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ALGORITHMS, NEURAL 
NETWORKS AND OTHER 
MACHINE LEARNING 
TECHNIQUES

Richard Nock

It is hard to describe just how successful advances in machine learning have been over 
the past years, the field has reached a point where people refer to what is happening 
as a ‘Cambrian explosion’ of machine learning.180 The geologic hyperbole of machine 
learning has been supported by a wide spectrum of specialists, from market analysts, 
to CEOs of major tech companies, and even high-profile machine learning researchers 
themselves.181

The metaphor is interesting for its implications: if we subscribe to it, then we imply 
that (i) there was a ‘before’, (ii) there is a reason for this Cambrian explosion and 
most importantly, (iii) there will be an ‘after’. The earth’s Cambrian explosion radically 
changed the planet forever. What should we expect for machine learning?

In this chapter, I will describe those three eras of machine learning in three parts, 
admitting the partially speculative nature of the third one.

The birth and motives for machine learning

Leslie Valiant, founder of modern supervised  
machine learning
The field of machine learning was born with computers as theorised by Alan Turing. 
The concept of a machine that could automate calculus was soon associated with the 
idea that it could be used to simulate intelligence.182

Statisticians developed the predictive power of data over decades, but it was only after 
Leslie Valiant in the 1980s, that different pieces could be assembled in a theory mixing 
both the computational machine and the mathematics of prediction.183 Valiant’s theory 
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was intuitive: a machine that learns would use an algorithm, a program, taking labelled 
observations as input and returning a classifier. This classifier would encode the way to 
predict the label of an observation.

How might we make the difference between good and bad classifiers? It seems 
reasonable to require that classification has to be accurate on the set of labelled 
observations it was trained from. Valiant’s model adjusted this constraint in a more 
interesting direction, one dealing with generalisation ability: the classifier has to be 
accurate on the whole domain from which the training sample was sampled, with  
high probability.

The difference is subtle but fundamental: if the classifier we get predicts whether the 
profile of a job applicant (an observation) is a good one for an interview (the class), then 
we will want this classifier to be as accurate as possible on all applicants, not just the 
ones that we had in the database that was used to train the classifier. Because it seems 
unreasonable to require good generalisation systematically (our training sample may 
be poorly representative of the whole domain), we just require good generalisation 
with sufficient probability.

Historically, classifiers were simple: in one of his seminal works, Valiant was just 
considering simple sets of ‘if-then’ rules, remarking that humans tend to express  
their ideas using simple symbolic concepts: if the polygon has three edges, then it 
is a triangle. 

Valiant’s model made the assumption that the source of randomness in the data set 
being analysed does not change. This was reasonable at the time it was made, but it 
would have implications later when new methods of machine learning became available.

Valiant’s model captured the essence of supervised learning: the training sample 
contains an observation whose label is given to the machine.

To explain this by example, let us elaborate on our introductory example above and look 
at machine learning in the context of a hypothetical recruitment process. Observations 
could be the description of first round job applicants to a company, which might have 
been collected by a standard questionnaire or populated from resumes: age; gender; 
marital status; postcode; activity; diplomas; past experience; current salary; and any 
other variable that could be easy to collect. Many of these observations would come 
from employees of the company, for which it therefore had work history and, in 
particular, a record as to whether this work history depicted a good fit for the job or not. 

A supervised learning algorithm would then take this labelled dataset as input and 
output a classifier to decide whether the answers to the questionnaire describe an 
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applicant potentially of good profile for a first interview. Instead of a binary answer, we 
could also ask the machine to predict a number, say between 0 and 10, to represent in 
a more precise way, the goodness-of-fit of the candidate – 0 denoting a poor fit and 10 
a perfect fit.

One might imagine that a system that would be good at classifying candidates for a first 
round of selection could potentially just replace a hiring panel for a second round of 
selection, because after all, the task would also be a supervised learning problem, the 
outcome of which would now be to make an offer or decline (and eventually quantify 
the offer). The input for this stage would be significantly more complex because it 
would consider candidates’ feedback from the interview, not from their resumes as 
in the first step. Instead of asking basic questions about age, gender and the like, 
candidates might, for example, face Rorschach inkblot tests during their interview, for 
which they would have to give a description. They could be asked to draw a figure on 
a particular topic, draw a person standing in the rain, or answer technical questions 
about the job for which they are applying. 

All this could easily be performed automatically; the candidate interacting with 
the machine using a simple device like a tablet. All the data stored would then be 
processed by a model more complex than the one in the first round of applications. 
The business has a history of hiring, and therefore a history of who was successful (or 
not) in their job inside the company. This process would represent in fine the exact 
same kind of supervised learning problem as the one used in the first round – predict 
whether a given profile is going to be successful in the job.

There is obviously a huge difference in the inputs to the model – Rorschach figures, 
drawings, and free-form texts are more complex in nature than a resume, which is 
(more often than not) subject to formatting designed to be immediately appealing to a 
department of human resources.

Two standard frameworks for machine learning: 
supervised and unsupervised
For the moment, let us just step back in the process to our first application round. 
Simple if-then rules were not necessarily the standard: at the end of the 20th century, 
decision trees were very popular, and are still popular today because they happen to 
be relatively simple for a machine to learn, and are easy to understand by humans. In 
the case of our interview example, a simple decision tree that could be used to decide 
to proceed further with an applicant is given in Figure 2. Interpreting the tree is very 
simple, and even transcribing it in sets of if-then rules is straightforward: in the case 
of Figure 2, the tree gives us three mutually exclusive rules, each of which proceeds 
from the root test of the tree on gender, to a leaf deciding the interview. For example, 
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reading from the top (root) of the tree, we get the rule: If gender is male and education 
is at a lower level than PhD, then we do not proceed.

