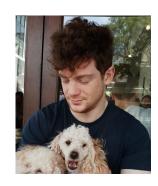
Monge blunts Bayes: Hardness Results for Adversarial Training



Zac Cranko

Aditya Krishna Menon

Richard Nock

Cheng Soon Ong

Zhan Shi

Christian Walder

Overview

- Hardness results on adversarial training. *Key result* applicable to a learner:
 - optimising any loss satisfying a mild statistical requirement, and
 - learning a classifier from any class satisfying a mild continuity assumption
- Implementation disentangles adversarial training:
 - 1. generate adversarial data (*Key result* solves the compression of an OT plan)
 - 2. training as usual
- Toy experiments against "weakly activated" adversarial data reveal generalisation improves on clean data as well

Four levels of technical results

These slides **Poster** Paper (main body) Paper (appendix)

Key players: Bayes

1- Classifiers

$$\mathcal{H} \subseteq \mathbb{R}^{\mathcal{X} \leftarrow \text{domain}}$$

2- Adversaries

$$\mathcal{A}\subset \mathfrak{X}^{\mathfrak{X}^{\longleftarrow} ext{domain}}$$

3- (differentiable) Loss

$$\ell: \{-1,1\} \times [0,1] \to \overline{\mathbb{R}}$$

(conditional) Bayes risk

$$\ell: \{-1,1\} \times [0,1] \to \overline{\mathbb{R}}$$
 $\underline{L}(\pi) \doteq \inf_c \mathsf{E}_{\mathsf{Y} \sim \pi} \ell(\mathsf{Y},c) \Rightarrow \textit{proper}$ $(\pi \text{ in inf})$

composite loss

$$\begin{array}{ll} \operatorname{link}\; \boldsymbol{\psi} : [0,1] \to \mathbb{R} & \boldsymbol{\psi} \doteq -\underline{L}' & h^\circ \doteq \boldsymbol{\psi} \left(\frac{1}{2}\right) &= 0 \text{ (often)} \\ \ell_{\boldsymbol{\psi}}(y,v) \doteq \ell(y,\boldsymbol{\psi}^{-1}(v)) & (\boldsymbol{\psi}\;\text{``hidden"}) & \operatorname{corresponding loss: } \ell_{\boldsymbol{\psi}}^\circ = \ell^\circ \end{array}$$

canonical loss

$$oldsymbol{\psi} \doteq -\underline{L}'$$
 ($oldsymbol{\psi}$ "hidden")

blunt predictor

$$h^{\circ} = \psi\left(\frac{1}{2}\right) = 0$$
 (orten) corresponding loss: $\ell_{\psi}^{\circ} = \ell^{\circ}$

4- general adversarial loss

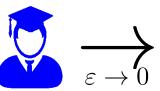
$$\ell(\mathcal{H}, \mathcal{A}, D) \doteq \min_{h \in \mathcal{H}} \mathsf{E}_{(\mathsf{X}, \mathsf{Y}) \sim D} \left[\max_{a \in \mathcal{A}} \ell(\mathsf{Y}, h \circ a(\mathsf{X})) \right]$$

particular case, Madry et al.'18:

$$oldsymbol{x} \stackrel{a}{
ightarrow} oldsymbol{x} + oldsymbol{\delta}$$
 s.t. $\|oldsymbol{\delta}\| \leq \delta^*$

 \mathcal{H} ε -defeated by \mathcal{A} on ℓ iff

$$\ell(\mathcal{H}, \mathcal{A}, D) \geq (1 - \varepsilon) \cdot \ell^{\circ}$$



Main negative result

• For any proper composite loss ℓ , classifiers \mathcal{H} , adversaries \mathcal{A} (+integrability assumptions),

$$\ell(\mathcal{H}, \mathcal{A}, D) \ge \left(\ell^{\circ} - \frac{1}{2} \cdot \min_{a \in \mathcal{A}} \beta_a\right)_{+}$$

$$\beta_a \doteq \max_{h \in \mathcal{H}} \{ \varphi(P, f, \pi, 2\underline{L}(1)) - \varphi(N, f, 1 - \pi, -2\underline{L}(0)) \} \text{ with } \varphi(Q, f, u, v) \doteq \int_{\mathcal{X}} u \cdot (f(\boldsymbol{x}) + v) \mathrm{d}Q(\boldsymbol{x})$$
 "+" ex. and $f \doteq (-\underline{L}') \circ \psi^{-1} \circ h \circ a$

Example: if $\underline{L}(0) = \underline{L}(1)$ and $\pi = 1/2$, then β_a is \propto Integral Probability Metric for class $\{(-\underline{L}') \circ \psi^{-1} \circ h \circ a : h \in \mathcal{H}\}$

