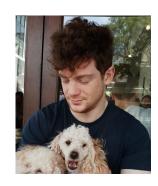
# Monge blunts Bayes: Hardness Results for Adversarial Training



Zac Cranko





Aditya Krishna Menon





**Richard Nock** 







Cheng Soon Ong





Zhan Shi





Christian Walder







#### Overview

- Hardness results on adversarial training. *Key result* applicable to a learner:
  - optimising any loss satisfying a mild statistical requirement, and
  - learning a classifier from any class satisfying a mild continuity assumption
- Implementation disentangles adversarial training:
  - 1. generate adversarial data (*Key result* solves the compression of an OT plan)
  - 2. training as usual
- Toy experiments against "weakly activated" adversarial data reveal generalisation improves on clean data as well



#### Four levels of technical results

These slides **Poster** Paper (main body) Paper (appendix)

#### Key players: Bayes



1- Classifiers

$$\mathcal{H} \subseteq \mathbb{R}^{\mathcal{X} \leftarrow \text{domain}}$$

2- Adversaries

$$\mathcal{A}\subset \mathfrak{X}^{\mathfrak{X}^{\longleftarrow} ext{domain}}$$

3- (differentiable) Loss

$$\ell: \{-1,1\} \times [0,1] \to \overline{\mathbb{R}}$$

(conditional) Bayes risk

$$\ell: \{-1,1\} \times [0,1] \to \overline{\mathbb{R}}$$
  $\underline{L}(\pi) \doteq \inf_c \mathsf{E}_{\mathsf{Y} \sim \pi} \ell(\mathsf{Y},c) \Rightarrow \textit{proper}$   $(\pi \text{ in inf})$ 

composite loss

$$\begin{array}{ll} \operatorname{link}\; \boldsymbol{\psi} : [0,1] \to \mathbb{R} & \boldsymbol{\psi} \doteq -\underline{L}' & h^\circ \doteq \boldsymbol{\psi} \left(\frac{1}{2}\right) &= 0 \text{ (often)} \\ \ell_{\boldsymbol{\psi}}(y,v) \doteq \ell(y,\boldsymbol{\psi}^{-1}(v)) & (\boldsymbol{\psi}\;\text{``hidden"}) & \operatorname{corresponding loss: } \ell_{\boldsymbol{\psi}}^\circ = \ell^\circ \end{array}$$

canonical loss

$$oldsymbol{\psi} \doteq -\underline{L}'$$
 ( $oldsymbol{\psi}$  "hidden")

**blunt** predictor

$$h^{\circ} = \psi\left(\frac{1}{2}\right) = 0$$
 (orten) corresponding loss:  $\ell_{\psi}^{\circ} = \ell^{\circ}$ 

4- general adversarial loss

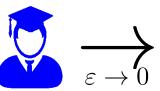
$$\ell(\mathcal{H}, \mathcal{A}, D) \doteq \min_{h \in \mathcal{H}} \mathsf{E}_{(\mathsf{X}, \mathsf{Y}) \sim D} \left[ \max_{a \in \mathcal{A}} \ell(\mathsf{Y}, h \circ a(\mathsf{X})) \right]$$

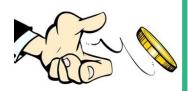
particular case, Madry et al.'18:

$$oldsymbol{x} \stackrel{a}{
ightarrow} oldsymbol{x} + oldsymbol{\delta}$$
 s.t.  $\|oldsymbol{\delta}\| \leq \delta^*$ 

