid-lines repre-
sent the current time in the session (t ′). Left panel: at the beginning of

the session (t ′ = 0), the animal expects the session to last for 60 min.
After 15 min have passed since the beginning of the session (middle
panel; t ′ = 15), the expected duration of the session becomes 110 min.
As more time passes (right panel; t ′ = 30), the expected duration of
the session increases to 160 min. The unit of the x-axes in the panels is
minutes

and trial-by-trial updates of the expected session length (see329

Appendix D.2 for details). Simulations show three different330

conditions. In condition (i), the session duration is known

Q3

331

and, as the figure shows, irrespective of whether the value of332

outcomes is decreasing or fixed, the optimal response rate is333

constant. In condition (ii), session duration is unknown, but334

the value of outcomes is constant. Again in this condition335

the optimal response rate is constant. In condition (iii),336

session duration is unknown and the reward value decreases337

as more outcomes are consumed. Only in this condition,338

consistent with experimental data and Theorem 2, response339

rates decrease as time passes. Therefore, the simulations340

confirm that a decrease in outcome value alone is not341

sufficient to explain within-session response rates and342

that uncertainty about session duration is also required343

to reproduce a pattern of responses consistent with the344

experimental data. Note that a similar pattern can also be345

obtained using any other distribution that assigns a non-zero346

probability to positive values of T .347

Relationship to temporal discounting There are, however,348

alternative explanations available based on changes in349

outcome value. One candidate explanation is based on the350

temporal discounting of outcome value according to which351

the value of future rewards is discounted compared to more352

immediate rewards. Typically, the discount value due to353

delay is assumed to be a function of the interaction of354

delay and outcome value. If, at the beginning of the session,355

outcome values are large (e.g., because a rat is hungrier),356

then any discount produced by selecting a slow response357

rate will be larger at that point than later in the session when358

the value of the outcome is reduced (e.g., due to satiety)359

and so a delay will have less impact. It could be argued,360

therefore, that it is less punitive to maintain a high response361

rate at the beginning of the session to avoid delaying362

outcomes and then to decrease response rate as time passes363

within the session. As such, temporal discounting predicts364

decreases in within-session response rates consistent both365

with experimental observations and with the argument that 366

outcome value decreases within the session (e.g., the satiety 367

effect). 368

Prediction Although plausible, such explanations make 369

very different predictions compared to the model. The 370

most direct prediction from the model is that introducing 371

uncertainty into the session duration without altering the 372

average duration should nevertheless lead to a sharper 373

decline in response rate within the session; e.g., if for one 374

group of subjects the session lasts exactly 30 min whereas 375

for another group the session length is uncertain and can 376

end at any time (but ends on average after 30 min), then the 377

model predicts that the response rate in the second group 378

will be higher at the start and decrease more sharply than in 379

the first group. This effect is not anticipated by the temporal 380

discounting account of the effect. 381

Another prediction of the model is with regard to the 382

effect of training on within-session response rates. By 383

experiencing more training sessions, subjects should be 384

able to build a more accurate representation of the session 385

length. This implies that, for this case, the expected length 386

of the session will remain relatively unchanged as time 387

passes within a session and, therefore, the decrement in 388

within-session response rates should be predicted to grow 389

smaller with more training. Consistent with this prediction, 390

some experimental results indicate that the gap between 391

the highest and the lowest response rates within a session 392

does decrease with more training (McSweeney & Hinson, 393

1992, Figure 11)7 while other studies show that the gap 394

7Note that in these experiments, animals were trained on a variable-
interval schedule. In a variable-interval schedule of reinforcement, it
is the time period since the last outcome delivery that determines
whether the next response will be rewarded, which is in contrast to
ratio schedules where outcome delivery depends on the number of
responses. The current model and theorems apply to ratio schedules,
and therefore, this prediction can be tested more accurately using a
ratio procedure.
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Fig. 4 Effect of response cost on response rates. Left panel: Empiri-
cal data. Inter-response intervals (in seconds) when the force required
to make a response is manipulated. Figure is adopted from Adair and

Wright (1976). Right panel: Model prediction. Inter-response interval
(in seconds; equal to the inverse of response rates) as a function of cost
of responses (b)

becomes larger as training proceeds. It is worth noting that395

in the former study the shaping sessions were excluded396

when comparing early and late training sessions, while in397

the latter study they were not. Based on this, further analysis398

and experimental studies are required to test this prediction399

accurately.400

Effect of experimental parameters401

Optimal response rates predicted by the model are affected402

by experimental parameters (e.g., reward magnitude), which403

can be compared against experimental data. In general, in404

an instrumental conditioning experiment, the duration of405

the session can be divided into three sections: (i) outcome406

handling/consumption time, which refers to the time that an407

animal spends consuming the outcome, (ii) post-reinforcer408

pause, which refers to the pause that occurs after consuming409

the outcome and before starting to make the next response410

(e.g., lever press), something consistently reported in studies411

using a fixed-ratio schedule, and (iii) run time, which412

refers to the time spent making responses (e.g., lever413

pressing). Experimental manipulations have been shown to414

have different effects on the duration of these three sections415

of the session (see below), and decisions about whether each416

of these sections is included when calculating response rates417

can affect the results. The predictions of the current model418

are with regard to response rate; whether manipulating419

experimental parameters should be expected to change the420

two other measures (outcome handling and post-reinforcer421

pause) cannot be predicted by the current model. In the422

following sections, we briefly review the currently available423

data from instrumental conditioning experiments and their424

relationship to predictions of the model. Simulations are425

obtained using analytical equations derived in Theorem 1426

(see Appendix D.3 for details).8427

8Note that, for simplicity, the simulations in this section are made
under the assumption that the session duration is fixed.

The effect of response cost (a and b ) Experimental studies 428

in rats working on a fixed-ratio schedule (Alling & Poling, 429

1995) indicate that increasing the force required to make 430

responses causes increases in both inter-response time and 431

the post-reinforcement pause. The same trend has been 432

reported in Squirrel monkeys (Adair & Wright, 1976). 433

Consistent with this observation the present model predicts 434

that increases in the cost of responding, for example by 435

increasing the effort required to press the lever (increases in 436

a and/or b), lead to a lower rate of earned outcomes and a 437

lower rate of responding (Fig. 4). The reason for this is that, 438

by increasing the cost, the response rate for each outcome 439

should slow in order to compensate for the increase in the 440

cost and so maintain a reasonable gap between the reward 441

and the cost of each outcome. 442

The effect of ratio-requirement (k ) Experimental studies 443

mainly suggest that the rate of earned outcomes decreases 444

with increases in the ratio-requirement (Aberman & 445

Salamone, 1999; Barofsky & Hurwitz, 1968), which is 446

consistent with the general trend in the optimal rate of 447

outcome delivery implied by the present model (see below). 448

Experimental studies on the rate of responding on fixed- 449

ratio schedules indicate that the post-reinforcement pause 450

increases with increases in the ratio-requirement (Ferster 451

& Skinner, 1957, Figure 23) (Felton & Lyon, 1966; 452

Powell, 1968; Premack, Schaeffer, & Hundt, 1964). In 453

terms of overall response rates, some experiments report 454

that response rates increase with increases in the ratio- 455

requirement up to a point beyond which response rates will 456

start to decline, in rats (Barofsky & Hurwitz, 1968; Mazur, 457

1982; Kelsey & Allison, 1976), pigeons (Baum, 1993) and 458

mice (Greenwood, Quartermain, Johnson, Cruce, & Hirsch, 459

1974), although other studies have reported inconsistent 460

results in pigeons (Powell, 1968), or a decreasing trend in 461

response rate with increases in the ratio-requirement (Felton 462

& Lyon, 1966; Foster, Blackman, & Temple, 1997). The 463

inconsistency is partly due to the way in which response 464

rates are calculated in the different studies; for example 465

in some studies outcome handling and consumption time 466
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are not excluded when calculating response rates (Barofsky467