Starting from this simple example, let us focus on the types of problems on which the 
whole field of machine learning has been created.

Figure 2 
 
A simple decision tree to predict whether or not to interview a person, here based on 
two variables. Classification proceeds from the topmost test, which here questions 
the gender and then, if the applicant is male, questions his education. Essentially, only 
male candidates with a PhD would be recommended for interview by such a decision 
tree.

Supervised learning has always been an important component of machine learning 
– and is still a key component of the field. Another method is called unsupervised 
learning. In the kinds of cases for which unsupervised learning is utilised, we do not 
have labels, so the task is not so much to predict a class, but rather to organise the 
data according to patterns that the machine is left to find, giving it an objective that is 
in general very loose compared to supervised learning. One popular way to carry out 
unsupervised learning is to divide the data into a fixed number of clusters. To return to 
our interview example, the department of human resources of the company might just 
want to split a large set of resumes into a number of subsets matching the number of 
human resource employees who will be looking at the resumes; it would then make 
sense to ask the machine to make those subsets as homogeneous as possible so that 
each human employee really compares apples with apples, for whatever this notion 
might mean. In this example, the company might just leave it up to the machine to 
decide how to construct those homogenous subsets.
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Beyond the standard frameworks 
Supervised and unsupervised learning have been the foundation of the field of machine 
learning and they are still driving the field today. While both make sense as methods to 
be used in the example of hiring people, they were, even back in the 1980s and 1990s, 
not the only frameworks people were interested in. Early on it became apparent that a 
host of variations were necessary to capture the needs of many applications that were 
not fitting exactly into the supervised versus unsupervised picture.

One such important case related to supervised learning is on-line learning. In our hiring 
example, supervised learning is a batch operation; we can have a huge number of 
resumes and ask the machine to train a model that is going to be used over potentially 
a very long time. We might retrain a model after a number of new candidates get into 
the system to refresh it, make it fit to the current market and new profiles better, but it 
would clearly make little sense to retrain the model from scratch after each update to 
the database, after each resume has been submitted to the company.

This is exactly what matters in on-line learning: suppose our database consists of past 
history of a portfolio of goods alongside their returns over decades, for example using 
the Standard & Poor’s 500 index. In this case, it would clearly be a terrible mistake to 
train a model to decide whether a stock is going to go up or not in a short horizon, and 
then leave it to decide allocations for a long period of time without any update to the 
model. In on-line learning, the model has to be updated after each update to the input: 
we update our portfolio or the predictions after each market update.

In the 1980s, we did not have the constraints imposed today by high-frequency trading, 
but the framework of on-line learning was already elaborated in the context of machine 
learning and under the scrutiny of researchers.

In the case of unsupervised learning, as applied to our recruiting example, we might 
imagine a further problem: that the company would like to do more than just organise 
its complete database of resumes. Maybe there is that candidate in the database, 
this person is different from all others, and their profile would be a perfect fit for an 
unusual kind of job. Isolating such an outlier is the purpose of outlier detection, which is 
arguably different from general purpose unsupervised learning. This refers to a popular 
set of techniques born in the 1980s and 1990s, named anomaly detection, because 
what we are looking for is the part of data that clearly departs from the mainstream 
sample, either denoting fraud (for example in credit card transactions, or votes), severe 
weather patterns (climate analysis), or intrusion in a network (hacking).
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Reinforcement learning and the origin  
of ‘machine learning’
On-line learning is an important model of learning because it puts the machine in 
an environment which is susceptible to feedback, to which it has to react, update its 
model, make it more accurate, and better fit to the objective.

It may be sufficient to deal with simple models of interactions as in our (over)simplified 
portfolio selection model; it is, however, way too simple if the machine is supposed to 
receive much more complex forms of interaction from the outside world, as would be 
the case of an autonomous robot wandering an office for its surveillance, to clean it, 
or to distribute mail to humans. When the machine is interacting with an environment 
and needs to figure out a complex policy, not just a simple model, to maximise rewards 
in interaction with the environment, the design of the machine learning algorithms 
belongs to another field, reinforcement learning. The robot may just start its task by 
knowing little of the best strategies available; we are going to ask the machine to learn 
those strategies. For example, in a hot-desk or flex-space organisation, the machine 
could have to learn to adapt to day-to-day changes of the floor plan occupancy for best 
cleaning, or optimal surveillance.

Interestingly, reinforcement learning did not meet with early fame in the robotic 
domain, but in a domain that inspired a whole field of artificial intelligence: board 
games. This domain is at intermediate complexity level, certainly not as simple as the 
database of our hiring company and not as complicated as for our office robot. 