Main negative result — consequence #1

• For any proper composite loss ℓ , classifiers \mathcal{H} , adversaries \mathcal{A} (+integrability assumptions),

$$\ell(\mathcal{H}, \mathcal{A}, D) \ge \left(\ell^{\circ} - \frac{1}{2} \cdot \min_{a \in \mathcal{A}} \beta_{a}\right)_{+}$$

$$\beta_a \doteq \max_{h \in \mathcal{H}} \{$$

Hence, if $\exists a \in \mathcal{A}$ such that $\beta_a \leq 2\varepsilon \ell^\circ$ then \mathcal{H} is ε -defeated by \mathcal{A} on ℓ

Example: if $\underline{L}(0)$

 $u \cdot (f(\boldsymbol{x}) + v) dQ(\boldsymbol{x})$

 $h \circ a$

Concludes $\{(-\underline{L}')\circ\psi^{-1}\circ h\circ a:h\in\mathcal{H}\}$

Main negative result — consequence #2

• For any proper composite loss ℓ , classifiers \mathcal{H} , adversaries \mathcal{A} (+integrability assumptions),

$$\ell(\mathcal{H}, \mathcal{A}, D) \ge \left(\ell^{\circ} - \frac{1}{2} \cdot \min_{\substack{a \in \mathcal{A} \\ a \in \mathcal{A}}} \beta_{a}\right)_{+}$$

$$\beta_a \doteq \max_{h \in \mathcal{H}} \{$$

RHS: roles permuted — adversary in *outer* optimisation suggests 2-stages optimisation to train classifier: (i) (build adversary) craft adversarial training data

(ii) train from adversarial data

Example: if $\underline{L}(0)$

Concludes $\{(-\underline{L}')\circ\psi^{-1}\circ h\circ a:h\in\mathcal{H}\}$

$$u \cdot (f(\boldsymbol{x}) + v) dQ(\boldsymbol{x})$$

 $h \circ a$

Adversaries

Adversaries 1/3: MMD

- Direct link with Maximum Mean Discrepancy (MMD)
 - Let \mathcal{H} be the unit ball of a RKHS w/ reproducing kernel κ .

Adversarial mean embedding of a on $Q \mid (Adversarial)$ MMD between P and N

$$\mu_{a,Q} \doteq \int_{\Upsilon} \kappa(a(\boldsymbol{x}),.) dQ(\boldsymbol{x})$$
 MMD $[P,N|a] \doteq \|\mu_{a,P} - \mu_{a,N}\|_{\mathcal{H}}$

$$MMD[P, N|a] \doteq \|\mu_{a,P} - \mu_{a,N}\|_{\mathcal{H}}$$

(if
$$\underline{L}(0) = \underline{L}(1)$$
 and $\pi = 1/2$)

$$\beta_a = \frac{1}{4} \cdot \text{MMD}[P, N|a]$$

 ${\mathcal H}$ is ${arepsilon}$ -defeated by ${\mathcal A}$ on ℓ if

$$\exists a \in \mathcal{A} \text{ s.t. MMD}[P, N|a] \leq 8\varepsilon \ell^{\circ}$$

Adversaries 2/3: Monge

- Allows to build efficient adversaries when classifiers are Lipschitz
 - Compresses an optimal transport plan using Lipschitz function as cost

(*Adversarial*) OT plan between P and N Monge efficiency (for cost $c: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$)

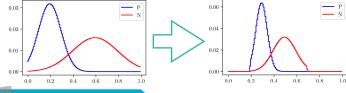
$$C(a, P, N) \doteq \inf_{\boldsymbol{\mu} \in \Pi(P, N)} \int c(a(\boldsymbol{x}), a(\boldsymbol{x}')) d\boldsymbol{\mu}(\boldsymbol{x}, \boldsymbol{x}')$$

 ${\cal A}$ δ -Monge efficient for c on P, N iff

$$\exists a \in \mathcal{A} : C(a, P, N) \le \delta$$

Suppose \mathcal{H} is K-Lipschitz with respect to c, \mathcal{A} is δ -Monge efficient for c on P, N. Suppose $\underline{L}(0) = \underline{L}(1)$, $\pi = 1/2$.