& Hurwitz, 1968), in contrast to other studies (Foster468

et al., 1997). As a consequence, the experimental data469

regarding the relationship between response rate and the470

ratio-requirement is inconclusive.471

With regard to this issue, the present model predicts472

that the relationship between response rate and the ratio-473

requirement is an inverted U-shaped pattern (Fig. 5: left474

panel), which is consistent with the studies mentioned475

previously, depending on the value of other experimental476

parameters. The model makes an inverted U-shaped477

prediction because, under a low ratio-requirement, the cost478

is generally low and, therefore, as the ratio-requirement479

increases, the decision-maker will make more responses480

to compensate for the drop in the amount of reward. In481

contrast, when the ratio-requirement is high, the cost of482

earning outcomes is high and the margin between the cost483

and the reward of each outcome becomes significantly484

tighter as the ratio-requirement increases. The margin can,485

however, be loosened by decreasing the response rate (see486

Appendix D.2 for the exact source of this effect in the487

model).488

The Effect of deprivation level Experimental studies that489

have used fixed-ratio schedules suggest that response rates490

increase with increases in deprivation (Chapter 4, Ferster491

& Skinner, 1957; Sidman & Stebbins, 1954). However,492

such increases are mainly due to decreases in the post-493

reinforcement pause, and not due to the increases in the494

actual rate of responding after the pause (see Pear, 2001,495

Page 289 for a review of other reinforcer schedules; see496

for example Eldar, Morris, & Niv, 2011 for the case of497

variable-interval schedules). The model predicts that, with498

increases in deprivation, the rate of responding and the499

rate of earned outcomes will increase linearly (Fig. 5:500

middle panel). The rate of increase is, however, negligible501

when the outcomes are small and the generated satiety502

after earning each outcome is insignificant. This provides a503

potential reason why the effect of deprivation on response504

rate has not previously been observed in experimental data.505

Similarly, when the session duration is long, even under 506

high deprivation, sufficient time is available to earn enough 507

reward and become satiated, and therefore the effect of 508

deprivation levels on response rate will be minor. 509

The effect of reward magnitude Some studies show that 510

post-reinforcement pauses increase as the magnitude of 511

the reward increases (Powell, 1969), whereas other studies 512

suggest that the post-reinforcement pause decreases (Lowe, 513

Davey, & Harzem, 1974); however, in this later study 514

the magnitude of reward was manipulated within-session 515

and a follow-up study found that, at a steady state, the 516

post-reinforcement pause increases with increases in the 517

magnitude of the reward (Meunier & Starratt, 1979). 518

Reward magnitude does not, however, have a reliable effect 519

on overall response rate (Keesey & Kling, 1961; Lowe 520

et al., 1974; Powell, 1969). Regarding predictions from the 521

model, the effect of reward magnitude on earned outcome 522

and response rates is, again, predicted to take an inverted 523

U-shaped relationship (Fig. 5: right panel), and, therefore, 524

depending on the value of the parameters, the predictions 525

of the model are consistent with the experimental data. 526

The model makes a U-shaped prediction because, when the 527

reward magnitude is large then, given high response rates, 528

the animals will become satiated quickly and, therefore, the 529

reward value of future outcomes will decrease substantially 530

if the animal maintains this high response rate. As a 531

consequence, under a high reward magnitude condition, an 532

increase in reward will cause response rates to decrease. 533

Under a low reward magnitude condition, however, satiety 534

has a negligible effect and a high response rate ensures that 535

sufficient reward can be earned before the session ends. 536

Summary Table 1 shows the summary of the predictions 537

of the model presented here and also the predictions of 538

the model in Niv (2007) with regard to the effect of 539

experimental parameters. The predictions of the models are 540

different with respect to the effect of reward magnitude 541

on response rates. The previous work predicts that higher 542

reward magnitudes lead to higher response rates, whereas 543

Fig. 5 Left panel: The effect of ratio-requirement on the response rate (responses per minute). Middle panel: The effect of deprivation level on
response rates. Right panel: The effect of the reward magnitude on response rates
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Table 1 Summary of the predictions of the current model with regard to the experimental parameters

Experimental parameters Current model Niv (2007)

Increase in response cost Lower response rates (Fig. 4: right panel) Lower response rates (page 59; Niv, 2007)

Increase in ratio-requirement Inverted U-shaped (Fig. 5: left panel) Lower response rates or inverted U-shaped

(Figure 2.10a; Niv, 2007)

Increase in deprivation levelsa Higher response rates (Fig. 5: middle panel) Higher response rates (Figure 2.10d; Niv, 2007)

Increase in reward magnitude Inverted U-shaped (Fig. 5: right panel) Higher response rates (Figure 2.10d; Niv, 2007)

The table also presents the predictions of Niv (2007)
aIncreases in the deprivation levels are assumed to increase the reward magnitude

the study here predicts an inverted U-shaped relationship544

between them, i.e., further increases in reward magnitude545

when it is already high, will lead to lower response rates.546

The reason is that according to the current study, high547

reward magnitudes cause satiety and thus diminish outcome548

values, which can support lower response rates. This effect549

of satiety (within a session) is not explicitly modeled in550

the previous work and thus the predictions of the two551

frameworks differ.552

Optimal choice and response vigor553

In this section, we address the choice problem, i.e., the case554

where there are multiple outcomes available in the environ-555

ment and the decision-maker needs to make a decision about556

the response rate along each outcome dimension. An exam-557

ple of this situation is a concurrent free-operant procedure in558

which two levers are available and pressing each lever pro-559

duces an outcome on a ratio schedule. Unlike the case with560

single outcome environments, the optimal rate of earning561

outcomes is not necessarily constant and can take different562

forms depending on whether the reward field is a conserva-563

tive field or a non-conservative field, and whether the costs564

of responses along the outcome dimensions are independent565

of each other. Below, we derive the optimal choice strategy566

in each condition.567

Conservative reward field568

A reward field is conservative if the amount of reward569

experienced by consuming different outcomes does not570

depend on the order of consumption and depends only571

on the number of each outcome earned by the end of572

the session. This property holds in two conditions (i)573

when the value of each outcome is unrelated to the prior574

consumption of other outcomes; and (ii) the consumption575

of an outcome affects the value of other outcomes and576

this effect is symmetrical. As an example of condition (i),577

imagine an environment with two outcomes in which one of578

the outcomes only satisfies thirst and the other only satisfies579

hunger.9 Here, consumption of one of the outcomes will 580

not affect the amount of reward that will be experienced 581

by consuming the other outcome and, therefore, the total 582

reward during the session does not depend on the order 583

of choosing the outcomes. As an example of condition 584

(ii), imagine an environment with two outcomes in which 585

both outcomes satisfy hunger and, therefore, consuming 586

one of the outcomes reduces the amount of future reward 587

produced by the other outcome. Here, if the effect of the 588

outcomes on each other is symmetrical, i.e., consuming 589

outcome O1 reduces the reward elicited by outcome O2 by 590

the same amount that consuming outcome O2 reduces the 591

reward elicited by outcome O1, then it will not matter which 592

outcome is consumed first and the total reward during the 593

session will be independent of the chosen order. As such, 594

the reward field will be conservative. 595

Under the conditions that a reward field is conservative, 596

the optimal response rate will be constant for each outcome 597

relative to the other. Intuitively, this is because, in terms 598

of the total rewards per session, the only thing that matters 599

is the final number of earned outcomes and, therefore, 600

there is no reason why the relative allocation of responses 601

to outcomes should vary within the session. The actual 602

response rate for each outcome will, however, depend on 603

whether the costs of the outcomes are independent, a point 604

elaborated in the next section. 605

Conservative reward field and independent response cost 606

The costs of various outcomes are independent if the 607

decision-maker can increase their work for one outcome 608

without affecting the cost of other outcomes. As an example, 609

imagine a decision-maker that is using their left hand to 610

make responses that earn one outcome and their right-hand 611

to make responses that earn a second outcome. In this 612

case, the independence assumption entails that the cost of 613

responding with one or other hand is determined by the 614

9In this example we assumed that hunger and thirst are independent
motivational drives.
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response rate on that hand; e.g., the decision-maker can615

increase or decrease rate of responding on the left hand616

without affecting the cost of responses on the right hand.617

More precisely, the independence assumption entails that618

the Hessian matrix of Kv is diagonal:619

∂2Kv

∂vi∂vj
= 0, i ̸= j . (8)

In this situation, even if some of the outcomes have a620

lower reward or a higher cost (inferior outcomes) compared621

to other outcomes (superior outcomes), it is still optimal622

to allocate a portion of responses to the inferior outcomes.623

This is because responding for inferior outcomes has no624

effect on the net reward earned from superior outcomes and,625

therefore, as long as the response rate for inferior outcomes626

is sufficiently low that the reward earned from them is more627

than the cost paid, responding for them is justified. The628

portion of responses allocated to each outcome depends,629

however, on the cost and reward of each outcome. We630

maintain the following theorem:631

Theorem 3 If (i) the reward field is conservative, (ii) the632

time-dependent term of the reward field is zero (∂Ax,t /∂t =633

0), and (iii) the cost function satisfies Eq. 8, then the optimal634

rate of earning outcome v∗ will be constant (dv/dt = 0)635

and satisfies the following equation:636

∂Kv∗

∂v∗ = AT v∗,T . (9)