The case of board games is interesting because it sparked the very first allusion to a 
general definition of machine learning. In the late fifties, artificial intelligence pioneer 
Arthur Samuel wrote, in the abstract of his paper on making a program that learns to 
play Checkers, that the objective was: “a computer can be programmed so that it will 
learn to play a better game of Checkers than can be played by the person who wrote 
the program”.184

Later, a broader definition emerged, which can be summarised as the ability of a 
computer to learn how to solve a given task from past experience. In his seminal paper, 
Samuel developed search algorithms that bypassed the combinatorial difficulty of 
the game by locally estimating a score function used to prune the search for the best 
moves,vi instead of trying to achieve the impossible task of computing all possible plays 
until the end of the game – a task that could only be completed in the 21st century after 
almost two decades of number crunching.185

vi This could be the number of pieces of the player left on the board after a limited series of rounds of play, or 
more complex functions as in Samuel’s original article.
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Samuel’s approach was purely algorithmic: for a human, the difficulty of calculating 
winning options in a board game stems from the impossibility of calculating all possible 
combinations of plays in order to pick the best. However, the computer sees the 
complete state of the world in which it operates. Unlike a game like Poker, where the 
state of the game is partially hidden for each player, a board game operates on what is 
called perfect information. In this sense, it is a long way from the hiring company in our 
recruitment example, whose objective is to also come up with a model that is going to 
be accurate on unseen data, because in the recruiting case, the impossibility resides 
in the unavailability of the resume information of all possible candidates on the planet, 
as well as for their potential fit to the job at hand. If such a complete set of information 
were available, it would be much easier for the company to find the best hire, all the 
more as the maximal number of applicants to the job would still be billions of times 
smaller than the number of possible board positions in Checkers.

Figure 3 
 
In reinforcement learning (simplified picture), the machine perceives the state of its 
environment and receives rewards from its own actions. The goal is to learn a policy, 
mapping states to actions in such a way that rewards are maximised through a 
sequence of interactions.
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Through these examples of problems that early machine learning researchers have 
focused on, we can better understand the early preoccupations of formal learning 
models: manage the potentially huge number of possibilities and come up with a 
solution to the problem within a reasonable amount of time; in general, a model. This 
model is going to be as good as possible given the uncertainty coming from unseen 
data. To be more rigorous, we could make the convenient assumption that the data we 
have has been randomly sampled and that this source of randomness never changes; 
our outlier candidate will always be an outlier, and the reason why we have come 
to observe him is independent of the observation of any other candidate. The 20th 
century history of machine learning has been deeply influenced by this ‘static’ vision of 
learning, which is in the foundations of Valiant’s model, a model that contributed to his 
winning the ‘Nobel of computer science’ in 2010, the ACM Turing Award.

One step further: Deep Blue
The (board)game between humans and the machine that started with Samuel’s 
Checkers example became famous in a subsequent step that achieved spectacular 
results in learning in highly complex environments: custom hardware. IBM’s Deep Blue 
was focused more on how to get the machines to operate on proper hardware than 
on improving the state of the art in algorithmic decision making. In Deep Blue, the 
‘machine learning’ part was reduced to a core not so different from Samuel’s search 
ideas, but the hardware was custom and pushed to its limits to implement the search in 
parallel and with much better efficiency, with the objective to beat the world champion 
of that time, Garry Kasparov. In the Deep Blue story, an official hallmark of modern 
machine learning was carved; it was not sufficient anymore for the machine to beat 
its programmer, as in Samuel’s paper – the machine needed to display superhuman 
capacity in solving its problem. While it was clearly not Samuel’s objective, a team of 
Canadian researchers in the 1980s took over the objective of making a machine the 
world champion of Checkers, and was later recognised as achieving a first in the genre.

Let us return however to consider reinforcement learning, to unveil one of its core 
challenges. Samuel pioneered some of the early techniques of storing the past and 
trying to generalise from this past to forecast the future possibilities for the game.186 
In the more general setting, even if just for a more complex game like the ones we 
have seen since the advent of personal video gaming systems, the machine needs to 
be in constant balance between two competing objectives: explore the environment 
or exploit its current strategy. In the former case, the machine gets to know its 
environment better, but may lose rewards by making suboptimal choices. In the latter 
case, the machine uses its current model to take an action that supposedly is going to 
give sufficient reward given its past actions, but it may miss the discovery of a particular 
feature of the environment that could have led to even greater rewards.
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Very often, the game used to display this dilemma is Bandits (slot machines). Imagine 
we built a machine to play. The machine is in a casino, facing a set of different bandits, 
with an objective to earn the largest amount of money by repeatedly choosing a 
bandit to pull its arm. Exploration, in this example, is the ability to test different bandit 
machines and exploitation is the ability to stick to the machine that has given the 
largest amount of money so far.

Lightweight summary
Ignoring subsidiary issues like on-line learning or anomaly detection, there are common 
elements in dissimilar methods such as supervised learning, unsupervised learning, 
and reinforcement learning.

1. The inputs are of the same kind: data which encodes the knowledge of the past; 
the current state of the machine’s environment; and eventually the rewards, 
mistakes or failure achieved by the machine.

2. Learning requires the machine to be fast in its computations and accurate in its 
decisions, whether they are classifying a person as hireable, a move as winning, 
or a candidate as having a specific profile.

3. More importantly, learning requires the machine to learn parameters about the 
world.vii More often than not, it consists of a model, which is just meant to be a 
representation of its current knowledge about the task at hand. This can be a 
set of numbers representing how worthwhile a move in Checkers might be (the 
higher, the better), or a decision tree capturing the essence of a good or bad 
hire. In all these cases, the numbers are not encoded by the person who writes 
the program but are fitted to the model by the machine. The decision tree is not 
given to the machine; the machine is tasked to find it.

