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Theorem 1. Suppose the following assumptions are satisfied on the loss and weak learner: Boosting !

LOSS the loss is strictly proper differentiable; its partial losses are such that 3k > 0,C € R,

£_1(0),4,(1)

> C, (18)
inf{¢ | — 0} > =

(19)

WLA There exists a constant 'y, > 0 such that at each iteration t € [T, the weak hypothesis h; returned by WL satisfies

Wt 4 . ht(wi)

3

————————————————— yi .
le Zje[m]t Wt,j ma‘xje[m]t |h’t(m])|

Z Ywi- (20)

i€[m

AEOC there exists a sequence {u}ien_, of strictly positive reals such that the choice of X, in Step 2.1 is u; compliant.

Then for any 6 > 0,e > 0, letting w(6) = min{1 — (—L")~1(#), (=L')~*(—0)}, if MODABOOST is run for at least

T > U} (2(@(%’8)_0)) (21)

k- e2w(0)2v3,

iterations, then we are guaranteed

Pi«z['m] [yz HT(mi) < 0] < E&. (22)

Here, U is crafted as in (17). Mansour, Nock & Williamson — ICML'23
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Convex boosting: which models ?

ModaBoost (Model-Adaptive Boosting)

L Step 2: introduce a new oracle ensuring the final
emulates (is <> to) a specific model architecture

« Weights W = record of past performances

- Architecture Emulation Oracle : outputs & C X

- Weak learner : outputs hypotheses h € R*
at least (v > 0)different from randomon &

Bu [y b)) >
- Fits leveraging coefficients o € R

& Returns model H(x) = ), 1pes, o - hi(x)

AEO — Models = Linear Models
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Conclusion
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b Long and Servedio's paper has has a lasting impact on boosting / optimization

b Its impact should broaden on / shift to models, because it shows that

Linear Models can derail a whole ML pipeline otherwise optimal as soon as the "simplest”
form of noise affects training data

b Suggests a broader question: given a class of models (more complex ?), what is its
simplest "nemesis" noise model ?
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Thank you !
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