See Appendices E, F.1 for the proof and for the637

specification of optimal responses. As an example, imagine638

a concurrent fixed-ratio schedule in which a subject is639

required to make k responses with the left hand to earn O1,640

and lk responses with the right hand to earn O2, and both641

outcomes have the same reward properties. According to642

Theorem 3, the optimal response rate for O1 (the outcome643

with the lower ratio-requirement) will be l times greater than644

the response rate for the second outcome O2. Figure 6: left645

panel independent cost condition shows the simulation of646

the model and the optimal trajectory in the outcome space.647

As the figure shows, the rate of earning O1 is higher than648

O2, however, the proportion of each outcome of the total649

remains the same throughout the session.650

Relationship to probability matching The above results are651

generally in line with the probability matching notion,652

which states that a decision-maker allocates responses to653

outcomes based on the ratio of responses required for654

each outcome (Bitterman, 1965; Estes, 1950). Probability655

matching is often argued to violate rational choice theory656

because, within this theory, it is expected that a decision-657

maker works exclusively for the outcome with the higher658

probability (i.e., the lower ratio-requirement). However,659

Fig. 6 Left panel: Optimal trajectory in a conservative reward field.
Earning O1 requires k responses and earning O2 requires lk responses.
Initially, the amount of earned outcome is zero (starting point is at
point [0, 0]), and the graph shows the trajectories that the decision-
maker takes in two different conditions corresponding to when the
costs of outcomes are independent, and when the costs are dependent
on each other. Right panel: The optimal trajectories in the outcome
space when the reward field is non-conservative. The graph shows the
optimal trajectory in the conditions that the session duration is short
(T = 7), medium (T = 15.75), and long (T = 23). O1 generates more
reward than O2

based on the model proposed here, probability matching is 660

the optimal strategy when the cost of actions is independent, 661

and therefore consistent with rational decision-making. 662

Relationship to matching law The matching law refers to 663

the observation that the rate of responses for different 664

actions is proportional to the rate of rewards obtained from 665

the corresponding actions (Herrnstein, 1961) . For example, 666

if v1 and v2 are the response rates for two different actions, 667

and z1 and z2 refer to the rate of rewards obtained from each 668

action, then the matching law implies that, 669

v1

v2
= z1

z2
. (10)

In contrast to the matching law which is about 670

rewards obtained from each action, in probability matching 671

the responses are allocated to actions according to the 672

probability of rewards being available for each action. In 673

this respect, these two behavioral phenomena are different. 674

For example, although maximization (exclusively selecting 675

the action with the higher reward probability/lower ratio- 676

requirement) is inconsistent with probability matching, it 677

is indeed consistent with the matching law (because in 678

maximization 100% of responses are made on one of the 679

actions and 100% of rewards are obtained from that action). 680

The results that we obtained in the previous sections are 681

related to the rate at which outcomes are available on 682

each action, and therefore, they are not directly related to 683

the matching law. Furthermore, the matching law mostly 684

applies to the case of variable-interval schedules,10 and is 685

10In variable-interval schedules, the subject needs to wait a certain
amount of time (according to a probability distribution) before being
able to obtain the next reward by selecting actions.
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not particularly informative in the case of ratio schedules,686

which are the focus of the current analysis. This is687

because in ratio schedules, the rate of earning rewards from688

actions is directly related to the rate of responding on the689

corresponding actions no matter how the decision-maker690

distributes responses over actions.691

The relationship to Kubanek (2017) Typically, in computa-692

tional models of the matching law and probability matching,693

the effect of effort, i.e., the cost of obtaining rewards, is694

not explicitly modeled (e.g., Iigaya & Fusi, 2013; Loewen-695

stein, Prelec, & Seung, 2009; Sakai & Fukai, 2008). An696

exception can be found in the study of Kubanek (2017)697

in which the matching law is regarded as a consequence698

of the diminishing returns associated with variable-interval699

schedules of reinforcement. In such schedules, outcome rate700

grows almost proportional to response rate when response701

rates are low, whereas outcome rate saturates when response702

rates are high (because in these schedules a certain period703

of time has to pass before the next outcome can be earned)704

and, therefore, to produce a slight increase in outcome705

rate will require a significant increase in response rate.706

Based on this, outcomes are more expensive to earn at707

high response rates, which justifies allocating a portion of708

responses to inferior actions, on which the outcomes are709

not yet saturated and are still (relatively) cheap. As such,710

in variable-interval schedules we would expect animals711

to match rather than respond exclusively on the superior712

action, and indeed, Kubanek (2017) showed that the match-713

ing law is the optimal strategy when faced with these714

schedules.715

This prediction for variable-interval schedules is essen-716

tially the same as the prediction generated in the current717

study for ratio schedules (and independent response costs)718

even though, unlike variable interval schedules, the out-719

come rates are non-saturating. This is because, although on720

ratio schedules outcome rates are non-saturating and pro-721

portional to response rates, the cost of earning outcomes722

increases as response rates increase due to the quadratic723

cost of responses (as implied in Eq. 3), meaning that it724

is better to limit response rates even on superior actions.725

As such, although the model proposed here is focused726

on ratio schedules and the one in Kubanek (2017) on727

variable-interval schedules, both approach optimal deci-728

sions based on the fact that the outcomes are more expensive729

when response rates are high; and whereas in the for-730

mer it is due to the quadratic cost function, in the latter731

it is due to the properties of interval schedules, and in732

this respect the two studies are complementary. In addi-733

tion, the model proposed here extends previous work by734

addressing the role of changes in outcome value on choice,735

in addition to the role that the cost of earning outcomes736

plays.737

Conservative reward field and dependent response cost In 738

this section we assume that the cost of responses for an 739

outcome is affected by the rate of responding required to 740

earn other outcomes. In other words, what determines the 741

cost is the delay between subsequent responses either for the 742

same or for a different outcome; i.e., the cost is proportional 743

to the rate of earning all of the outcomes. In concurrent free- 744

operant procedures, this assumption entails, for example, 745

that the cost of pressing, say, the right lever is determined 746

by the time that has passed since the last press on either the 747

right or a left lever. In this condition, the optimal strategy is 748

maximization; i.e., to take the action with the higher reward 749

(or lower ratio-requirement) and to stop taking the other 750

action (see Appendix G). The reason is because, unlike the 751

case with independent costs, allocating more responses to 752

earn an inferior outcome will increase the cost of earning 753

superior outcomes and, therefore, it is better to pay the 754

cost for the superior outcome only, which requires fewer 755

responses per unit of outcome. 756

For example, under a concurrent fixed-ratio schedule in 757

which an animal needs to make k responses on the left 758

lever to earn O1, and lk responses on the right lever to 759

earn O2 (O1 and O2 have the same reward properties), 760

the optimal response rate will be a constant response rate 761

on the left lever and a zero response rate on the right 762

lever. Figure 6: left panel dependent cost condition shows 763

a simulation of the model and the optimal trajectory in 764

outcome space, which shows that the subject only earns O1. 765

Note the difference between this example, and the example 766

mentioned in the previous section is that, here the costs of 767

earning outcomes are not independent, while in the previous 768

section we assumed that the costs of earning O1 and O2 are 769

independent of each other. 770

Prediction One way of testing the above explanation for 771

maximization and matching strategies is to compare the 772

pattern of responses when two different effectors are used to 773

make responses for the outcomes vs. when a single effector 774

is being used to earn both outcomes. In the first condition, 775

the costs of the two outcomes are independent of each 776

other whereas in the second condition they are dependent 777

on each other. As a consequence, the theory predicts that, 778

in the first condition, response rates will reflect probability 779

matching whereas in the second condition they will reflect 780

the maximization strategy. 781

Probability matching and maximization As such, whether 782

the outcome rate reflects a probability matching or a 783

maximization strategy depends on the cost function and, 784

in concurrent free-operant procedures, the cost that reflects 785

the maximization strategy is more readily applicable. 786

Regarding the experimental data, evidence from concurrent 787

instrumental conditioning experiments in pigeons tested 788
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using variable-ratio schedules (Herrnstein & Loveland,789