4. There is obviously a catch in item 3 above. Leaving the machine to wander 
around without giving it a goal would surely result in something barely better 
than a random prediction, and we would end up with a potentially very 
expensive unbiased coin. In fact, in absolutely all these cases – all these 
examples, all these domains of machine learning – the programmer of the 

vii Interestingly, some machine learning techniques are exceptionally lazy; they do not learn anything. In 
supervised learning, this is the case for one of the oldest ‘algorithms’ which would, for example, classify a 
candidate as good to hire by just looking at the closest known profile in the history database and attributing 
the same score to the unknown candidate as that of the known one in the database. Such a rule is called 
the nearest neighbour rule and was born in the early 1950s (see Fix, E. & Hodges, J. L. (1951). ‘Discriminatory 
analysis, non-parametric discrimination’, Report 4, Project 21-49-004). One might think that such a strategy 
is exceptionally poor if the dataset at hand is small — imagine our candidate database contains a single 
labelled observation: every new resume would just be classified in the same way. What is, however, totally 
counter-intuitive, is that this simple rule becomes extremely competitive as the dataset size grows, leaving us 
with the task to find a way to efficiently store and query this potentially huge database (hint: almost nobody 
would in fact do that.)
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software or designer of the algorithm always starts with an objective function 
that encodes the quality of any potential solution to the problem, without ever 
explicitly giving the best one to the machine. There is no exception to this rule 
in machine learning; it is the goal of the machine to figure out how to get a good 
model, a good prediction, a good output with respect to this objective function. 
The design of this objective can be very intuitive and simple; we could just ask 
the machine that learns our decision tree to minimise the errors its learned 
tree makes. The objective function is then simply the error proportion on the 
training data. Our machine exploring bandit arms in its casino could be required 
to maximise the dollar amount of its total play. A subtler objective could be to 
require the machine strategy to come up close to the best possible strategy, 
since the dollar amount does not in fact reflect the difficulty of the task at hand 
in the machine’s environment (maybe the bandits work purely randomly in one 
casino and are completely rigged in another one).

The missing piece of the machine learning framework
There is also a catch in item 4 above, but subtler: giving the machine an objective 
function is typically not enough to have a workable solution to our problem. In general, 
one has to give it the basics of how to make the best of the objective function, to 
determine how to optimise it. Consider the example of a child to whom we give a metal 
detector with the objective to find coins and other useful metals lost on a beach. The 
objective function is obviously a mix of fun and to maximise money, but the task would 
not begin without us explaining how the metal detector works and guiding the child on 
the best places where such target objects could be hidden and how to properly reach 
them, eventually concluding with some hints. The child would then be left with its own 
defined model of the beach, and progressively learn the best way to manipulate the 
detector, and eventually the best or worst places to find interesting metals.

It is the same for any learning algorithms: we would indicate to our algorithm to build a 
decision tree from scratch and make it grow until it properly fits the data.

The algorithmic and statistical part of machine learning was augmented by a third 
field of mathematics which would later prove instrumental in getting the best training 
algorithms even for very complex models: optimisation. Such techniques typically just 
give local strategies to the machine on how to make a better model from its current 
one, leaving it to the computational power of the machine to then build the complete 
model from the repeated application of this basic ‘hint’.

Towards more complex models
In the 1980s a paper was published by David E. Rumelhart, Geoffrey Hinton and Ronald 
J. Williams. Titled ‘Learning representations by back-propagating errors’, it identified 
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useful methods of training models that mimic the neural networks in the brain.187 It was 
recognised three decades later as foundational for the whole field of computer science 
through the ACM Turing Award in 2019.188

In the 1990s, there would have been another common element in all the examples 
above: the model learned was, in the worst case, relatively simple to understand, and 
based on data that was simple to represent. It is probably obvious by now for decision 
trees or simple if-then rules. It would also have been the case for Checkers — we 
just need to store an 8 x 8 array with each value specifying one of three possible 
values (empty, black or white). It would also have been the case for our hypothetical 
databases of resumes, each of which probably reduced to a list of important variables, 
such as gender, age and education, with specific values for each of them. While the 
calculations involved in modelling outcomes were often beyond the capability of 
people to do themselves, the outcomes were interpretable after they were derived – 
we could understand how the models were obtained.

During this period, other work pushed the boundaries of the field, analysing much 
more complex data, typically text, sound or images. In several notable examples, 
researchers wanted to teach computers how to recognise objects in images. This was 
computer vision, which became a focus for automation of classification. The state of the 
art proceeded in two steps, including – in the first step – the automatic extraction of 
features from the image, features that would then be used to train a classifier in pretty 
much the same way as for any other classification problem.

The top image in Figure 4 presents a very schematic view of the overall recipe. 
Researchers circumvented the complexity of the data by guiding the machine towards 
working on carefully engineered and simple features that could be extracted from the 
image. Such an approach may be fine when no other proposal exists on the table, but 
it contains a pitfall: engineered features inevitably contain human bias. We impose on 
the machine our own understanding of the domain at hand – for example, what part of 
an image we think makes an ‘A’ look like an ‘A’ – which can be highly suboptimal and 
force the machine to learn models in the subsequent stage that are not as good as 
they could be.

