Random Classification Noise does not Defeat All Convex Potential Boosters Irrespective of Model Choice

Yishay Mansour

Tel Aviv U. & Google Research

Richard Nock

Google Research

Robert C. Williamson

Tübingen U. & Tübingen Al Center

Why this work?

Long & Servedio (L&S) - Setting II

Long, P.-M. and Servedio, R.-A. Random classification noise defeats all convex potential boosters. In *25th ICML*, pp. 608–615, 2008b.

Google Research

Mansour, Nock & Williamson — ICML'23

Setting II

Setting I

Setting II - test data

Setting II - training data

Setting II - data summary

the "simplest" form of corruption defeats two praised ML components: convex [losses | boosters]...

the "simplest" form of corruption defeats two praised ML components: convex [losses | boosters]...

or does it?

Enters Savage

Savage, L.-J. Elicitation of personal probabilities and expectations. J. of the Am. Stat. Assoc., pp. 783-801, 1971.

Setting I tweak (temporary)

Class prediction \rightarrow posterior prediction ($\hat{p}[y=1|x]$)

Class prediction \rightarrow posterior prediction ($\hat{p}[y=1|x]$)

CPE loss (pointwise)

$$\ell(y,u) \doteq \llbracket y=1 \rrbracket \cdot \ell_1(u) + \llbracket y=-1 \rrbracket \cdot \ell_{-1}(u)$$
 estimated posterior in [0,1] true label / class in {-1,1}

Class prediction \rightarrow posterior prediction ($\hat{p}[y=1|\boldsymbol{x}]$)

CPE loss (pointwise)

$$\ell(y,u) \doteq \llbracket y=1 \rrbracket \cdot \underline{\ell_1(u)} + \llbracket y=-1 \rrbracket \cdot \underline{\ell_{-1}(u)}$$
 estimated posterior in [0,1] true label / class in {-1,1}

Class prediction \rightarrow posterior prediction ($\hat{p}[y=1|x]$)

CPE loss (pointwise)

$$\ell(y,u) \doteq \llbracket y=1 \rrbracket \cdot \boxed{\ell_1(u)} + \llbracket y=-1 \rrbracket \cdot \boxed{\ell_{-1}(u)}$$
 estimated posterior in [0,1] true label / class in {-1,1}

CPE loss (population)

$$\Phi(\eta, \mathcal{D}) \doteq \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}} \left[\ell(y, \eta(\boldsymbol{x})) \right]$$

Properness

Class prediction \rightarrow posterior prediction ($\hat{p}[y=1|\boldsymbol{x}]$)

CPE loss (pointwise)

$$\ell(y,u) \doteq \llbracket y=1 \rrbracket \cdot \underline{\ell_1(u)} + \llbracket y=-1 \rrbracket \cdot \underline{\ell_{-1}(u)}$$
 estimated posterior in [0,1] true label / class in {-1,1}

CPE loss (population)

$$\Phi(\eta, \mathcal{D}) \doteq \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}} \left[\ell(y, \eta(\boldsymbol{x})) \right]$$

Quality: strict properness (strict optimum = Bayes prediction)

Properness

Class prediction \rightarrow posterior prediction ($\hat{p}[y=1|\boldsymbol{x}]$)

CPE loss (pointwise)

$$\ell(y,u) \doteq \llbracket y=1 \rrbracket \cdot \underbrace{\ell_1(u)}_{\text{true label / class in {-1,1}}} + \llbracket y=-1 \rrbracket \cdot \underbrace{\ell_{-1}(u)}_{\text{true label / class in {-1,1}}}$$

CPE loss (population)

$$\Phi(\eta, \mathcal{D}) \doteq \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}} \left[\ell(y, \eta(\boldsymbol{x})) \right]$$

Quality: properness (optima ∋ Bayes prediction)

Back to L&S (Setting I)

Savage on L&S (Setting I)

Savage on Setting I

L&S on Setting I

Savage on Setting I

Savage on Setting I

L&S on Setting I

But...