 $\mathcal{H}$   $\varepsilon$ -defeated by  $\mathcal{A}$  on  $\ell$  iff

$$\ell(\mathcal{H}, \mathcal{A}, D) \geq (1 - \varepsilon) \cdot \ell^{\circ}$$





#### Main negative result

• For any proper composite loss  $\ell$ , classifiers  $\mathcal{H}$ , adversaries  $\mathcal{A}$  (+integrability assumptions),

$$\ell(\mathcal{H}, \mathcal{A}, D) \ge \left(\ell^{\circ} - \frac{1}{2} \cdot \min_{a \in \mathcal{A}} \beta_a\right)_{+}$$

$$\beta_a \doteq \max_{h \in \mathcal{H}} \{ \varphi(P, f, \pi, 2\underline{L}(1)) - \varphi(N, f, 1 - \pi, -2\underline{L}(0)) \} \text{ with } \varphi(Q, f, u, v) \doteq \int_{\mathcal{X}} u \cdot (f(\boldsymbol{x}) + v) \mathrm{d}Q(\boldsymbol{x})$$
 "+" ex. and  $f \doteq (-\underline{L}') \circ \psi^{-1} \circ h \circ a$ 

Example: if  $\underline{L}(0) = \underline{L}(1)$  and  $\pi = 1/2$ , then  $\beta_a$  is  $\propto$  Integral Probability Metric for class  $\{(-\underline{L}') \circ \psi^{-1} \circ h \circ a : h \in \mathcal{H}\}$ 

# Main negative result — consequence #1

• For any proper composite loss  $\ell$ , classifiers  $\mathcal{H}$ , adversaries  $\mathcal{A}$  (+integrability assumptions),

$$\ell(\mathcal{H}, \mathcal{A}, D) \ge \left(\ell^{\circ} - \frac{1}{2} \cdot \min_{a \in \mathcal{A}} \beta_{a}\right)_{+}$$

$$\beta_a \doteq \max_{h \in \mathcal{H}} \{$$

Hence, if  $\exists a \in \mathcal{A}$  such that  $\beta_a \leq 2\varepsilon \ell^\circ$  then  $\mathcal{H}$  is  $\varepsilon$ -defeated by  $\mathcal{A}$  on  $\ell$ 

Example: if  $\underline{L}(0)$ 

 $u \cdot (f(\boldsymbol{x}) + v) dQ(\boldsymbol{x})$ 

 $h \circ a$ 

Concludes  $\{(-\underline{L}')\circ\psi^{-1}\circ h\circ a:h\in\mathcal{H}\}$ 







# Main negative result — consequence #2

• For any proper composite loss  $\ell$ , classifiers  $\mathcal{H}$ , adversaries  $\mathcal{A}$  (+integrability assumptions),

$$\ell(\mathcal{H}, \mathcal{A}, D) \ge \left(\ell^{\circ} - \frac{1}{2} \cdot \min_{\substack{a \in \mathcal{A} \\ a \in \mathcal{A}}} \beta_{a}\right)_{+}$$

$$\beta_a \doteq \max_{h \in \mathcal{H}} \{$$

RHS: roles permuted — adversary in *outer* optimisation suggests 2-stages optimisation to train classifier: (i) (build adversary) craft adversarial training data

(ii) train from adversarial data

Example: if  $\underline{L}(0)$ 

Concludes  $\{(-\underline{L}')\circ\psi^{-1}\circ h\circ a:h\in\mathcal{H}\}$ 

$$u \cdot (f(\boldsymbol{x}) + v) dQ(\boldsymbol{x})$$

 $h \circ a$ 

#### **Adversaries**

#### Adversaries 1/3: MMD

- Direct link with Maximum Mean Discrepancy (MMD)
  - Let  $\mathcal{H}$  be the unit ball of a RKHS w/ reproducing kernel  $\kappa$ .

Adversarial mean embedding of a on  $Q \mid (Adversarial)$  MMD between P and N

$$\mu_{a,Q} \doteq \int_{\Upsilon} \kappa(a(\boldsymbol{x}),.) dQ(\boldsymbol{x})$$
 MMD $[P,N|a] \doteq \|\mu_{a,P} - \mu_{a,N}\|_{\mathcal{H}}$ 

$$MMD[P, N|a] \doteq \|\mu_{a,P} - \mu_{a,N}\|_{\mathcal{H}}$$

(if 
$$\underline{L}(0) = \underline{L}(1)$$
 and  $\pi = 1/2$ )

$$\beta_a = \frac{1}{4} \cdot \text{MMD}[P, N|a]$$

 ${\mathcal H}$  is  ${arepsilon}$ -defeated by  ${\mathcal A}$  on  $\ell$  if

$$\exists a \in \mathcal{A} \text{ s.t. MMD}[P, N|a] \leq 8\varepsilon \ell^{\circ}$$