The question to be asked then is whether it is possible to dispense with the human 
part in the task at hand and let the machine figure out its own way to learn not just how 
to classify data, but also how to learn the key features of an image that best encode 
the class.
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Neural networks
This more complex task was solved two decades ago using a model representation 
closer to the one we supposedly use at the analytical level in our brain: neural 
networks.189 It probably sounds surprising today that neural networks could be so 
successful in the 20th century but then be followed by more than a decade of relative 
quiet; we shall see later why this eventually happened. The architecture of this early 
achiever is represented in the bottom image of Figure 4. Given the task of handwritten 
character recognition, the machine managed to learn a neural network achieving less 
than 1% error on testing, which is not just very good, but in fact allowed the technique 
to be used for substantial industrial deployment.190 

Figure 4  
 
Top: Classifying an image had been historically done by a two-stage process, whose 
first step was to compute features from the raw image carefully engineered and 
optimised by humans (also called a feature extraction module). Learning a classifier 
was then based on these extracted features as input, rather than the raw image.  
 
Bottom: LeNet5 was among the first attempts to get rid of this human bias in the 
process and let the machine decide by itself the best ways to learn a classifier directly 
from the image, using neural networks. Architecture taken from LeCun, Y., Bottou, 
L., Bengio, Y. & Haffner, P. (1998). ‘Gradient-based learning applied to document 
recognition’, Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2323.

The principle of a neural network is simple: it assembles simple basic functions, 
neurons, that are not much more complex than a local decision in our decision tree. 
Each neuron takes input from others and computes an output signal that aggregates all 
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inputs. Its output signal is then used as input for another neuron. This is an abstraction 
of the processing happening in our brain, but this local abstraction is simple and in fact 
not where the power of the whole network lies. The key to training a powerful neural 
network is its architecture, the global organisation of all neurons, typically in layers 
(seven in LeNet5, depicted in the bottom image of Figure 4). The layered design has 
this very intuitive notion that the machine is going to progressively learn an abstraction 
of the input features, towards new features that are good for the classification task at 
hand. In doing so, the machine is supposed to progressively bypass the step of human-
engineered features by learning its own representation of the task. The power of the 
machine is essentially the ability to very carefully optimise this step, by considering a 
colossal number of possibilities in order to keep only the best one.

All that is left to the human is the design of the architecture, and then letting the machine 
learn the crux of the model – the weight of each connection from one neuron to another 
one. This very roughly approximates the way a human would learn, with the brain 
adjusting connections between neurons throughout learning. In LeNet5, the key part 
of the architecture is what is called convolutions, which requires some neurons to be 
receptive to only a small subset of the neurons in the previous layer, inspired by studies 
in the brain for vision. Such neural networks are called convolutional neural networks. 

Applications using simply defined data flourish in the real world. In the 1990s data 
mining involved machine learning work prior to the progress of LeNet5. Perhaps the 
most prominent application targeted early by data mining was the general analysis of 
the shopping basket – requiring only a flat collection of transactions and therefore data 
represented in a much simpler manner than vision, speech or even text. Two decades 
later, convolutional neural networks would be recognised as a major landmark in 
machine learning. LeNet5 made it possible to analyse more complex data than just flat 
credit card transactions or simply defined resumes.

The bottleneck to scaling-up machine learning
It may come as a surprise that machine learning in the first decade of the 21st century 
was relatively quiet compared to today’s activity. There is an explanation for this: 
nobody knew back then how to train neural networks substantially ‘bigger’ than LeNet5.

To grasp the importance of the challenge, consider that the brain analogy suggests 
that the source of the ‘power’ of a neural net lies in its ability to progressively learn and 
model abstractions of the features of the world in its layered representation. This is 
very natural: we would not characterise a bird by the local colour of its body parts but 
by higher-order features that can then be used to compare a bird with other animals, 
such as its feathers, wings, and beak. Once one realises that the source of such higher-
level features comes from parts of the animal that are spatially related (one feather is 
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not split throughout the animal’s body, but stands as a local description of the animal 
and is very useful for guessing that it is a bird), it does not take long to realise that this 
property also holds for other categories of complex data that humans process very 
well, such as texts in natural language, speech, and music.

In fact, the power of neural networks to carry out such higher understanding of natural 
language processing was also discovered in the 1990s.191 It turns out that it also relied 
on a trick to capture, in the architecture, a specific property of data that we humans 
exploit to understand a text (or other kind of data for which this property holds, like 
music scores): the spatio-temporal dependencies that can be observed between words 
or sentences in a natural language written text. Expressed very roughly, the closer 
two words are in a text, the more likely they are to belong to the same grammatical or 
semantic unit.

Since we now understand why the architecture and its layered representation is key 
in neural networks – to model data that could be hard to model using, for example, 
simple if-then rules – we can return to our problem and can make it a bit more specific: 
how can we train not just bigger, but in fact deeper neural network architectures?

It took more than a decade to make a breakthrough that, by proposing the first 
scalable solution to this question, revolutionised computer science. It came with a new 
nickname: deep learning.

2012

If the analogy with the Cambrian explosion is appropriate, then 2012 is the year it 
all started, and it all started with a competition, but not (yet) with humans. Beginning 
in 2010, a large-scale image recognition competition was run using a now famous 
database, ImageNet.192 The scale of the problem made it orders-of-magnitude more 
complex than the one solved by LeNet5: the dataset contained more than 1,000,000 
images, with 1,000 different classes.