→ Minimization of any* strictly proper, symmetric, differentiable CPE loss can be formulated as a convex surrogate minimization for a real valued classifier with a correspondence via the (canonical) link of the loss:

→ Minimization of any* strictly proper, symmetric, differentiable CPE loss can be formulated as a convex surrogate minimization for a real valued classifier with a correspondence via the (canonical) link of the loss:

paradox?

$$\eta \doteq (\ell_{-1} - \ell_1)^{-1}(h)$$

Does it survive to full-fledged properness?

What about properness without symmetry?

Strict properness without symmetry assumption:

→ asymmetry brings much more freedom to fine-tune costs

What about properness without symmetry?

Strict properness without symmetry assumption:

- → asymmetry brings much more freedom to fine-tune costs
- → no "classical" margin formulation anymore
 -- "escapes" Long & Servedio's setting

What about properness without symmetry?

Let us cut to the chase...

In-context, hardness has nothing to do with

- → the convexity of the loss
- → nor the fact that algorithm = boosting

Let us cut to the chase...

In-context, hardness has nothing to do with

- → the convexity of the loss
- → nor the fact that algorithm = boosting

Culprit = model class

Linear Separators

"bre

"break" the guarantee of properness under the "simplest" noise model

... and ...

Let us cut to the chase...

In-context, hardness has nothing to do with

- → the convexity of the loss
- → nor the fact that algorithm = boosting

Culprit = model class

Linear Separators

"break" the guarantee of properness under the "simplest" noise model

... and we are also going to show it constructively

requires a new convex booster...

ModaBoost (Model-Adaptive Boosting)

→ **Start**: Adaboost-style boosting for **strictly proper, symmetric, differentiable losses**

ModaBoost (Model-Adaptive Boosting)

- → Start: Adaboost-style boosting for strictly proper, symmetric, differentiable losses
 - Weights $oldsymbol{w}$ = record of past performances
 - •
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random

$$|\mathbb{E}_{\boldsymbol{w}}[y \cdot h(\boldsymbol{x})]| \geq \gamma$$

- Fits leveraging coefficients $\alpha \in \mathbb{R}$
- \rightarrow Returns a linear model $H \doteq \sum_t \alpha_t \cdot h_t$

Weak Learning Assumption (WLA)

ModaBoost (Model-Adaptive Boosting)

- → **Step 1**: lift the applicable losses to all **strictly proper, symbetric, differentiable loss**
 - Weights $oldsymbol{w}$ = record of past performances
 - ...
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random

$$|\mathbb{E}_{\boldsymbol{w}}[y \cdot h(\boldsymbol{x})]| \ge \gamma$$

- Fits leveraging coefficients $\alpha \in \mathbb{R}$
- \hookrightarrow Returns a linear model $H \doteq \sum_t \alpha_t \cdot h_t$

no more "margin form"

> two convex surrogates instead of 1

ModaBoost (Model-Adaptive Boosting)

- → **Step 2**: introduce a new oracle ensuring the final emulates (is ⇔ to) a specific *model architecture*
 - Weights $oldsymbol{w}$ = record of past performances
 - Architecture Emulation Oracle : outputs $\mathbb{S} \subseteq \mathfrak{X}$

ModaBoost (Model-Adaptive Boosting)

- → **Step 2**: introduce a new oracle ensuring the final emulates (is ⇔ to) a specific *model architecture*
 - Weights $oldsymbol{w}$ = record of past performances
 - Architecture Emulation Oracle : outputs $\mathcal{S} \subseteq \mathcal{X}$
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on S $|\mathbb{E}_{\boldsymbol{w}|_{\mathcal{S}}}[y \cdot h(\boldsymbol{x})]| \geq \gamma$

ModaBoost (Model-Adaptive Boosting)

- → **Step 2**: introduce a new oracle ensuring the final emulates (is ⇔ to) a specific *model architecture*
 - Weights $oldsymbol{w}$ = record of past performances
 - Architecture Emulation Oracle : outputs $\mathbb{S} \subseteq \mathfrak{X}$
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on §

$$|\mathbb{E}_{\boldsymbol{w}_{|S}}[y \cdot h(\boldsymbol{x})]| \geq \gamma$$

- Fits leveraging coefficients $\alpha \in \mathbb{R}$
- \hookrightarrow Returns model $H(x) \doteq \sum_t 1_{x \in \mathcal{S}_t} \alpha_t \cdot h_t(x)$