1975) is in-line with the maximization strategy and790

consistent with predictions from the model.791

Within the wider scope of decision-making tasks, some792

studies are consistent with probability matching, whereas793

other studies provide evidence in-line with a maximization794

strategy (see Vulkan, 2000 for a review). However, many795

of these latter studies use discrete-trial tasks in which,796

unlike free-operant tasks (which are the focus of the797

current analysis), actions are typically disjoint and therefore798

unlikely to convey a rate-dependent cost. Even within the799

domain of free-operant tasks, for the cost of actions to800

be independent of each other the decision-maker should801

be able to respond using effectors independent of each802

other (e.g., left hand and right hand), otherwise, as argued,803

probability matching will no longer be the optimal strategy.804

In spite of this, some evidence suggests that probability805

matching occurs even in settings where the task is discrete-806

trial or when responses are not independent. In these807

settings, observed probability matching will be unrelated808

to the current analysis and might stem from other factors809

such as cognitive efforts and limitations (e.g., Schulze &810

Newell, 2016), tendency of the subjects to find patterns in811

random sequences (e.g., Gaissmaier & Schooler, 2008), or812

it could be the effect of competition in certain environments813

(Schulze, van Ravenzwaaij, & Newell, 2015).814

Non-conservative reward field815

A reward field is non-conservative if the total amount816

of reward experienced during the session depends on the817

order of the consumption of the outcomes. Imagine an818

environment with two outcomes say O1 and O2, where819

both outcomes have the same motivational properties, e.g.,820

consumption of one unit of either O1 or O2 decreases hunger821

by one unit, however, they generate different amounts of822

rewards, e.g., one unit of O1 generates more reward than one823

unit of O2. As an example, let’s denote the amount of earned824

O1 and O2 by x1 and x2 respectively. Based on this, the825

current food deprivation level will be H −x1 −x2, where H826

is the initial deprivation level. Here, although both outcomes827

have the same effect on reducing the deprivation level, in a828

non-conservative reward field, one of the outcomes (O1 in829

this example) generates more reward than the other:830

Ax,t =

⎡

⎢⎣l(H − x1 − x2)︸ ︷︷ ︸
O1

, H − x1 − x2︸ ︷︷ ︸
O2

⎤

⎥⎦ , (11)

which implies that the reward generated by both outcomes831

is proportional to the current food deprivation level, and the832

reward of O1 is l times greater than the reward generated by833

O2. Within such an environment, the total amount of reward834

experienced depends on the order of consuming outcomes. 835

This is because if hunger is high then consuming O1 836

generates significantly more reward than O2 and, therefore, 837

early in the session it is better to allocate more responses to 838

O1; whereas later in the session when hunger is presumably 839

lower and the difference in the value of the outcomes is 840

small, responses for O2 can gradually increase. If we reverse 841

this order, i.e., first O2 is consumed and then O1, then 842

early consumption of O2 will cause satiety and the decision- 843

maker will lose the chance to experience high reward from 844

O1 when hungry. As such, the amount of experienced 845

reward depends on the order of consuming the outcomes 846

and, based on the above explanation, a larger amount of 847

reward can be earned during the session if more responses 848

are allocated to the outcome with the higher reward at the 849

beginning of the session (see Appendix H). Figure 6: right 850

panel shows the simulations of the model under different 851

session durations (simulations are obtained using analytical 852

solutions). In each simulation, at the beginning of the 853

session the initially earned outcomes are zero and each line 854

in the figure shows the trajectory of the amount earned from 855

each outcome during the session. As the figure shows, in all 856

conditions the rate of earning O1 is higher than O2 and this 857

difference is more apparent under long session durations, in 858

which a large amount of reward can be gained during the 859

session and it makes a significant difference to earn O1 first. 860

Prediction A test of the above prediction would involve 861

an experiment in which the subject is responding for two 862

food outcomes containing an equal number of calories 863

(and therefore having the same impact on motivation) 864

but with different levels of the desirability (e.g., having 865

different flavors) and, therefore, having a different reward 866

effect. Theorem A3 predicts that, if the session duration 867

is long enough, early in the session the response rate for 868

the outcome with the greater desirability will be higher 869

whereas, later in the session, responses for the other 870

outcome will increase. 871

Relationship to motivational drives Formally, a reward 872

field is conservative if there exists a scalar field, denoted by 873

Dx, such that: 874

Ax,t = −∂Dx

∂x
. (12)

Keramati and Gutkin (2014) conceptualized Dx as the 875

motivational drive for different outcomes and provided a 876

definition of motivational drives as deviations of the internal 877

state of a decision-maker from their homeostatic set-points. 878

Based on this definition, according to Eq. 12, rewards are 879

generated as a consequence of reductions in drive and, 880

more precisely, the reward field is the amount of change 881

in the motivational drive that is due to the consumption 882
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of one unit of each outcome. It can be shown that if a883

reward field satisfies Eq. 12 then the amount of reward884

experienced in a session depends on the total number of885

earned outcomes and, therefore, it is conservative. For886

the case of non-conservative reward fields, the drive for887

earning an outcome not only depends on the number of888

earned outcomes, but also on the order in which they were889

earned. However, Dxonly depends on the number of earned890

outcomes (dependency on x) and not on their order, and891

because of this it cannot be defined in non-conservative892

reward fields. In this respect, the current study extends893

the model proposed by Keramati and Gutkin (2014) to894

cases where rewards do not correspond to any underlying895

motivational drive.896

Conclusions and Discussion897

Computational models of action selection are essential898

for understanding decision-making processes in humans899

and animals, and here we extended these models by900

providing a general analytical solution to the problem of901

response vigor and choice. Table 2 shows the summary902

of the results obtained for different conditions. The results903

provide (i) a normative basis for commonly observed904

decrements in within-session response rates, and (ii) a905

normative explanation for probability matching and reward906

maximization, as two commonly observed choice strategies.907

Relationship to previous models of response vigor There908

are two significant differences between the model proposed909

here and previous models of response vigor (Dayan, 2012;910

Niv et al., 2007). Firstly, although the effect of between-911

session changes in outcome values on response vigor was912

addressed in previous models (Niv, Joel, & Dayan, 2006),913

the effects of on-line changes in outcome values within a 914

session were not addressed. On the other hand, the effect 915

of changes in outcome value on the choice between actions 916

has been addressed in some previous models (Keramati & 917

Gutkin, 2014), however their role in determining response 918

vigor has not been investigated. We address such limitations 919

directly in this model. 920

Secondly, previous work conceptualized the structure 921

of the task as a semi-Markov decision process in which 922

taking an action leads to outcomes after a delay. Based 923

on that, the optimal actions and the delay between them 924

that maximize the average reward per unit of time (average 925

reward) were derived. Here, we used a variational analysis 926

to calculate the optimal actions that maximize the reward 927

earned within the session. One benefit of the approach 928

taken in the previous works is that it extends naturally 929

to a wide range of instrumental conditioning schedules 930

such as interval schedules, whereas the extension of the 931

model proposed here to the case of interval schedules is 932

not trivial. Optimizing the average reward (as adopted in 933

previous work) is equivalent to the maximization of reward 934

in an infinite-horizon time scale; i.e., the session duration 935

is unlimited. In contrast, the model used here explicitly 936

represents the duration of the session which, as we showed, 937

plays an important role in the pattern of responses. 938

In addition to the predictions of the current model, 939

Table 2 shows the predictions of previous models of 940

response vigor in each condition. The cases that involve 941

non-constant reward fields are not addressed in previous 942

work and, therefore, their predictions are not mentioned in 943

the table. In the case of environments in which one outcome 944

type is available (n = 1), and the reward field is constant, 945

the prediction of the previous works is that the response 946

rates will be constant, which is the same as the prediction 947

of the current model (Table 2 rows #1). In the case of 948

Table 2 Summary of the results

n T Reward field Cost function Response rates thrm Pre. works

1 n = 1 Known Constant – Constant 1 Constant

2 n = 1 Known Non-constant – Constant/Increasing 1 –

3 n = 1 Unknown Constant – Constant 2 Constant

4 n = 1 Unknown Non-constant – Decreasing 2 –

5 n > 1 Known Conservative Independent Prob. matching 3 –/Prob. matching

6 n > 1 Known Conservative Dependent Maximization A2 –/Maximization

7 n > 1 Known Non-conserv Independent See text A3 –

‘n’ refers to the number of dimensions of the outcome space and ‘response rates’ refers to the optimal response rates obtained by the corresponding
theorem. ‘constant’ reward field implies that the values of the outcomes do not change as more outcomes are consumed. ‘non-constant’ reward
field implies that the values of the outcomes decrease as more outcomes are consumed. ‘known’ session length implies that the decision-maker is
certain about the session length (T ). ‘unknown’ session length implies that the decision-maker is uncertain about the session length. ‘non-conserv’
refers to non-conservative reward field. ‘prob. matching’ refers to probability matching. ‘pre. works’ refers to ‘previous works’. ’thrm’ refers to
the corresponding theory in each case
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environments with more than one outcome type (n = 2),949

and constant reward fields, we expect the prediction from950

previous research to be optimal in both ’dependent’ and951

’independent’ cost conditions (Table 2 row #6, #7). This is952

because, in these conditions, the optimal response rates are953

constant within a session, and therefore the previous models954

should be able to learn them, in which case their predictions955

will be the same as the predictions from the current model.956

Relationship to principle of least action A basic assumption957

that we made here is that the decision-maker takes actions958

that yield the highest amount of reward. This reward959

maximization assumption has a parallel in the physics960

literature known as the principle of least action, which961

implies that among all trajectories that a system can take,962

the true trajectories are the ones that minimize the action.963

Here action has a different meaning from that used in the964

psychology literature, and it refers to the integral of the965

Lagrangian (L) along the trajectory. In the case of a charged966

particle with charge q and mass m in a magnetic field B, the967

Lagrangian will be:968

L = 1
2
mv2 + qv.A, (13)

where A is the vector potential (B = ∇ ×A). By comparing969

Eq. 13 with Eqs. 4 and 5, we can see that the reward970

field Ax,t corresponds to the vector potential, and the term971

Kv corresponds to 1
2mv2 by assuming m = 2ak2, and972

b = 0. This parallel can provide some insights into the973

properties of the response rates. For example, it can be974

shown that when the Lagrangian is not explicitly dependent975

on time (time-translational invariance), which here implies976

that ∂Ax,t /∂t = 0, then the Hamiltonian (H , or energy) of977

the system is conserved. The Hamiltonian in the case of the978

system defined in Eq. 4 (with single outcome) is:979

H = Kv − ∂Kv

∂v
v

= −ak2v2 (using Eq. 3).

