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* Recent evolution of (S)GD = 0" order opt.: gradient-free, only
loss queries (not any loss: they need to be somehow nice)

Losses
diff. + constraints cvx, then "nice" (Lip. | cvx | diff. | smooth | ...)
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di.ff. 0/1 loss, tHen cvx/ccv

*=and then many others

* Boosting is gradient-free by design (Kearns/Valiant) w/ "nasty"
0/1 loss and then evolved = 7st order opt. w/ differentiable losses

* We question the power of the original Oth order framework*:
what losses can it directly optimize under the weak learning
assumption ?

* Answer: any loss whose set of discontinuities has 0 Lebesgue
measure - computer-wise, this means any loss
+ our technique Is constructive: we give an algorithm

*=analysis of boosting-compliant convergence on training, since
generalization entails restrictions on losses w/ SOTA toolbox
(no different from (S)GD = Oth order's mainstream analysis)

* (S)GD = 0Ot order "natively" operates on (m)any architectures

| . Boosting implies finding the architecture (how "blocks" from weak
learner are assembled), so (still) restricted from this standpoint
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How to Boost Any Loss Function
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Notable generalizations with respect to "boosting-a-la-Valiant"

“simplified, see paper for full presentation - Examples for WEAK_LEARNER can be label flipped: S; = {(x;,y; - sign(wy;))}

Algorithm 1 SECB0oo0OST(S,T)

* Need an "oracle" giving offsets (implementation generic or loss dependent)

Input sample § = {(x;,y;),7 = 1,2,...,m}, number of iterations T, initial The offset oracle

(ho,vo) (constant classification and offset).

Step 1 : let Hy < 1 hg and wy = —&,,F(hg) - 1;

Step 2 : for t e |T
Step 2.1 : let hy «— WEAK_LEARNER(S;, |w¢|);

Step 2.2 : compute leveraging coefficient oy, params ¢ > 0, wg ¢+ > 0;

Step 2.3 : let Hy «— Hi_1 + oy - hy;

Step 2.4 : for i € [m], let vy; < OFFSET_ORACLE(t, i, &; - af M2 W3 ¢ );

Step 2.5 : for i € [m], let W(tt1)i < —8y,, F(y; Hy(x;)); /

Step 2.6 : if w;1 = 0 then break;
Return Hr.
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* For the ease of exposure, yH;(x) < yH;_1(x) (see paper for general case)
~Letl = [yH(x), yH—1(T))
- Let A, be the secant through (yH:(x), F(yH(x)) &(yHi(x) + v, F(yH(z) + v),

M, = max |h:(z;) for v > 0. Compute the maximum difference 0, = maxy A\, — F' (itis = 0)

b ~ OFFSET_ORACLE(., ., z) returns any v # 0 such that 0, < 2

Step 2.2

* Two possibilities to get o, €4, wa ¢ , where ws ; is any > 0 real s.t. :{>Possibi|ity 1: Fis "nice" = easy bound: we just have to pick ¢; > 0, m; € (0,1) and «y as:

X he(z;) ’ _ (example: F' 5 -smooth = w, ; = 203) —_—
Sine[m] | Qe ()00} E (YiHe-1(2i)) ( M ) s Wi Qi € o — |1 —m, 1 + 7]
- triiky it | - C{>Possibi|ity 2: no niceness = Cf paper for efficient 2(1 + e¢) Miwa t
. . . —_— i . 1. . . \ . f b .
If offsets were — 0, this would be a second-order derivative algorlthm prOVIdmg all params (th, Ety wQ,t& 7Tt) 't __.__..2__241_____._.(1/777’ WtiYi ht <w“ important for boosting rate

* Generalization of quantum calculus' (# guantum computation) v-derivative:

[ F(z) if V=g
by F(z) = X o0, F(z) if V={v}
X 5{v}(6\7\{U}F) (Z) otherwise 7V = {U, w, } (eventually multiset)

» Singleton V = {v} = classical secant's slope

F(Z + U) o F(Z) called h-derivative, with'V = {v,v,...}iIn

"Quantum calculus", Kac & Cheung, 2002
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0, F(2) =

v «—— offset

Example: second-order v-derivative withV = {b, c}
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generalizes some properties of second-order derivative, e.g. for convexity:

SN

6{b,c}F(a’) —

1 [ Fla+b+c)+ F(a) F(a+b)+F(a+C)) po —p1 =0
- 5

(wlogc >b >0, see Lemma 5.2 in —e P
paper for more & general case(s)) L i oa+b P a+b+oc
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Boosting !

N

test error (10-folds CV

he(a;) E{> Yei = Ui - sign(wy; ) label eventually flipped

* Weak Learning Assumption: [Eg, [y ]| >v >0
J P YoM — > W, =|w;| normalizedto unit

_ E. i1 [ws] |2 E{ > numerator < 1storder v-derivative, expected signed weights
* Weak Convergence Regime: Bl P o

w2 ¢

E{> denominator « 2nd-order v-derivative, loss "jiggling"

* Theorem. Let the expected empirical loss of classifier Hbe F (S, H) = E;_j,,j[F (v, H(x;))] and its
initial value Fy = F(8, ho). Suppose WLA+WCR hold. Then for any z € R such that F(2) < Iy, If
SecBoost is run for a number of iterations

4(Fy — F(2)) 1+ max;ey

Y2 p 1 — max; 77

T >
then F(S, Hy) < F(2).

04

* Example implementation (details: Cf paper)
- Weak Classifiers = size-20 DTs

* Losses: & two variations: clipped logistic
and a non-[cvx,Lip,diff] loss ("spring loss")
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