(18)

(20)

(21)

LOSS the loss is strictly proper differentiable; its partial losses are such that $\exists \kappa > 0, C \in \mathbb{R}$,

$$\ell_{-1}(0), \ell_1(1) \geqslant C,$$

$$\inf\{\ell'_{-1} - \ell'_1\} \geqslant \kappa. \tag{19}$$

WLA There exists a constant $\gamma_{WL} > 0$ such that at each iteration $t \in [T]$, the weak hypothesis h_t returned by WL satisfies

$$\left|\sum_{i\in[m]_t}\frac{w_{t,i}}{\sum_{j\in[m]_t}w_{t,j}}\cdot y_i\cdot \frac{h_t(\boldsymbol{x}_i)}{\max_{j\in[m]_t}|h_t(\boldsymbol{x}_j)|}\right|\geqslant \gamma_{\text{WL}}.$$
AEOC there exists a sequence $\{u_t\}_{t\in\mathbb{N}_{>0}}$ of strictly positive reals such that the choice of \mathfrak{X}_t in Step 2.1 is u_t compliant.

Then for any $\theta \ge 0$, $\varepsilon > 0$, letting $\underline{w}(\theta) \doteq \min\{1 - (-\underline{L}')^{-1}(\theta), (-\underline{L}')^{-1}(-\theta)\}\$, if MODABOOST is run for at least

Then for any
$$\theta \geqslant 0, \varepsilon > 0$$
, letting $\underline{w}(\theta) = \min\{1 - (-\underline{L})^{-1}(\theta), (-\underline{L})^{-1}(-\theta)\}$, if MODABOOST is run for at least
$$T \geqslant U^{-1}\left(\frac{2\left(\Phi(H_0, \mathbb{S}) - C\right)}{\kappa \cdot \varepsilon^2 w(\theta)^2 v^2}\right)$$

iterations, then we are guaranteed

$$\mathbb{P}_{i \sim \lceil m \rceil} [y_i H_T(\boldsymbol{x}_i) \leq \theta] < \varepsilon. \tag{22}$$

Here, U is crafted as in (17).

Theorem 1. Suppose the following assumptions are satisfied on the loss and weak learner:

LOSS the loss is strictly proper differentiable; its partial losses are such that $\exists \kappa > 0, C \in \mathbb{R}$,

$$\ell_{-1}(0), \ell_1(1) \geqslant C,$$
 inf $\{\ell'_{-1} - \ell'_1\} \geqslant \kappa$.

Assumptions on loss, "necessary" (18)

WLA There exists a constant $\gamma_{WL} > 0$ such that at each iteration $t \in [T]$, the weak hypothesis h_t returned by WL satisfies

$$\left| \sum_{i \in [m]_t} \frac{w_{t,i}}{\sum_{j \in [m]_t} w_{t,j}} \cdot y_i \cdot \frac{h_t(\boldsymbol{x}_i)}{\max_{j \in [m]_t} |h_t(\boldsymbol{x}_j)|} \right| \geqslant \gamma_{\text{WL}}.$$
 (20)

AEOC there exists a sequence $\{u_t\}_{t\in\mathbb{N}_{>0}}$ of strictly positive reals such that the choice of \mathfrak{X}_t in Step 2.1 is u_t compliant.

Then for any $\theta \ge 0, \varepsilon > 0$, letting $\underline{w}(\theta) \doteq \min\{1 - (-\underline{L}')^{-1}(\theta), (-\underline{L}')^{-1}(-\theta)\}$, if MODABOOST is run for at least

$$T \geqslant U^{-1}\left(\frac{2\left(\Phi(H_0, \mathbb{S}) - C\right)}{\kappa \cdot \varepsilon^2 w(\theta)^2 \mathbf{v}^2}\right)$$

iterations, then we are guaranteed

$$\mathbb{P}_{i \sim [m]}[y_i H_T(\boldsymbol{x}_i) \leq \theta] < \varepsilon. \tag{22}$$

Here, U is crafted as in (17).

