

How to Boost Any Loss Function

Richard Nock Yishay Mansour

Summary

• Recent evolution of (S)GD $\rightarrow 0^{th}$ order opt.: gradient-free, only loss queries (not any loss: they need to be somehow nice)

- Boosting is gradient-free by design (Kearns/Valiant) w/ "nasty" 0/1 loss and then evolved $\rightarrow 1^{st}$ order opt. w/ differentiable losses
 - We question the power of the original 0th order framework*: what losses can it directly optimize under the weak learning assumption?
 - Answer: any loss whose set of discontinuities has 0 Lebesgue measure - computer-wise, this means any loss
 - + our technique is constructive: we give an algorithm
- *=analysis of boosting-compliant convergence on training, since generalization entails restrictions on losses w/ SOTA toolbox (no different from (S)GD \rightarrow 0th order's mainstream analysis)

★=and then *many* others

- (S)GD → 0th order "natively" operates on (m)any architectures
- Boosting implies finding the architecture (how "blocks" from weak learner are assembled), so (still) restricted from this standpoint

Algorithm*

 $^{\text{th}}$ simplified, see paper for full presentation

Algorithm 1 SecBoost(S, T)

Input sample $S = \{(\boldsymbol{x}_i, y_i), i = 1, 2, ..., m\}$, number of iterations T, initial (h_0, v_0) (constant classification and offset).

Step 1: let
$$H_0 \leftarrow 1 \cdot h_0$$
 and $\mathbf{w}_1 = -\delta_{v_0} F(h_0) \cdot \mathbf{1}$;

Step 2: for
$$t \in [T]$$

Step 2.1: let $h_t \leftarrow \text{Weak_Learner}(S_t, |\boldsymbol{w}_t|);$

Step 2.2: compute leveraging coefficient α_t , params $\varepsilon_t > 0, \overline{w}_{2,t} > 0$;

Step 2.3: let $H_t \leftarrow H_{t-1} + \alpha_t \cdot h_t$;

Step 2.4: for $i \in [m]$, let $v_{ti} \leftarrow \text{Offset_Oracle}(t, i, \varepsilon_t \cdot \alpha_t^2 M_t^2 \overline{w}_{2,t});$

Step 2.5: for $i \in [m]$, let $w_{(t+1)i} \leftarrow -\delta_{v_{t}i} F(y_i H_t(\boldsymbol{x}_i))$;

Step 2.6: if $w_{t+1} = 0$ then break; $M_t \doteq \max |h_t(\boldsymbol{x}_i)|$

Return H_T .

Notable generalizations with respect to "boosting-à-la-Valiant"

- Examples for Weak_Learner can be label flipped: $S_t \doteq \{(\boldsymbol{x}_i, y_i \cdot \operatorname{sign}(w_{ti}))\}$
- Need an "oracle" giving offsets (implementation generic or loss dependent)

The offset oracle

- For the ease of exposure, $yH_t(x) < yH_{t-1}(x)$ (see paper for general case) ightarrow Let $\mathbb{I} \doteq [yH_t(\boldsymbol{x}), yH_{t-1}(\boldsymbol{x})]$
- ightarrow Let Δ_v be the secant through $(yH_t(x),F(yH_t(x))$ & $(yH_t(x)+v,F(yH_t(x)+v)$, for v>0. Compute the maximum difference $\delta_v \doteq \max_{\mathbb{I}} \Delta_v - F$ (it is ≥ 0) ightarrow Offset_Oracle(.,.,z) returns any v
 eq 0 such that $\delta_v \leqslant z$

Step 2.2

If offsets were \rightarrow 0, this would be a second-order derivative

• Two possibilities to get $\alpha_t, \varepsilon_t, \overline{w}_{2,t}$, where $\overline{w}_{2,t}$ is any > 0 real s.t. \square Possibility 1: F is "nice" \Rightarrow easy bound: we just have to pick $\varepsilon_t > 0, \pi_t \in (0,1)$ and α_t as:

(example: $F\beta$ -smooth $\Rightarrow \overline{w}_{2,t} = 2\beta$)

Possibility 2: no niceness \Rightarrow *Cf* paper for efficient algorithm providing all params $(\alpha_t, \varepsilon_t, \overline{w}_{2,t} \& \pi_t)$

Toolbox

Generalization of quantum calculus' (≠ quantum computation) v-derivative:

$$\delta_{\mathcal{V}}F(z) \doteq \left\{ \begin{array}{ccc} F(z) & \text{if} & \mathcal{V} = \varnothing \\ \delta_{v}F(z) & \text{if} & \mathcal{V} = \{v\} \\ \delta_{\{v\}}(\delta_{\mathcal{V}\setminus\{v\}}F)(z) & \text{otherwise} & \mathcal{V} = \{v,w,...\} \text{ (eventually multiset)} \end{array} \right.$$

• Singleton $\mathcal{V} = \{v\} \Rightarrow$ classical secant's slope

$$\delta_v F(z) \doteq \frac{F(z+v) - F(z)}{v}$$
 offset

called *h*-derivative, with $\mathcal{V} = \{v, v, ...\}$ in "Quantum calculus", Kac & Cheung, 2002

Boosting!

- Weak Learning Assumption: $\left|\mathbb{E}_{\tilde{\boldsymbol{w}}_t}\left[\tilde{y}_{ti}\cdot\frac{h_t(\boldsymbol{x}_i)}{M_t}\right]\right|\geqslant\gamma>0$
- $\Rightarrow \tilde{y}_{ti} \doteq y_i \cdot \operatorname{sign}(w_{ti})$ label eventually flipped $|\tilde{\boldsymbol{w}}_t| = |\boldsymbol{w}_t|$ normalized to unit
- Weak Convergence Regime: $\frac{|\mathbb{E}_{i\sim[m]}[w_{ti}]|^2}{\overline{w}_{2,t}}\geqslant \rho>0$
- numerator ← 1st order *v*-derivative, expected *signed* weights denominator ← 2nd-order *v*-derivative, loss "jiggling"
- Theorem. Let the expected empirical loss of classifier H be $F(S, H) \doteq E_{i \sim \lceil m \rceil}[F(y_i H(x_i))]$ and its initial value $F_0 \doteq F(S, h_0)$. Suppose WLA+WCR hold. Then for any $z \in \mathbb{R}$ such that $F(z) \leqslant F_0$, if SecBoost is run for a number of iterations

$$T \geqslant \frac{4(F_0 - F(z))}{\gamma^2 \rho} \cdot \frac{1 + \max_t \varepsilon_t}{1 - \max_t \pi_t^2}$$

then $F(S, H_T) \leq F(z)$.

- Example implementation (details: Cf paper)
- Weak Classifiers = size-20 DTs
- Losses: logistic & two variations: clipped logistic and a non-[cvx,Lip,diff] loss ("spring loss")