Conservation of the Hamiltonian implies that ak2v2 (and980

therefore v) is constant (response rate is constant), as stated981

by Theorem 1. Further exploration of this parallel can be an982

interesting future direction.983
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Appendix A: Value in non-deterministic 995

schedules 996

The value of a trajectory in the outcome space is the 997

sum of the net amount of rewards that can be earned 998

during a session. However, the amount of reward earned 999

during a session can be non-deterministic, as for example 1000

in the case of variable-ratio and random-ratio schedules of 1001

reinforcement, actions lead to outcomes probabilistically. 1002

Similarly, the cost of earning outcomes will also be non- 1003

deterministic, since the number of responses required to 1004

earn outcomes is non-deterministic. Let’s denote the cost of 1005

earning outcomes under such non-deterministic schedules 1006

by K ′
v. Using this, we define the value function as the sum 1007

of the expected net amount of rewards that will be earned 1008

during a session: 1009

S0,T =
∫ T

0
E[v.Ax,t − K ′

v]dt =
∫ T

0
Lx,v,t dt, (A.1)

where the expectation is w.r.t the number of earned 1010

outcomes along each outcome dimension during dt time 1011

step. Following the above definition, we have: 1012

Lx,v,t = E[v.Ax,t − K ′
v], (A.2)

where Lx,v,t is the expected net reward earned in dt time 1013

step. In the main text and in the following sections, E[v] is 1014

denoted by vfor simplicity of notation. By replacing vby 1015

E[v] in Eq. 4 we get: 1016

Lx,v,t = E[v].Ax,t − KE[v]. (A.3)

In the main text, Eq. A.3 (Eq. 4 in the main text) was 1017

used instead of Eq. A.2, and the aim of this section is to 1018

show that Eqs. A.3 and A.2 are equivalent. We first consider 1019

environments with one-dimensional outcome spaces, and 1020

then we extend it to the case of environments with multi- 1021

dimensional outcome spaces. We maintain the following 1022

theorem: 1023

Theorem A1 Assume that the cost of one response, given 1024

that the delay since the last response is τ , is as follows: 1025

Cτ = a/τ + b. (A.4)

Furthermore, assume that on average, or exactly, k 1026

responses are required to earn one unit of the outcome, and 1027

r is the number of outcomes earned. Then we have: 1028

Lx,v,t = Er[v]Ax,t − KEr[v], (A.5)
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where1029

Kv = vk(kav + b). (A.6)

Proof We first provide an intuitive explanation for why the1030

cost defined in Eq. A.4 is the same as the cost defined in1031

Eq. A.6 in the case of fixed-ratio schedules of reinforcement1032

(i.e., exactly k responses are required to earn an outcome).1033

Earning the outcome at rate v implies that the time it takes1034

to earn the outcome is 1/v, and since k responses have been1035

executed in this period, the delay between responses is:1036

τ = 1
kv

, (A.7)

and therefore using Eq. A.4 (Eq. 2 in the main text), the cost1037

of making one response will be akv + b. Since k responses1038

are required for earning each outcome, the total cost of1039

earning one unit of the outcome will be k times the cost1040

of one response, which will be k(akv + b). Since the total1041

amount of outcome earned is vdt , the total cost per unit of1042

time will be:1043

Kv = k(akv + b)vdt

dt
= vk(akv + b), (A.8)

which is equivalent to Eqs. 3 and A.6.1044

We now show that Eqs. A.5 and A.2 are equivalent in1045

order to prove Theorem A1. Equation A.2 has two terms. As1046

for the first term, Ax,t can be assumed to be constant in dt1047

time step, and therefore we have:1048

Er[vAx,t ] = Er[v]Ax,t . (A.9)

As for the second term we maintain that:1049

Er[K ′
v] = KEr[v]. (A.10)

To show the above relation, assume that r is the number1050

of outcomes earned after making one response. Since1051

according to the definition of random-ratio and variable-1052

ratio schedules, out of N responses on average N/k will be1053

rewarded, we have Er[r] = 1/k and the expected rate of1054

outcome earning will be:1055

Er[v] = Er

[ r

τ

]
= 1

kτ
. (A.11)

Furthermore, according to Eq. A.4 the cost of one response1056

is a/τ + b, and therefore, the cost per unit of time will be:1057

K ′
v = a/τ + b

τ
. (A.12)

Therefore:1058

Er[K ′
v] = a/τ + b

τ
= Er[v]k(akEr[v] + b) (using Eq. A.11)

= KEr[v] (using Eq. A.6),

which proves Eq. A.10. Substituting Eqs. A.10, A.9 in 1059

Eq. A.2 yields Eq. A.5, which proves the theorem. 1060

We now turn to the case of multi-dimensional outcome 1061

spaces. The aim is to show Eq. A.2 is equivalent to Eq. A.3. 1062

To show this, we first maintain that: 1063

E[v.Ax,t ] = E[v].Ax,t , (A.13)

which holds since Ax,t can be assumed to be constant during 1064

dt time step. Next, we show that: 1065

E[K ′
v] = KE[v], (A.14)

which states that E[K ′
v] can be represented as a function of 1066

E[v]. To show this, assume ri is the number of outcomes 1067

earned after making one response for outcome i, and τi is 1068

the delay between responses for outcome i. We have: 1069

E[vi] = E
[

ri

τi

]
= E[ri]

τi
, (A.15)

and therefore τi can be expressed as a function of E[vi]. 1070

Next, assume that [Cτ ]i is the cost of making one response 1071

for outcome i with delay τi between the responses, and τ 1072

is a vector containing the delay between responses for each 1073

outcome (τ = [τ1 . . . τn]). In dt time step, dt/τi responses 1074

for outcome i are made, and therefore the total cost in dt 1075

time period will be [Cτ ]idt/τi , which implies that the cost 1076

for outcome i per unit of time is [Cτ ]i/τi . Given this, the 1077

total cost paid for all the outcomes per unit of time will be: 1078

E[K ′
v] =

∑

i

[Cτ ]i
τi

=
∑

i

[Cτ ]i
E[vi]
E[ri]

(using Eq. A.15)

= KE[v],

where we used the fact that τ in Cτ can be expressed 1079

using E[v] (using Eq. A.15), and therefore E[K ′
v] can be 1080

expressed as a function of E[v], which is denoted by KE[v] 1081

(as noted in Eq. A.14). Substituting Eqs. A.14, A.13 in 1082

Eq. A.2 yields Eq. A.3. 1083

Appendix B: Optimal actions 1084

in one-dimensional outcome space 1085

The aim is to derive optimal actions when the outcome space 1086

has one dimension. Given the reward field Ax,t , the reward 1087

of gaining dx units of outcome will be Ax,tdx, and since 1088

dx = vdt , the reward earned in each time step is vAx,t . 1089

Given that Kv is the cost function (the cost paid in each time 1090

step), the net reward in each time step can be written as: 1091

Lx,v,t = vAx,t − Kv, (B.1)
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and based on this, the value, which is the sum of net rewards1092

in each time step, will be:1093

S0,T =
∫ T

0
Lx,v,t dt . (B.2)

The optimal rates that maximize S0,T can be found1094

using different variational calculus methods such as the1095

Euler–Lagrange equation, or the Hamilton–Jacobi–Bellman1096

equation (Liberzon, 2011). Here we use the Euler–Lagrange1097

form, which sets a necessary condition for δS = 0:1098

d

dt

∂L

∂v
= ∂L

∂x
. (B.3)

Furthermore, since the end-point of the trajectory is free1099

(the amount of outcomes that can be gained during a session1100

is not limited, but the duration of the session is limited to1101

T ), the optimal trajectory will also satisfy the transversality1102

conditions:1103

∂L

∂v

∣∣∣∣
t=T

= 0, (B.4)

which implies:1104

∂Kv

∂v

∣∣∣∣
t=T

= Ax,t |t=T , (B.5)

where as mentioned T is the total session duration.1105

By substituting Eq. B.1 in Eq. B.3 we will have:1106

d

dt

(
−∂Kv

∂v
+ Ax,t

)
= v

dAx,t

dx
. (B.6)