(21)

Theorem 1. Suppose the following assumptions are satisfied on the loss and weak learner:

LOSS the loss is strictly proper differentiable; its partial losses are such that $\exists \kappa > 0, C \in \mathbb{R}$,

$$\ell_{-1}(0), \ell_1(1) \geq C,$$

$$\inf\{\ell'_1 - \ell'_1\} \geq \kappa.$$
(18)

$$\inf\{\ell'_{-1} - \ell'_1\} \geqslant \kappa. \tag{19}$$

WLA There exists a constant $\gamma_{WL} > 0$ such that at each iteration $t \in [T]$, the weak hypothesis h_t returned by WL satisfies

$$\left| \sum_{i \in [m]_t} \frac{w_{t,i}}{\sum_{j \in [m]_t} w_{t,j}} \cdot y_i \cdot \frac{h_t(\boldsymbol{x}_i)}{\max_{j \in [m]_t} |h_t(\boldsymbol{x}_j)|} \right| \geqslant \gamma_{\text{WL}}.$$
 (20)

AEOC there exists a sequence $\{u_t\}_{t\in\mathbb{N}_{>0}}$ of strictly positive reals such that the choice of \mathfrak{X}_t in Step 2.1 is u_t compliant.

Then for any $\theta \ge 0$, $\varepsilon > 0$, letting $\underline{w}(\theta) \doteq \min\{1 - (-\underline{L}')^{-1}(\theta), (-\underline{L}')^{-1}(-\theta)\}$, if MODABOOST is run for at least

$$T \geqslant U^{-1} \left(\frac{2 \left(\Phi(H_0, \mathbb{S}) - C \right)}{\kappa \cdot \varepsilon^2 w(\theta)^2 \gamma_{rr}^2} \right)$$

iterations, then we are guaranteed

$$\mathbb{P}_{i \sim [m]}[y_i^* H_T(\boldsymbol{x}_i) \leqslant \theta] < \varepsilon. \tag{22}$$

Here, U is crafted as in (17).

(21)

Theorem 1. Suppose the following assumptions are satisfied on the loss and weak learner:

LOSS the loss is strictly proper differentiable; its partial losses are such that $\exists \kappa > 0, C \in \mathbb{R}$,

$$\ell_{-1}(0), \ell_1(1) \geq C,$$
 (18)
 $\inf\{\ell'_{-1} - \ell'_1\} \geq \kappa.$ (19)

WLA There exists a constant
$$\gamma_{WL} > 0$$
 such that at each iteration $t \in [T]$, the weak hypothesis h_t returned by WL satisfies

$$\left| \sum_{i \in [m]} \frac{w_{t,i}}{\sum_{j \in [m]_t} w_{t,j}} \cdot y_i \cdot \frac{h_t(\boldsymbol{x}_i)}{\max_{j \in [m]_t} |h_t(\boldsymbol{x}_j)|} \right| \geqslant \gamma_{\text{WL}}. \tag{20}$$

AEOC there exists a sequence $\{u_t\}_{t\in\mathbb{N}_{>0}}$ of strictly positive reals such that the choice of \mathfrak{X}_t in Step 2.1 is u_t compliant.

Then for any $\theta \ge 0$, $\varepsilon > 0$, letting $\underline{w}(\theta) \doteq \min\{1 - (-\underline{L}')^{-1}(\theta), (-\underline{L}')^{-1}(-\theta)\}$, if MODABOOST is run for at least

$$T \geqslant U^{-1} \left(\frac{2 \left(\Phi(H_0, \mathbb{S}) - C \right)}{\kappa \cdot \varepsilon^2 w(\theta)^2 \gamma^2} \right)$$

iterations, then we are guaranteed

$$\mathbb{P}_{i\sim [m]}[y_i\; H_T(m{x}_i)\leqslant heta] \;\;\; < \;\; arepsilon.$$
 guarantee on edges / margins

Here, U is crafted as in (17).