As in any competition, one would expect the top expert contenders to be really close to 
each other; such competitions – now popular in data science – happen to encourage 
new neat ideas to come forward and improve, even incrementally, the state of the art.

Things did not exactly happen this way for the ImageNet competition: in 2012, the 
winners delivered a model whose error almost divided by two the error of the runner 
up – while the previous year, the difference with the runner up was just a few percent. 
The competition was essentially a repeat of the LeNet5 achievement, but on a scale 
that virtually nobody could imagine: the runner up used human engineered features 
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(called SIFT) while the winner was, as with LeNet5, replacing the two-stage process 
with a single pipeline in which the machine crafted its own features while learning its 
deep neural network.

Getting such a big difference from the runner up took more than just one neat idea, 
especially considering that the final neural network had up to 60 million parameters 
and more than half a million neurons. In fact, it took two sets of new ideas to get there: 
a set of powerful new ideas on how to train a deep network, and the use of a hardware 
component that is now fundamental in training deep neural networks – Graphics 
Processing Units (instead of the classical Central Processing Unit of a computer). In 
other words, it took better algorithms and better hardware to get such results.

This breakthrough was experimental, but it reshaped the whole field of computer 
vision in the following years, to a point where many of the contributions of the leading 
computer vision conferences converged on the design of deep learning algorithms. 
The age of feature engineering as it had been done, and for the purpose it was 
designed for before 2012, was over.

What happened in computer vision was soon to happen in other fields and for similar 
reasons: text, natural language processing, speech, sound, video, network analysis – as 
in social networks. All these fields reimplemented the key feature of deep learning, which 
is essentially to give the machine the ability to learn its own features from raw complex 
data to solve the problem at hand, instead of relying on humans to ‘pre-digest’ those raw 
features into ‘machine-readable’, ‘usable’ ones. Returning to our recruitment example, 
if our hypothetical company wanted to design its second stage of interviews, including 
commenting on Rorschach inkblots, free-form drawing and text, it could utilise this new 
technology, and then eventually it could (in theory) rely on a machine for its analysis.

This was arguably the start of the deep learning revolution. From this starting point, 
deep neural networks not only started to be even deeper; they started to be used for 
more and more problems, soon reaching any number of sophisticated applications 
– autonomous driving, automatic translation, intelligent assistants, chatbots, and 
beyond – reaching whole scientific fields or industries including climate, health, 
finance, biosecurity, insurance, banking, entertainment, gaming, telecommunications, 
infrastructure, defence, social and political sciences, social networks, etc. This list 
cannot be exhaustive. To get an idea of where the applications are today, or what the 
applications could be tomorrow, keep in mind that wherever there is data, there is 
potential input for machine learning.

During the International Conference on Machine Learning that was held at Stanford 
University in 2000, conference chair Pat Langley made the joke that it was time to 
step from machine learning to machine earning, meaning that the field had to level up 
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its game for industrial rewards. This is certainly not a joke anymore, and this raises a 
number of issues today, regardless of what we take these earnings to be and whoever 
gets to enjoy them. A subtler problem is that any user of machine learning needs to 
be careful about the use of the technology itself and be warned that using the outputs 
of machine learning does not go without consequences, including highly unexpected 
ones, as we shall now see.

A new era for machine learning 

Biased predictions and fairness
Let us step back for a moment: the reader might have already remarked that the 
picture of machine learning displayed so far – a field driven by a very strong technical 
backing to solve problems that matter – may in fact display weaknesses in the models 
it can learn.

If that is not the case, let us look back again to the decision tree in Figure 2. Another 
rule it yields is: If gender is female then we do not proceed. We conclude that if the 
machine gets to automatically process applications and reply to candidates for a first 
interview, then no female is going to show up at interview time, and no female is ever 
going to be hired as long as this model is used. If this decision tree were a real one, its 
impact would obviously pose a problem of fairness and discrimination. This example 
was crafted for the purpose of this chapter, but it turns out the problem described is 
real, and it in fact actually happened at a big tech company.193

Why this problem occurred is obviously the next question to ask, and the answer is 
simple: machine learning algorithms are not discriminatory on purpose, but they can 
be so good at learning that they manage to learn even the bias in their data, whether it 
discriminates against women, people of colour,194 or against other qualities. Remember 
that one needs to give the machine an objective function to optimise the machine to 
learn that a particular model is good with respect to this function, and one only gets 
what one wishes for: can we blame a model for being unfair when in fact the source of 
unfairness may just come from the simple fact that the original bill of specifications for 
the machine learning algorithm did not include fairness in it?

In fact, this is not just about the goal assigned to the machine, but also about the 
freedom or constraints we give for the machine to learn in an environment which can 
rapidly escape any decent control. It took less than a day to transform a neutral chatbot 
learning from Twitter interactions into an absolute racist.195 Such an event raises the 
question of accountability in a number of ways.



95

Why this is happening 
At this point, it is useful to recall that the original bill of specifications for machine 
learning algorithms, as developed by Valiant, essentially contained the requirement 
of accuracy. This is just fine if the algorithm is supposed to learn a model to predict 
whether a board is winning or not in Checkers. This is just fine if the algorithm learns 
a model to predict whether a flower is from a given species. And this can be perfect 
if the algorithm predicts whether a plant has a specific disease. This is, however, not 
fine at all when we ask the model to predict whether a convicted person has a chance 
of reoffending given their past criminal records – and this is just one example. To 
understand the difference between the two categories of problems listed here, there 
needs to be an important metaphor put forward: Machine learning was born in the 
sterile room of computer science and mathematics.