## Adversaries 2/3: Monge





- Allows to build efficient adversaries when classifiers are Lipschitz
  - Compresses an optimal transport plan using Lipschitz function as cost

(*Adversarial*) OT plan between P and N Monge efficiency (for cost  $c: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ )

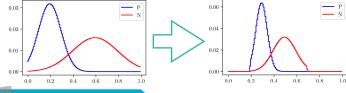
$$C(a, P, N) \doteq \inf_{\boldsymbol{\mu} \in \Pi(P, N)} \int c(a(\boldsymbol{x}), a(\boldsymbol{x}')) d\boldsymbol{\mu}(\boldsymbol{x}, \boldsymbol{x}')$$

 ${\cal A}$   $\delta$ -Monge efficient for c on P, N iff

$$\exists a \in \mathcal{A} : C(a, P, N) \le \delta$$

Suppose  $\mathcal{H}$  is K-Lipschitz with respect to c,  $\mathcal{A}$  is  $\delta$ -Monge efficient for c on P, N. Suppose  $\underline{L}(0) = \underline{L}(1)$ ,  $\pi = 1/2$ .

If  $\delta \leq 8\varepsilon \ell^{\circ}/K$ , then  $\mathcal{H}$  is  $\varepsilon$ -defeated by  $\mathcal{A}$  on  $\ell$ 











# Adversaries 3/3: Broader strategies + Boosting

A. It is possible to  $\mathcal{E}$ -defeat  $\mathcal{H}$  simultaneously on a whole set  $\mathcal{L}$  of symmetric losses

Simple way to defeat strategies learning/tuning the loss

- important case because common losses fit in (log, square, Matsushita, etc.)
- B. It is possible to craft very strong adversaries from very weak ones

RKHS example — suppose there exists a weakly contractive adversary a in a feature map  $\Phi$  of the RKHS:  $\|\Phi \circ a(x) - \Phi \circ a(x')\|_{\mathcal{H}} \le (1-\eta) \cdot \|\Phi(x) - \Phi(x')\|_{\mathcal{H}}, \forall x, x' \in \mathcal{X}$  Then  $\forall \delta > 0$ , composing just  $(1/\eta) \cdot \log(W_1^{\Phi}/\delta)$  adversaries yields  $\delta$ -Monge efficiency

 $W_1^\Phi$  = 1-Wasserstein distance between P and N in  $\Phi$ 



#### Take home theoretical messages



VS



- A. Replace adversarial training by training from adversarial data
- B. If loss in specific classes, incl. popular losses, adversary can be loss agnostic
- C. If learner's  $\mathcal{H}$  is Lipschitz, use Lipschitz cost in an OT compression problem
- D. Adversarial boosting: craft strong adversaries from weak adversaries

#### Some Monge efficient adversaries

A. Mixup adversaries (named after Zhang, Cissé, Dauphin & Lopez-Paz '18)

general transformation:  $a(m{x}) \doteq (1-\lambda) \cdot m{x} + \lambda \cdot m{x}'$  cluster / class centroid sample centroid, etc.

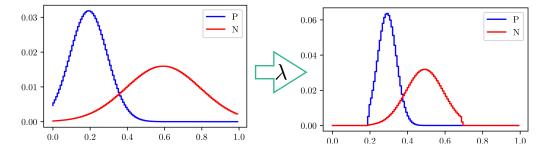
B. Monge adversary — for a tight control on Monge efficiency, focus on

$$\min_{a} \text{ Wasserstein-OT s.t. } d(a(\boldsymbol{x}), \boldsymbol{x}) \leq \underset{\text{"budget"}}{\alpha}, \forall \boldsymbol{x}$$