(21)

ModaBoost (Model-Adaptive Boosting)

- → **Step 2**: introduce a new oracle ensuring the final emulates (is ⇔ to) a specific *model architecture*
 - Weights $oldsymbol{w}$ = record of past performances
 - Architecture Emulation Oracle : outputs $\mathbb{S} \subseteq \mathfrak{X}$
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on S $|\mathbb{E}_{m{w}_{\mid \mathcal{S}}}[y \cdot h(m{x})]| \geq \gamma$
 - Fits leveraging coefficients $\alpha \in \mathbb{R}$
 - \hookrightarrow Returns model $H(\boldsymbol{x}) \doteq \sum_t 1_{\boldsymbol{x} \in \mathcal{S}_t} \alpha_t \cdot h_t(\boldsymbol{x})$

AEO → Models != Linear Models

ModaBoost (Model-Adaptive Boosting)

- → **Step 2**: introduce a new oracle ensuring the final emulates (is ⇔ to) a specific *model architecture*
 - Weights $oldsymbol{w}$ = record of past performances
 - Architecture Emulation Oracle : outputs $\mathcal{S} \subseteq \mathcal{X}$
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on S $|\mathbb{E}_{\boldsymbol{w}|\mathcal{S}}[y \cdot h(\boldsymbol{x})]| \geq \gamma$
 - Fits leveraging coefficients $\alpha \in \mathbb{R}$
 - \hookrightarrow Returns model $H(m{x}) \doteq \sum_t 1_{m{x} \in \mathbb{S}_t} lpha_t \cdot h_t(m{x})$

Model

Weak

Learner

ModaBoost (Model-Adaptive Boosting)

- → **Step 2**: introduce a new oracle ensuring the final emulates (is ⇔ to) a specific *model architecture*
 - Weights $oldsymbol{w}$ = record of past performances
 - Architecture Emulation Oracle : outputs $\mathbb{S} \subseteq \mathfrak{X}$
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on S $|\mathbb{E}_{\boldsymbol{w}|\mathcal{S}}[y \cdot h(\boldsymbol{x})]| \geq \gamma$
 - Fits leveraging coefficients $\alpha \in \mathbb{R}$
 - \hookrightarrow Returns model $H(x) \doteq \sum_t 1_{x \in \mathcal{S}_t} \alpha_t \cdot h_t(x)$

Model

Weak

Learner

ModaBoost (Model-Adaptive Boosting)

- → **Step 2**: introduce a new oracle ensuring the final emulates (is ⇔ to) a specific *model architecture*
 - Weights $oldsymbol{w}$ = record of past performances
 - Architecture Emulation Oracle : outputs $\mathcal{S} \subseteq \mathcal{X}$
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on S $|\mathbb{E}_{\boldsymbol{w}|S}[y \cdot h(\boldsymbol{x})]| \geq \gamma$
 - Fits leveraging coefficients $\alpha \in \mathbb{R}$
 - \hookrightarrow Returns model $H({m x}) \doteq \sum_t 1_{{m x} \in \mathbb{S}_t} lpha_t \cdot h_t({m x})$

Weak

ModaBoost (Model-Adaptive Boosting)

emulates (is \Leftrightarrow to) a specific model architecture

→ Step 2: introduce a new oracle ensuring the final

- Weights $oldsymbol{w}$ = record of past performances
- Architecture Emulation Oracle : outputs $\mathbb{S} \subseteq \mathfrak{X}$
- Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on S $|\mathbb{E}_{\boldsymbol{w}|_{\mathcal{S}}}[y \cdot h(\boldsymbol{x})]| \geq \gamma$
- Fits leveraging coefficients $\alpha \in \mathbb{R}$
- \hookrightarrow Returns model $H(x) \doteq \sum_t 1_{x \in \mathcal{S}_t} \alpha_t \cdot h_t(x)$

Model

Weak

Learner

ModaBoost (Model-Adaptive Boosting)