To progressively reintroduce the Cambrian analogy, the Pre-Cambrian period for 
machine learning happened in the sterile room. Problems to be solved were just 
like formal models: simple in design, supported by simple assumptions that would 
make sense in a general purpose model, maybe naive in the belief that this would be 
sufficient to solve the biggest problems of the real world. For example, the problem of 
guessing flower species mentioned above was a popular one introduced in statistics 
during the 1930s.

In the Cambrian explosion period of machine learning, the whole field has been 
suddenly pushed out of the sterile chamber to expose its power to solve problems in 
the wilderness of the real world – its power, its weaknesses and the potential flaws 
in its deployment. It could have been possible to predict that deploying a chatbot 
that learns in an environment lacking sufficient control would result in unfortunate 
consequences. It is sometimes much less obvious to anticipate problems.

Subtle weaknesses and causality
If the discrimination problem in the example of the decision tree in Figure 2 can be 
easy to catch, some weaknesses can be subtler: the assumption that the source of 
randomness does not change in Valiant’s model is mostly fine when we model games 
or predict plant diseases. It is absolutely not fine when it comes to health: suppose we 
have a model predicting whether or not to give a specific jab for a non-lethal condition. 
Once the riskiest population has been inoculated, if we keep on using the same model, 
we will just target the same people, whereas the source target of the disease might 
shift (as a function of weather, living conditions, development or just mutations). This is 
a case of what is called distribution shift.

Researchers are also investigating the extreme case of such shift which is done on 
purpose: train a model on a particular domain to predict a label, and then transfer 
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this model to work on a different domain. Such a transfer learning task is important 
because (i) it allows data scientists to solve several tasks with a single model and (ii) it is 
particularly useful when the information from labels is not available on the second task – 
which can happen when, for example, such information would be too costly to obtain.

Let us drill down into some other subtle consequence of applying machine learning, 
related to distribution shift, but not due to external factors as in our health example. 
This will explain another reason why some extra care and caution needs to be taken 
when using machine learning in highly sensitive applications, like the decision to hire 
people or decide on someone’s chances to reoffend. Here another new component of 
post-Cambrian machine learning emerges: causality. Applying a model that is biased 
for a long time might serve to reinforce the hidden bias: women receiving fewer and 
fewer job offers from our decision tree will inevitably see their proportion grow in 
unemployment statistics, which will then reinforce any other subsequently trained 
model from current data into including even stronger bias against hiring women. 

Explainability versus the rush for complexity
There are also some much subtler problems than those mentioned above, ones 
that were left hidden in the beginning of this chapter. We do not even need to apply 
our decision tree in Figure 2 to realise that the system only recommends men for 
interviews, and therefore realise after seeing a cohort of interviewed men that the 
system discriminates against women. It suffices to simply look at it to realise that the 
most influential variable, the one that appears in all if-then rules built from the decision 
tree, posits that gender is going to be the most influential feature in hiring people. This 
possibility, to guess that the model is going to be biased or unethical even before it is 
deployed, is no longer possible with deep neural networks.

A collateral event of the breakthrough in 2012 on the ImageNet competition was that it 
pushed for a race towards getting more and more complex models to solve problems: 
since the source of the breakthrough’s result was believed to be its success in training 
more complex models, why not do the same strategy systematically: to get better 
results on another problem, one should just train more complex, deeper models. This 
brought about collateral damage of trading interpretability for more performance, 
which may be fine for the ImageNet competition (interpretability was not a requirement 
of the competition) but it will inevitably create problems if such models are applied in 
the public sphere, where rules and regulations would typically be developed to prevent 
this. Such is the framework of the European General Data Protection Regulation.viii

viii The General Data Protection Regulation, or GDPR, is explored further in other chapters..
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Privacy
There are additional problems that do not appear in the first part of this chapter 
because they do not display a flaw or limit in the design of the early theories of 
machine learning. They appear because of the context in which machine learning is 
applied today (this could have been the case of our chatbot). 

Consider another example: our hiring company happens to have competitors. Among 
those, it agrees to collude with one to share information related to their applicants, to 
learn a model developed from the union of their databases. Since it is trained over a 
bigger set of candidates, the model should be more accurate than if it were trained 
using just one of their databases. This is arguably a very strong motivation to share 
information. However, the companies require that the other (or any other external party) 
does not have access to their data in the clear. Such a constraint, that requires training 
a model using data that cannot be seen in the clear is called federated learning. It is 
usually addressed by a combination of machine learning and cryptographic techniques. 
Federated learning is also getting lots of attention because it addresses another 
concern against which early theories in machine learning were not challenged: privacy. 
We are witnessing the birth of marketplaces where data handlers do not share their 
data but instead share the ‘hints’ that help to train other peoples’ algorithms.ix Such 
hints can be shared in exchange for remuneration and – if sufficient care is given – 
they should not unveil an individual’s personal information.

However, it should be stressed that in the case of federated learning, the requirement 
to be privacy compliant usually comes with a significant technical levy on machine 
learning, to make sure that learning parallels the performances of the non-private case, 
for example, to make sure that the final model is still accurate enough.