The term dAx,t /dt has two components: the first compo-1107

nent is the change in Ax,t due to the change in x and the1108

second component is due to the time-dependent changes in1109

Ax,t :1110

dAx,t

dt
= dx

dt

∂Ax,t

∂x
+ ∂Ax,t

∂t

= v
∂Ax,t

∂x
+ ∂Ax,t

∂t
. (B.7)

Furthermore we have:1111

d

dt

(
∂Kv

∂v

)
= dv

dt

∂2Kv

∂v2 . (B.8)

Substituting Eqs. B.7, B.8 in Eq. B.6 yields:1112

dv

dt

(
∂2Kv

∂v2

)
= ∂Ax,t

∂t
. (B.9)

In the condition that the rate of outcome earning is constant1113

(dv/dt = 0), we have xT = vT , which by substituting in1114

Eq. B.5 yields:1115

∂Kv∗

∂v∗ = AT v∗,T . (B.10)

The above equation will be used in order to calculate the1116

optimal rate of outcome earning.1117

Appendix C: Theorem 1: Proof 1118

The cost function Kv defined in Eq. 3 satisfies the following 1119

relation: 1120

∂2Kv

∂v2 > 0, (C.1)

which holds as long as at least one response is required to 1121

earn an outcome (k > 0), and the cost of earning outcomes 1122

is non-zero (a > 0). 1123

Assuming that ∂Ax,t /∂t = 0, and given Eq. C.1, the only 1124

admissible solution to Eq. B.9 is: 1125

dv

dt
= 0. (C.2)

Furthermore, assuming ∂Ax,t /∂t > 0, and given Eq. C.1, 1126

the only admissible solution to Eq. B.9 is: 1127

dv

dt
> 0, (C.3)

which proves Theorem 1. 1128

C.1 Simulation details of Fig. 1 1129

For the illustration depicted in Fig. 1, following parameters 1130

were used: a = 0.02, b = 0k = 4, Ax,t = H = 5. The cost 1131

and the reward were calculated at each time-step using the 1132

response rates shown in the figure. The cost were calculated 1133

using Eq. 3 and the reward field was assumed to be constant 1134

throughout the session. 1135

Appendix D: Theorem 2: Proof 1136

and simulation details 1137

D.1 Proof of Theorem 2 1138

In order to prove the theorem, we first provide a lemma. 1139

Assuming that the total session duration (T ) has the 1140

probability density function f (T ) and that f (T ) > 0, here 1141

we show that the expectation of the total session duration 1142

never decreases as time passes throughout the session. 1143

Lemma 1 Let’s denote the expectation of the session 1144

duration at time t ′ with T ′ 1145

T ′ = E[T |T > t ′], (D.1)

and assume T has the following probability density 1146

function: 1147

T ∼ f (T ), f (T ) > 0. (D.2)

Then: 1148

∂T ′

∂t ′
> 0. (D.3)
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Proof We have:1149

∂T ′

∂t ′
= ∂E[T |T > t ′]

∂t ′

= ∂

∂t ′

[∫ ∞

t ′

Tf (T )

1 − F(t ′)
dT

]

= ∂

∂t ′

[
1

1 − F(t ′)

∫ ∞

t ′
Tf (T )dT

]

= f (t ′)

[1 − F(t ′)]2

∫ ∞

t ′
Tf (T )dT − t ′f (t ′)

1 − F(t ′)

= f (t ′)
1 − F(t ′)

∫ ∞

t ′

Tf (T )

1 − F(t ′)
dT

︸ ︷︷ ︸
E[T |T >t ′]

− t ′f (t ′)
1 − F(t ′)

= f (t ′)
1 − F(t ′)

(
E[T |T > t ′] − t ′

)
> 0, (D.4)

where F(T ) is the cumulative distribution function of T .1150

Based on the above lemma, we show that the optimal1151

response rate is a decreasing function of t ′. Since in1152

Theorem 2 the value is calculated under the assumption that1153

the section length is T ′, and based on Eq. B.5, the optimal1154

response rate satisfies the following equation:1155

∂Kv

∂v

∣∣∣∣
t=T ′

= Ax,t |t=T ′ . (D.5)

Taking the derivative w.r.t to the current time in the session,1156

i.e., t ′ we get:1157

dv

dt ′

(
∂2Kv

∂v2

)
= ∂T ′

∂t ′

(
v
∂Ax,t

∂x
+ ∂Ax,t

∂T ′

)
. (D.6)

Theorem 2 assumes that ∂Ax,t /∂x < 0 and ∂Ax,t /∂T ′ = 0,1158

which given Eqs. D.3, C.1, and that v > 0 yields:1159

dv∗

dt ′
< 0, (D.7)

which implies that the rate of earning outcomes decreases as1160

time passes within a session. The second part of Theorem 21161

assumes that ∂Ax,t /∂x = 0 and ∂Ax,t /∂T ′ = 0, which1162

given Eq. D.6 implies dv/dt ′ = 0, and therefore the optimal1163

rate of outcome earning is not changing by the current time1164

in the session, i.e., it is constant.1165

D.2 Simulation details1166

The simulation of the model depicted in Fig. 2: right panel1167

requires defining (i) the reward field, (ii) the cost function,1168

and (iii) a probability distribution over the session duration.1169

As for the probability distribution of the session duration,1170

following McGuire and Kable (2013), we assumed that T1171

follows a Generalized Pareto distribution:1172

F(T ) = 1 −
(

1 + kT

σ

)−1/k

, (D.8)

where k is a shape parameter (note that k is not the ratio- 1173

requirement here) and σ is a scale parameter, and the third 1174

parameter (location µ) was assumed to be zero. Furthermore 1175

we have: 1176

F(T |T > t ′) = 1 −
(

1 + kT

σ + kt ′

)−1/k

, (D.9)

which has the following expected value: 1177

E[T |T > t ′] = σ + kt ′

1 − k
+ t ′, (D.10)

which as we expect is an increasing function of t ′. Note that 1178

at point t ′ the expected remaining time until the end of the 1179

session is σ+kt ′
1−k . 1180

For the simulation of the model, we assumed that k = 0.7 1181

and σ = 18, which represents that the initial expectation for 1182

the session duration is 60 min. 1183

For the cost function, in all the simulations the cost 1184

defined in Eq. 3 was used, which is equivalent to the cost 1185

function used in the previous works (Niv et al., 2007; Dayan, 1186

2012). 1187

For the definition of the reward field, we used the 1188

framework provided by Keramati and Gutkin (2014), which 1189

provides a computational model for how the values of 1190

outcomes change with the consumptions of the outcomes. 1191

They suggested that the dependency of the reward field 1192

on the amount of outcome earned is indirect and it is 1193

through the motivational drive. They conceptualized the 1194

motivational drive as the deviations of the internal states 1195

of a decision-maker from their homeostatic set-points. For 1196

example, let’s assume that there is only one internal state, 1197

say hunger, where H denotes its homeostatic set-point 1198

(which corresponds to the deprivation level, assuming that 1199

initial value of x is zero), and there is an outcome which 1200

consuming each unit of it satisfies l units of the internal 1201

state. In this condition, the motivational drive at point x, 1202

denoted by Dx , will be: 1203

Dx = 1
2
(H − lx)2. (D.11)

Keramati and Gutkin (2014) showed that such a definition 1204

of the motivational drive has implications that are consistent 1205

with the behavioral evidence. According to the framework, 1206

the reward generated by earning δx units of the outcome is 1207

proportional to the change in the motivational drive, which 1208

can be expressed as: 1209

Ax,t = −∂Dx

∂x
= l(H − lx). (D.12)

As Eq. D.12 suggests, with earning more outcomes 1210

(increase in x) Ax,t decreases. Given the above reward field, 1211
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the optimal response rate of outcome earning, obtained by1212

Eq. B.10, will be:1213

v∗ = Hl − bk

T l2 + 2ak2 . (D.13)

Equation D.13 was used in the simulations of the “decreas-1214

ing reward and unknown session duration” condition in1215

Fig. 2: right panel. The simulation of this condition was1216

done using parameters k = 15, l = 1.0, a = 0.05, b = 0.1,1217

H = 450. As for T , in each time t ′ within the session,1218

the expected session duration (E[T |T > t ′]) was calculated1219

using Eq. D.10, and was used as T in Eq. D.13.1220

For the “known session duration (fixed or decreasing1221

reward)” condition in Fig. 2: right panel, the same1222

parameters as the previous condition were used, but the1223

session duration was fixed to T = 60. For the “fixed1224

reward (known or unknown session duration)” condition,1225

we assumed that the reward field is independent of the1226

amount of reward earned:1227

Ax,t = lH . (D.14)

Given the above reward field, the optimal rate of outcome1228

earning is:1229

v∗ = Hl − bk

2ak2 . (D.15)