- → **Step 2**: introduce a new oracle ensuring the final emulates (is ⇔ to) a specific *model architecture*
 - Weights $oldsymbol{w}$ = record of past performances
 - Architecture Emulation Oracle : outputs $\mathcal{S} \subseteq \mathcal{X}$
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on S $|\mathbb{E}_{\boldsymbol{w}|_{\mathcal{S}}}[y \cdot h(\boldsymbol{x})]| \geq \gamma$
 - Fits leveraging coefficients $\alpha \in \mathbb{R}$
 - \hookrightarrow Returns model $H({m x}) \doteq \sum_t 1_{{m x} \in \mathbb{S}_t} lpha_t \cdot h_t({m x})$

Model

Weak

Learner

ModaBoost (Model-Adaptive Boosting)

- → **Step 2**: introduce a new oracle ensuring the final emulates (is ⇔ to) a specific *model architecture*
 - Weights $oldsymbol{w}$ = record of past performances
 - Architecture Emulation Oracle : outputs $\mathcal{S} \subseteq \mathcal{X}$
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on S $|\mathbb{E}_{\boldsymbol{w}|_{\mathcal{S}}}[y \cdot h(\boldsymbol{x})]| \geq \gamma$
 - Fits leveraging coefficients $\alpha \in \mathbb{R}$
 - \hookrightarrow Returns model $H({\pmb x}) \doteq \sum_t 1_{{\pmb x} \in \mathbb{S}_t} \alpha_t \cdot h_t({\pmb x})$

Model

Weak

Learner

ModaBoost (Model-Adaptive Boosting)

- → Step 2: introduce a new oracle ensuring the final emulates (is \Leftrightarrow to) a specific model architecture
 - Weights $oldsymbol{w}$ = record of past performances

 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on S

$$|\mathbb{E}_{\underline{\boldsymbol{w}}_{|\mathfrak{S}}}[y \cdot h(\boldsymbol{x})]| \geq \gamma$$

- Fits leveraging coefficients $\, \alpha \in \mathbb{R} \,$
- \hookrightarrow Returns model $H(\boldsymbol{x}) \doteq \sum_t 1_{\boldsymbol{x} \in \mathbb{S}_t} \alpha_t \cdot h_t(\boldsymbol{x})$

ModaBoost (Model-Adaptive Boosting)

- → **Step 2**: introduce a new oracle ensuring the final emulates (is ⇔ to) a specific *model architecture*
 - Weights $oldsymbol{w}$ = record of past performances
 - Architecture Emulation Oracle : outputs $S \subseteq X$
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on S $|\mathbb{E}_{\boldsymbol{w}|\mathcal{S}}[y \cdot h(\boldsymbol{x})]| \geq \gamma$
 - Fits leveraging coefficients $\alpha \in \mathbb{R}$
 - \hookrightarrow Returns model $H({m x}) \doteq \sum_t 1_{{m x} \in \mathbb{S}_t} \alpha_t \cdot h_t({m x})$

Weak

ModaBoost (Model-Adaptive Boosting)

- → **Step 2**: introduce a new oracle ensuring the final emulates (is ⇔ to) a specific *model architecture*
 - Weights $oldsymbol{w}$ = record of past performances
 - Architecture Emulation Oracle : outputs $\mathcal{S} \subseteq \mathcal{X}$
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on S $|\mathbb{E}_{\boldsymbol{w}|\mathcal{S}}[y \cdot h(\boldsymbol{x})]| \geq \gamma$
 - Fits leveraging coefficients $\alpha \in \mathbb{R}$
 - \hookrightarrow Returns model $H({m x}) \doteq \sum_t 1_{{m x} \in \mathbb{S}_t} \alpha_t \cdot h_t({m x})$

Model

Weak

ModaBoost (Model-Adaptive Boosting)

- → Step 2: introduce a new oracle ensuring the final emulates (is \Leftrightarrow to) a specific model architecture
 - Weights $oldsymbol{w}$ = record of past performances
 - Architecture Emulation Oracle : outputs $S \subseteq X$
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on S

$$|\mathbb{E}_{oldsymbol{w}_{\mid \mathbb{S}}}[y \cdot h(oldsymbol{x})]| \geq \gamma$$
 . Fits loveraging coefficients $\alpha \in \mathbb{R}$

