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INTRODUCTION

» We show that by minimizing the maximum (i.e., min-max) statistical

disparity, we can learn better domain invariant features.

» Our 1dea makes use of a novel structure, namely the confusion network to

align distributions in a min-max framework.
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Figure: Schematic diagram for the proposed min-max statistical alignment. To realize the
min-max training we propose using the confusion model, g

CONTRIBUTIONS

(1) We propose min-max statistical alignment using a novel confusion network.

(11) We provide two frameworks to use min-max alignment for UDA and ZSL.

STATISTICAL ALIGNMENT

Our objective is to learn two mappings, fi(-, 0;) : R* — R4, k € {0, 1} to

embed samples from ¢

» Minimize a statistical
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» Minimize the loss,
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Figure: Toy-data experiment.
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MIN-MAX STATISTICAL ALIGNMENT

» We propose to make use of an additional mapping (i.e., the confusion
network), g(-, 6,) : R4 — RP.
» We perform min-max alignment by optimizing,

min max Zu : (2)
6o, 6, 6,
with, i
= E(DKL(PO”pl) + Dk (P1l|Py)). (3)

MOMENT ACCUMULATION

- When £ and fi” are the computed covariance matrix and the mean vector

for mini-batch at i1teration r.

» When 0 < m < 1, accumulated moments, iﬁfgm and ﬁggcu
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are computed as,

(4)
(5)

CASE sTUuDY 1 : UNSUPERVISED DOMAIN ADAPTATION

We apply min-max alignment for UDA with Dy ~ D, and D; ~ D.,.

(6)

min max L+ 4, Lg,+ A4 L.
05‘9 01‘9 Hl’l Og

Here, L, 1s the softmax cross-entropy loss computed using the labeled
source samples and L, 1s the unsupervised discriminative loss,

Ld,r = - %x~@,[ht(x)T log i, (x)].
o] S A A D D W W MNIST SVHN DIGITS SIGNS STL CIFAR
' D W A W A D  SVHN MNIST SVHN GTSRB CIFAR STL
CNN 60.8 58.5 42.6 94.1 38.6 98.1 37.5 63.1 84.0 77.8 59.1 75.9
Min 66.1 70.5 47.2 93.5 47.6 98.6| 49.8 70.6 85.4 78.7 5777 744
Min-Max 69.1 71.7 51.3 95.0 52.1 99.3 67.8 72.0 88.5 83.2 60.6 76.1

Table: Comparison of the Min-Max UDA solution with CNN and Min. For Office31 we use
the “fully transductive protocol” of [1,2]. For the remaining sets we follow [3].

Sol S A A D D W W MNIST SVHN DIGITS SIGNS STL CIFAR
D W A W A D SVHN MNIST SVHN GTSRB CIFAR STL
DANN 67.1 73.0 54.5 96.4 52.7 99.2| 60.6  68.3 90.1 97.5 627 78.1
VADA 73.3 94.5 94.9 99.2 714 783
D-CORAL 66.8 66.4 52.8 95.7 51.5 99.2/ 72.7 87.8 71.8 599 60.5 76.2
Min-Max+ 69.1 71.7 51.3 95.0 52.1 99.3 793 97.0 94.6 973 6777 799

Table: Comparison of the Min-Max+ UDA solution with related solutions. For Office31
we use the “fully transductive protocol” of [1,2]. For the remaining sets we follow [3].

CASE STUDY 2 : ZERO-SHOT LEARNING

We apply min-max alignment for ZSL with Dy ~ D, and Dy ~ D,y
min Ly, (7)
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Data. Awal Awa? Cubs Sun
So. U S HM U | S HM U | S HM U | S HM
SAE 1.8 77.1 3.5 1.1 822 2.2 7.8 54.013.6/ 8.8 18.0 11.8
ZKL 18.3:79.329.7/18.9/82.7 30.8/24.2/63.9 35.1/21.0 31.0 25.1
Cls. Prot. 1 28.1 73.5 40.6 - - - 123.5/55.2132.9 21.5 34.7 26.5
CLSW 57.9/61.4/59.6 43.7157.7149.7 142.6 36.6/39.4
Min 46.0/83.3/59.3/32.9/89.7 48.1 46.1 50.8 48.3/38.8/35.0 36.8
Min-Max 46.6 84.2 60.0 37.8/88.8/53.0 47.1 53.8 50.2/37.9/36.5 37.2
Table: Comparison of the proposed ZSL solution (Min-Max) on GZSL protocol [4].
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Figure: Schematic diagram for (a) UDA and (b) ZSL models with the proposed alignment.

FURTHER STUDY : IMAGE (GENERATION

We further use our min-max alignment to generate images using DC-GAN
network models.

_ _ L?UN | CELEB-A CIFARlO : 9 Solution IS

- - Sy é 2 Real Img 11.95
v - 6  W-GAN | 5.88
e 5 B Imp. GAN 4.36
B i M Mmd GAN 6.17
S 0 d | Min-Max 5.92
== é i Table: Inception

Scores (IS) [5]

Figure: Generated images using min-max ahgnment with DC-GAN for CIEAR10.

networks.
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