The simulation of this condition was done using parameters1230

k = 15, l = 1.0, a = 0.05, b = 0.1, H = 450/4. Note1231

that in this condition the response rate was independent of1232

the session duration. The response rates in all the conditions1233

were obtained by multiplying the outcome rates by k (since1234

k responses are required to earn one unit of outcome).1235

D.3 Simulation details of Figs. 4, 51236

The simulation depicted in Figs. 4 and 5 are using Eq. D.131237

with the following parameters (note that the optimal1238

response rates were obtained by multiplying v∗ by k). For1239

Fig. 4: right panel simulation parameters are T = 50, k = 1,1240

l = 1, a = 1, H = 8. Parameter b is varied between 3 to 71241

in order to generate the plot.1242

In Fig. 5: left panel simulation parameters are T = 50,1243

l = 1, a = 0.3, b = 0.05, H = 100. Parameter k was varied1244

between 1 to 100 in order to generate the plot.1245

In Fig. 5: middle panel simulation parameters are T =1246

50, k = 1, l = 1, a = 0.3, b = 0.05. Parameter H was1247

varied between 10 to 100 in order to generate the plot.1248

In Fig. 5: right panel simulation parameters are T = 50,1249

k = 1, a = 0.1, b = 0.1, H = 100. Parameter l was varied1250

between 0 to 1 in order to generate the plot.1251

Appendix E: Optimal actions 1252

in multi-dimensional outcome space 1253

The aim of this section is to derive the optimal actions in 1254

the condition that the outcome space is multi-dimensional. 1255

Optimal trajectory will satisfy the Euler–Lagrange equation 1256

along each outcome dimension: 1257

d

dt

∂L

∂v
= ∂L

∂x
, (E.1)

where: 1258

Lx,v,t = Ax,t .v− Kv. (E.2)

Furthermore since the end point of the trajectory is free (the 1259

total amount of outcomes is not fixed) we have: 1260

∂L

∂v

∣∣∣∣
t=T

= 0. (E.3)

Using Eqs. E.1, E.2 we have: 1261

d

dt

(
d

dv
(−Kv+ v.Ax,t )

)
= d(v.Ax,t )

dx
. (E.4)

For the right-hand side of the above equation we have: 1262

d(v.Ax,t )

dx
= vT

∂Ax,t

∂x
. (E.5)

We also have: 1263

dAx,t

dt
= ∂Ax,t

∂t
+ ∂Ax,t

∂x
v, (E.6)

which by substitution into Eq. E.4 yields: 1264

d

dt

∂Kv

∂v
= ∂Ax,t

∂t
+

(
∂Ax,t

∂x
− ∂A

ᵀ
x,t

∂x

)

v. (E.7)

We now provide two lemmas, which will be used in the 1265

proof of the following theorems. 1266

Lemma 2 Assume that H is the Hessian matrix of Kv, i.e., 1267

[H]i,j = K2
v

∂vi∂vj
, (E.8)

and furthermore assume that the cost of earning outcomes 1268

along each dimension is independent of the outcome rate on 1269

the other dimensions, i.e., 1270

Hi,j = 0, i ̸= j . (E.9)

Then: 1271

d

dt

∂Kv

∂v
= dv

dt
⊙

(
∂2Kv

∂v2

)
, (E.10)

where ∂2Kv/∂v2 represents the diagonal terms of H, and ⊙ 1272

is entrywise Hadamard product. 1273
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Proof Using Eq. E.9 we have:1274

d

dt

∂Kv

∂v
= dv

dt
H

= dv
dt

⊙
(

∂2Kv

∂v2

)
, (E.11)

where the last equation comes from the fact that H is a1275

diagonal matrix.1276

Lemma 3 Assuming that the reward field is conservative,1277

i.e.,1278

Ax,t = −∂Dx

∂x
, (E.12)

then:1279

M = ∂Ax,t

∂x
− ∂A

ᵀ
x,t

∂x
= 0. (E.13)

Proof Using Eq. E.12 we get:1280

[M]i,j = ∂[Ax,t ]i
∂xj

− ∂[Ax,t ]j
∂xi

= − ∂2Dx

∂xj∂xi
+ ∂2Dx

∂xi∂xj

= − ∂2Dx

∂xi∂xj
+ ∂2Dx

∂xi∂xj
(using Schwarz’s theorem)

= 0.

Note that the use of Schwarz’s theorem is based on the1281

assumption that Dx is twice differentiable, which holds in1282

the circumstances that we consider here.1283

Appendix F: Theorem 3: proof1284

and simulation details1285

F.1 Proof of Theorem 31286

Theorem 3 assumes that (i) the costs of earning outcomes1287

are independent (E.9), (ii) the reward field is conservative1288

(E.12), and (iii) the reward field is independent of time1289

(∂Ax,t /∂t = 0). Based on Lemmas 2, 3 and Eq. E.7 we1290

have:1291

dv
dt

⊙
(

∂2Kv

∂v2

)
= 0. (F.1)

Given that Eq. C.1 holds along each outcome dimension1292

(∂2Kv/∂v2 ≻ 0), the only admissible solution to Eq. F.1 is1293

dv/dt = 0, which shows that the optimal rate of earning1294

outcomes is constant. Since the optimal rate is constant,1295

we have xT = T v∗, which by substituting in boundary1296

conditions implied by Eq. E.3 yields Eq. 9:1297

∂Kv∗

∂v∗ = AT v∗,T , (F.2)

which completes the proof the theorem. 1298

F.2 Simulation details 1299

For the simulation of the model in Fig. 6: left panel 1300

“independent cost” condition, it is assumed that the two 1301

outcomes have the same reward effect, but earning the 1302

second outcome requires l times more responses. Following 1303

Keramati and Gutkin (2014), since the two outcomes have 1304

the same reward properties we defined the motivational 1305

drive as follows: 1306

Dx= 1
2
(H − x1 − x2)

2, (F.3)

where as mentioned Dx is the motivational drive and it 1307

represents the deviations of the internal state of the decision- 1308

maker from its homeostatic set-point (H ). x1 is the amount 1309

of O1 earned and x2 is the amount of O2 earned, and the 1310

current motivational drive for earning outcomes depends on 1311

the difference between the total amount of earned outcomes 1312

(x1 + x2) and the homeostatic set-point (H ). 1313

Given the motivational drive, the amount of reward 1314

generated by consuming each outcome will be equal to 1315

the amount of change in the motivational drive due to the 1316

consumption of the outcomes (12), and therefore, we have: 1317

Ax,t = −∂Dx

∂x
= [H − x1 − x2, H − x1 − x2]. (F.4)

The above equation was used as the reward field in the 1318

simulations. As for the cost function, earning one unit of O1 1319

requires k responses on the left hand, and earning one unit 1320

of O2 requires lk responses on the right hand. Based on this 1321

and using Eq. 3, the cost function will be: 1322

Kv= v1[ak2v1 + kb] + v2[ak2l2v2 + klb], (F.5)

where v1 is the rate of earning O1 and v2 is the rate of 1323

earning O2. 1324

Using Theorem 3, the optimal response rate will be 1325

(assuming b = 0): 1326

response rate =

⎡

⎢⎢⎢⎣

for left hand︷ ︸︸ ︷
kl2H

T l2 + 2ak2l2 + T
,

for right hand
︷ ︸︸ ︷

klH

T l2 + 2ak2l2 + T

⎤

⎥⎥⎥⎦
,

(F.6)

where as mentioned in the main text “left hand” is the 1327

response that should be taken for earning O1, and “right 1328

hand” is the response that should be taken for earning O2. 1329

Parameters used for simulations are k = 1, l = 2, a = 1, 1330

b = 0, H = 100, and T = 20. Note that for obtaining the 1331

response rates, the outcome rate for O1 was multiplied by k, 1332

and the outcome rate for O2 was multiplied by kl. 1333
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Appendix G: Theorem A2: definition, proof1334

and simulation details1335

G.1 Proof of Theorem A21336

The aim of this section is to derive optimal actions in1337

the conditions that the costs of earning outcomes are1338

dependent on each other. In this condition, one can assume1339

what determines the cost is the delay between subsequent1340

responses, either for the same or for a different outcome,1341

i.e., the cost is proportional to the rate of earning all of1342

the outcomes. In particular, if for earning O1, k responses1343

are required and for earning O2, lk responses are required1344

(l ̸= 1), then the delay between subsequent responses (τ )1345

will be 1/(kv1 + lkv2). Given Eq. 2, the cost of earning1346

one unit of O1 will be k[a(kv1 + lkv2) + b], and the cost1347

of earning one unit of O2 will be kl[a(kv1 + lkv2) + b].1348

Such a cost function can be achieved by defining the cost as1349

follows:1350

Kv= v1[ak(kv1 + lkv2)+kb]+v2[akl(kv1 + lkv2)+klb].
(G.1)