- Fits leveraging coefficients $\alpha \in \mathbb{R}$
- \hookrightarrow Returns model $H(\boldsymbol{x}) \doteq \sum_t 1_{\boldsymbol{x} \in \mathbb{S}_t} \alpha_t \cdot h_t(\boldsymbol{x})$

Model

Weak

ModaBoost (Model-Adaptive Boosting)

- → **Step 2**: introduce a new oracle ensuring the final emulates (is ⇔ to) a specific *model architecture*
 - Weights $oldsymbol{w}$ = record of past performances
 - Architecture Emulation Oracle : outputs $S \subseteq X$
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on \mathcal{S}
 - $|\mathbb{E}_{oldsymbol{w}_{\mid \mathcal{S}}}[y \cdot h(oldsymbol{x})]| \geq \gamma$
 - Fits leveraging coefficients $\alpha \in \mathbb{R}$
 - \hookrightarrow Returns model $H({m x}) \doteq \sum_t 1_{{m x} \in \mathbb{S}_t} \alpha_t \cdot h_t({m x})$

ModaBoost (Model-Adaptive Boosting)

- → Step 2: introduce a new oracle ensuring the final emulates (is ⇔ to) a specific model architecture
 - Weights $oldsymbol{w}$ = record of past performances
 - Architecture Emulation Oracle : outputs $\mathcal{S} \subseteq \mathcal{X}$
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on §

$$|\mathbb{E}_{\boldsymbol{w}_{|\mathbb{S}}}[y \cdot h(\boldsymbol{x})]| \geq \gamma$$

- Fits leveraging coefficients $\alpha \in \mathbb{R}$
- \hookrightarrow Returns model $H(x) \doteq \sum_t 1_{x \in \mathcal{S}_t} \alpha_t \cdot h_t(x)$

Equivalent representation

ModaBoost (Model-Adaptive Boosting)

- → **Step 2**: introduce a new oracle ensuring the final emulates (is ⇔ to) a specific *model architecture*
 - Weights $oldsymbol{w}$ = record of past performances
 - Architecture Emulation Oracle : outputs $\mathcal{S} \subseteq \mathcal{X}$
 - Weak learner : outputs hypotheses $h \in \mathbb{R}^{\mathcal{X}}$ at least $(\gamma > 0)$ different from random on §

$$|\mathbb{E}_{\boldsymbol{w}_{|\mathcal{S}}}[y \cdot h(\boldsymbol{x})]| \geq \gamma$$

- Fits leveraging coefficients $\alpha \in \mathbb{R}$
- \hookrightarrow Returns model $H(x) \doteq \sum_t 1_{x \in S_t} \alpha_t \cdot h_t(x)$

Decision Tree

Decision Trees

Linear Separators

Decision Trees

Linear Separators

Alternating Decision Trees

Decision Trees

Linear Separators

Alternating Decision Trees

Nearest Neighbors

Decision Trees

Linear Separators

Alternating Decision Trees

Nearest Neighbors

Labeled Branching Programs

...

ModaBoost's output on Long & Servedio's setting

ModaBoost's output on Long & Servedio's setting **Decision Trees Linear Separators Alternating Decision** Trees **Nearest Neighbors Labeled Branching Programs**

ModaBoost's output on Long & Servedio's setting **Decision Trees Linear Separators Alternating Decision** Trees **Nearest Neighbors Labeled Branching Programs**

ModaBoost's output on Long & Servedio's setting **Decision Trees Linear Separators Alternating Decision Trees Nearest Neighbors Labeled Branching Programs**

Conclusion

└→ Long and Servedio's paper has has a lasting impact on boosting / optimization

→ Its impact should broaden on / shift to **models**, because it shows that

Linear Models can derail a whole ML pipeline otherwise optimal as soon as the "simplest" form of noise affects training data

→ Suggests a broader question: given a class of models (more complex ?), what is its simplest "nemesis" noise model ?

Thank you!