## Toy experiments 1/2 — data & transformations

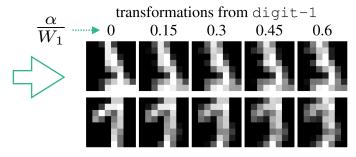
#### A. Mixup-to-sample-centroid

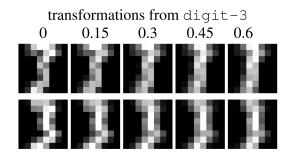
$$oldsymbol{x}' = \mathsf{E}_D[\mathsf{X}]$$
  
1D normal classes



B. Monge adversary for Wasserstein =  $W_2^2$  and  $d = ||.||_1$  (cvx)

USPS data classes 1 & 3

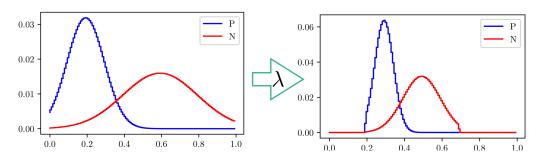




## Toy experiments 2/2 — findings

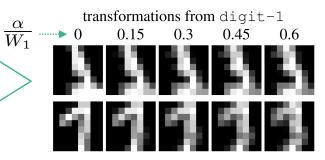
#### A. Mixup-to-sample-centroid

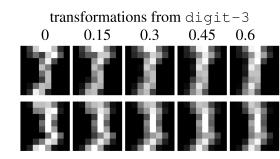
$$oldsymbol{x}' = \mathsf{E}_D[\mathsf{X}]$$
  
1D normal classes



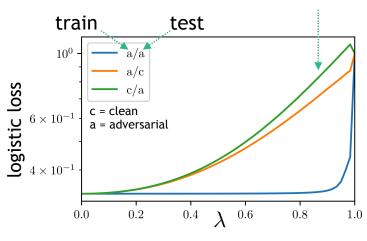
#### B. Monge adversary for Wasserstein = $W_2^2$ and $d = ||.||_1$ (cvx)

USPS data classes 1 & 3





#### worst trains on c!



# best trains on (weak) a (even tested on c)!

|            |      |      | •    |      |
|------------|------|------|------|------|
| $\alpha/d$ | c/c  | c/a  | a/c  | a/a  |
| 0.15       | 0.03 | 0.11 | 0.00 | 0.02 |
| 0.30       | 0.03 | 0.25 | 0.00 | 0.12 |
| 0.45       | 0.03 | 0.48 | 0.01 | 0.55 |
| 0.60       | 0.03 | 0.74 | 0.20 | 0.96 |



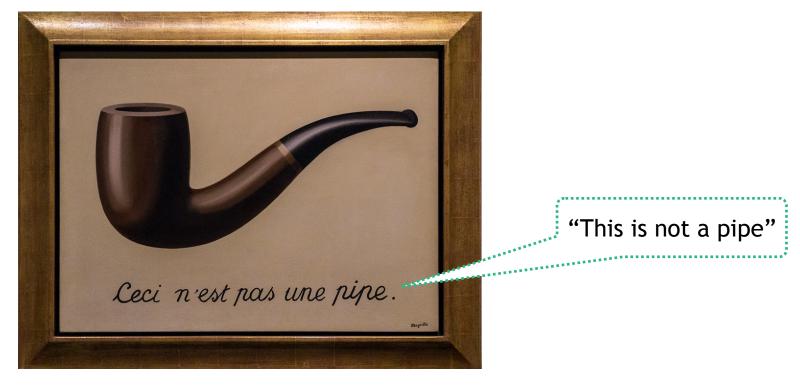




#### Conclusion

- Replacement of adversarial training by training from adversarial data
- Adversaries that can be effective against wide ranges of  $(\mathcal{H}, \ell)$
- Adversarial strategy against Lipschitz classifiers: compression of OT plans (between class marginals)
- Toy experiments reveal that training from sufficiently weak adversarial data can improve generalisation on clean data





"The treachery of images", René Magritte

## Thank you

(get your data shot at poster # 191)