In the following theorem, we maintain that given the above1351

cost function, the optimal actions are to make no response1352

for O2, and to make responses for O1 at a constant rate.1353

Theorem A2 Given the cost function defined in Eq. G.11354

and assuming that the two outcomes have the same reward1355

properties, i.e.,:1356

[Ax,t ]1 = [Ax,t ]2. (G.2)

Then the optimal actions satisfy the following equations:1357

dv1

dt
= 0,

v2 = 0. (G.3)

Proof By substituting Eq. G.1 in Eq. E.2 we have:1358

L = −v1 [ak(kv1+lkv2)+kb)]−v2 [akl(kv1+lkv2)+klb]

+ v1[Ax,t ]1 + v2[Ax,t ]2. (G.4)

Using the boundary condition mentioned in Eq. E.3 we1359

have:1360

[AxT ,T ]1 − 2ak2lv2 − 2ak2v1 − bk = 0,

[AxT ,T ]2 − 2ak2l2v2 − 2ak2lv1 − bkl = 0. (G.5)

Using Eq. G.2 we get:1361

1362

v1 = −lv2 − b

2ak
, (G.6)

which is not admissible given constraints v1 ≥ 0 and1363

v2 ≥ 0, and therefore we assume either v1 or v2 will be1364

equal to zero. The trajectory will have a higher value by1365

setting v2 to zero since O2 has a higher cost, and therefore 1366

the optimal solution will be v2 = 0. Since v2 = 0 1367

the problem degenerates to a one-dimensional problem, in 1368

which according to Theorem 1 the optimal response rate is 1369

constant, and therefore the rate of responding for O1 will be 1370

constant, which proves the theorem. 1371

G.2 Simulation details 1372

For the simulation of the model in Fig. 6: left panel 1373

“dependent cost” condition, it is assumed that k responses 1374

on the left lever are required to earn O1 and lk response 1375

are required on the right lever to earn O2. Similar to the 1376

“independent cost” condition mentioned in the previous 1377

section, the reward field was assumed as follows: 1378

Ax,t = −∂Dx

∂x
= [H − x1 − x2, (H − x1 − x2)] . (G.7)

Since the response rate for one of the outcomes will be 1379

zero (according to Theorem A2), the problem degenerates 1380

to an environment with one action and one outcome. Using 1381

Theorem 1, and Eq. B.10 the optimal response rate will be: 1382

response rate =

⎡

⎢⎢⎣k
H − bk

T + 2ak2
︸ ︷︷ ︸

for left lever

, 0︸︷︷︸
for right lever

⎤

⎥⎥⎦ . (G.8)

Parameters used for simulations are k = 1, a = 1, b = 0, 1383

H = 100, and T = 20. 1384

Appendix H: Theorem A3: definition, proof 1385

and simulation details 1386

H.1 Proof of Theorem A3 1387

The aim of Theorem A3 is to derive optimal actions when 1388

the reward field is non-conservative and the costs of actions 1389

are independent. An example of a non-conservative reward 1390

field is when the amount of reward that consuming an 1391

outcome produces is greater or smaller than the change 1392

in the motivational drive. For example, assume that there 1393

are two outcomes available, and the consumption of both 1394

outcomes has a similar effect on the motivational drive: 1395

Dx= 1
2
(H − x1 − x2)

2, (H.1)

but the reward that the second outcome generates is l times 1396

larger (l ̸= 1) than the change it creates in the motivational 1397

drive: 1398

Ax,t =
[
−l

∂Dx

∂x1
, −∂Dx

∂x2

]
= [l(H − x1− x2), H − x1−x2].

(H.2)
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In this condition, ∂[Ax,t ]1/∂x2 = −l and ∂[Ax,t ]2/∂x1 =1399

−1, and therefore the reward of the second outcome due1400

to the consumption of the first outcome decreases more1401

sharply than the reward of the first outcome would, due to1402

the consumption of the second outcome. We have:1403

M = ∂Ax,t

∂x
− ∂A

ᵀ
x,t

∂x
=

[
0 1 − l

l − 1 0

]
, (H.3)

and as long as l ̸= 1 then M ̸= 0, and therefore the reward1404

field is non-conservative, because if it was conservative then1405

according to Lemma 3 we should have M = 0.1406

If the reward field is non-conservative, i.e., there does not1407

exist a scalar field Dx such that Ax,t satisfies Eq. 12, then1408

the optimal response rates are as follows: early in the session1409

the decision-maker exclusively works for the outcome with1410

the higher reward value (O1) and, when the time remaining1411

in the session is less than the threshold (Tc), the decision-1412

maker then gradually starts working for the outcome with1413

the lower reward value (O2). More precisely we maintain1414

the following theorem:1415

Theorem A3 If the reward field follows Eq. H.2,1416

∂Ax,t /∂t = 0, and the cost is as follows:1417

Kv= 1
2
mv2

1 + 1
2
mv2

2, (H.4)

then the optimal trajectory in the outcome space will be:1418

[v1, v2] =
{ [

H(l−1)
T l−Tc

, 0
]
, T − t > Tc

arc of a circle T − t ≤ Tc

, (H.5)

where1419

Tc = m
arctan(1/l)

l − 1
,

m = 2ak2. (H.6)

Proof We have:1420

∂Ax,t

∂x
− ∂A

ᵀ
x,t

∂x
=

[
0 1 − l

l − 1 0

]
, (H.7)

and based on Eqs. E.9, H.4, E.7 we get:1421

dv1

dt
= 1 − l

m
v2,

dv2

dt
= l − 1

m
v1. (H.8)

Defining w = (l − 1)/m, the solution to the above set of1422

differential equations has the form:1423

x= [q1 + r/w sin(wt + α), q2 + r/w cos(wt + α)] ,

(H.9)

which is an arc of a circle centered at [q1, q2], and r and1424

α are free parameters. The parameters can be determined1425

using the boundary condition imposed by Eq. E.3, and also1426

assuming that the initial position is x = 0. The boundary 1427

condition in Eq. E.3 implies: 1428

mv= Ax,t |t=T =
[
l
√

2Dx,
√

2Dx

]
, (H.10)

which implies that at the end of the trajectory the rate of 1429

earning the second outcome is l times larger than the first 1430

outcome. Therefore, the general form of the trajectory will 1431

be an arc starting from the origin and ending along the above 1432

direction. Given the constraint that v≽ 0 only the solutions 1433

in which q2 ≤ 0 are acceptable ones (i.e., the center of the 1434

circle is below the x-axis). Solving Eq. H.9 for q2 ≤ 0 we 1435

get: 1436

T ≤ Tc, (H.11)

where 1437

Tc = m
arctan(1/l)

l − 1
, (H.12)

and therefore Tc is independent of H (the initial motiva- 1438

tional drive). As such if T ≤ Tc (H.11) then the optimal 1439

trajectory will be an arc of a circle starting from the origin. 1440

Otherwise, if T > Tc, the optimal trajectory will be com- 1441

posed of two segments. In the first segment, v2 will take the 1442

boundary condition v2 = 0 and the decision-maker earns 1443

only the first outcome (the outcome with the higher reward 1444

effect). The first segment continues until the remaining time 1445

in the session satisfies Eq. H.11 (the remaining time is less 1446

than Tc), after which the second segment starts, which is 1447

an arc of a circle defined by Eq. H.9. The rate of earning 1448

the first outcome, v1, in the first segment of the trajectory 1449

(when v2 = 0) can be obtained by calculating the rates at 1450

the beginning of the circular segment. The initial rate at the 1451

start of the circular segment is as follows: 1452

r = H(l − 1)

T l − Tc
, (H.13)

which implies that at the first segment of the trajectory we 1453

have: 1454

[v1, v2] =
[
H(l − 1)

T l − Tc
, 0

]
, (H.14)

which completes the proof of Theorem A3. 1455

It is interesting to mention that there is a parallel 1456

between the trajectory that a decision-maker takes in the 1457

outcome space, and the motion of a charged particle in a 1458

magnetic field. In the case that the outcome space is three 1459

dimensional, using Eq. E.7 the optimal path in the outcome 1460

space satisfies the following properties: 1461

m
dv
dt

=
(

∂Ax,t

∂x
− ∂A

ᵀ
x,t

∂x

)

v

= −v× B, (H.15)
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where × is the cross product, B is the curl of the reward1462

field (B = curlAx,t ), and m = 2ak2. The Eq. H.15 in fact1463

lays out the motion of a unit charged particle (negatively1464

charged) with mass m in a magnetic field with magnitude B.1465

H.2 Simulation details1466

Simulations shown in Fig. 6: right panel are based on1467

Theorem A3, and the parameters used are k = 1, l = 1.1,1468

a = 1, b = 0, H = 100, m = 2ak2.1469
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