If $\delta \leq 8\varepsilon \ell^{\circ}/K$, then \mathcal{H} is ε -defeated by \mathcal{A} on ℓ



Adversaries 3/3: Broader strategies + Boosting

A. It is possible to \mathcal{E} -defeat \mathcal{H} simultaneously on a whole set \mathcal{L} of symmetric losses

Simple way to defeat strategies learning/tuning the loss

- important case because common losses fit in (log, square, Matsushita, etc.)
- B. It is possible to craft very strong adversaries from very weak ones

RKHS example — suppose there exists a weakly contractive adversary a in a feature map Φ of the RKHS: $\|\Phi \circ a(x) - \Phi \circ a(x')\|_{\mathcal{H}} \le (1-\eta) \cdot \|\Phi(x) - \Phi(x')\|_{\mathcal{H}}, \forall x, x' \in \mathcal{X}$ Then $\forall \delta > 0$, composing just $(1/\eta) \cdot \log(W_1^{\Phi}/\delta)$ adversaries yields δ -Monge efficiency

 W_1^Φ = 1-Wasserstein distance between P and N in Φ

Take home theoretical messages

VS

- A. Replace adversarial training by training from adversarial data
- B. If loss in specific classes, incl. popular losses, adversary can be loss agnostic
- C. If learner's \mathcal{H} is Lipschitz, use Lipschitz cost in an OT compression problem
- D. Adversarial boosting: craft strong adversaries from weak adversaries

Some Monge efficient adversaries

A. Mixup adversaries (named after Zhang, Cissé, Dauphin & Lopez-Paz '18)

general transformation: $a(m{x}) \doteq (1-\lambda) \cdot m{x} + \lambda \cdot m{x}'$ cluster / class centroid sample centroid, etc.

B. Monge adversary — for a tight control on Monge efficiency, focus on

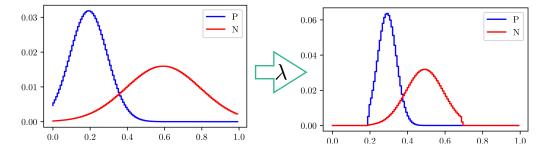
$$\min_{a} \text{ Wasserstein-OT s.t. } d(a(\boldsymbol{x}), \boldsymbol{x}) \leq \underset{\text{"budget"}}{\alpha}, \forall \boldsymbol{x}$$

Toy experiments 1/2 — data & transformations

A. Mixup-to-sample-centroid

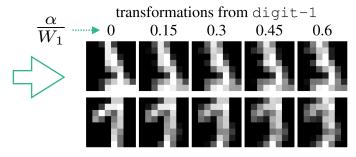
$$oldsymbol{x}' = \mathsf{E}_D[\mathsf{X}]$$

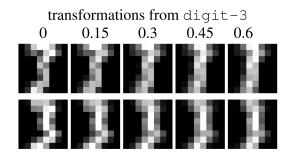
1D normal classes



B. Monge adversary for Wasserstein = W_2^2 and $d = ||.||_1$ (cvx)

USPS data classes 1 & 3



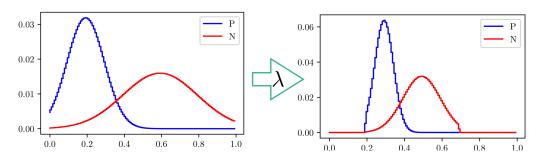


Toy experiments 2/2 — findings

A. Mixup-to-sample-centroid

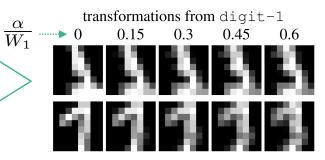
$$oldsymbol{x}' = \mathsf{E}_D[\mathsf{X}]$$

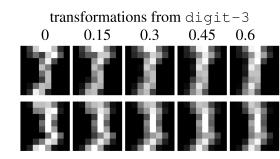
1D normal classes



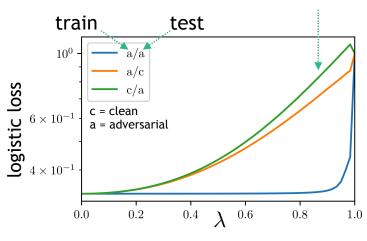
B. Monge adversary for Wasserstein = W_2^2 and $d = ||.||_1$ (cvx)

USPS data classes 1 & 3





worst trains on c!



best trains on (weak) a (even tested on c)!

			•	
α/d	c/c	c/a	a/c	a/a
0.15	0.03	0.11	0.00	0.02
0.30	0.03	0.25	0.00	0.12
0.45	0.03	0.48	0.01	0.55
0.60	0.03	0.74	0.20	0.96

Conclusion

- Replacement of adversarial training by training from adversarial data
- Adversaries that can be effective against wide ranges of (\mathcal{H}, ℓ)
- Adversarial strategy against Lipschitz classifiers: compression of OT plans (between class marginals)
- Toy experiments reveal that training from sufficiently weak adversarial data can improve generalisation on clean data

"The treachery of images", René Magritte

Thank you

(get your data shot at poster # 191)