Learning and inference everywhere (and an 
unexpected consequence)
Consider a follow-up example regarding privacy: what would happen if, for example, a 
person had their personal information on a device (a smartphone) and wanted to run 
a hiring model directly on the smartphone to check whether they would be a potential 
hire for a specific company (such a model could be provided by a third party, helping 
people to find a job). On-device learning or inference (which means we just run the 
model on our device, like in our hiring example) is getting a lot of attention, even in the 
research community, for the simple reason that even if it is just to locally run a model, 
one needs to pay attention not just to privacy but also to the constraints of the device, 
that are not necessarily capable of running models as big as the ones we now see in 

ix They are sometimes called ‘Gradient marketplaces’.
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deep learning. Considerations on storage, communication and energy consumption 
are important on such devices, and such constraints are becoming a major challenge 
for the field, especially as people are now beginning to consider all possible devices in 
the Internet of Things. In fact, it was recently revealed that the global energy footprint 
of machine learning is spectacular, as training some of the most complex deep learning 
models (with hundreds of millions of parameters) bears a carbon footprint that far 
exceeds that of the whole life of a car.196 Because of this, we can expect much more 
efficient machine learning algorithms, even outside the market of mobile devices or 
‘intelligent’ Internet of Things appliances.

Machine learning in an adversarial world
Another problem that has become crucial given the rapidly growing interface that 
machine learning has with society and the public sphere at large is adversarial 
tampering. Consider the setting of our hiring company, learning a model using its own 
data to predict whether a candidate is to be contacted for an interview. Suppose that 
the algorithm used is accurate and fair, not biased. What could possibly go wrong? 
One possible answer: data poisoning. Knowing the algorithm that is going to be run to 
build a model, it would be possible to locally influence the predictions of the model it 
is going to learn, with a simple protocol: figure out the eventual slight changes to make 
in the database to ensure that the model learned overall looks the same (as it would 
be without doing anything) but radically changing its prediction on a few targeted 
candidates, with the objective to make sure they get (or do not get) interviewed.x

Worse than local bad results: distorting  
the fabric of reality
Data poisoning is a simple example of what could come out of the Pandora’s box 
of possible misuses of machine learning, whether accidental or made on purpose. 
Another example, which has recently made it to the headlines, is a breakthrough 
utilising the potential of deep learning to generate complex data. In this case, the 
machine learns how to generate new (and realistic) images, sounds, text, and the 
like. Let us stick to the image case for simplicity. The way these techniques work is 
interesting in itself. Somehow, they work in reverse to the way deep learning was 
originally designed; instead of taking raw images and converting them to simple 
machine learned features useful for classification, by passing through learned layers of 
progressive abstraction, we start from such simple abstract features, typically randomly 
sampled, and then go the opposite way to create more and more realistic features 
through sets of layers, until the last layer where, suddenly, a fully realistic image 
appears. This technique is a generative model. 

x This subject is also covered in detail in Data security and AI.
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Modern generative models were born in 2014 and were recognised as a breakthrough 
for computer science as part of the ACM Turing Award 2019.197 This recognition came 
even faster than the recognition of the earlier work of Geoffrey Hinton.198 An original 
use of the technique came equally quickly: to show that the machine could become an 
artist.xi Unfortunately, also equally fast-paced was (mis)use of generative models, in a 
now infamous piece of technology that some people believe could threaten the core of 
democracy: ‘deepfakes’.199

There is now clearly an arms race around deepfakes, to generate them and detect 
them, and if the technology is still too expensive for the layman to generate realistic 
content, it is a completely different story for more powerful actors like state actors.200 

It is beyond the scope of this chapter to explore this further, but it is worth mentioning 
that the technology was developed initially by somehow implementing this arms race in 
the machine. Indeed, in the original training framework, training involves two competing 
players – a generator (which is the system we want) and a discriminator, which is used 
against the generator. The generator is jointly trained with the discriminator, the latter 
trying to guess between the generated content and a set of ground truth – if we want 
a generator as good as Picasso, then the ground truth could contain the complete set 
of work from the famous painter. As the generator gets better and better, it becomes 
harder for the discriminator to tell the generated data and the ground truth apart. 
Ultimately, our generator becomes the perfect forger for new Picasso artwork! Or, 
if the ground truth contains the set of television interviews of a President, then the 
generator learns how to generate new interviews that never existed and, with a little bit 
of experience from the persons running the whole system, the generator can forge not 
just random interviews but new interviews with a purpose – precisely deepfakes. 

Not everybody agrees on the potential impact of deepfakes – from classical 
propaganda to threats of ‘infocalypse’ and the distortion of reality – but it seems 
reasonable to believe that, in the same way as many disruptive technologies could be 
used for opposite (good/bad) purposes, the same may happen in the use of machine 
learning against the spread of deepfake messages, for instance, using machine 
learning to detect deepfakes. This will contribute to making trust a fundamental part of 
the deployment of machine learning.

Superhuman performances and where they are deployed
The deepfakes example shows how machine learning has become efficient in solving 
the problem at hand. It should be clear from this last part of the chapter that the field of 
machine learning is now growing horizontally as well, bringing more and more (distinct) 
problems to solve to the table of researchers and engineers.

xi For an example, see ‘Edmond de Belamy, from La Famille de Belamy’.
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The deepfake problem is not the only problem for which machines are reaching 
human or superhuman performances on complex tasks, but it is fortunately not always 
a source of concern. On the entertaining side, the successes of Checkers and Chess 
automation have been followed by renewed interest in reinforcement learning, and 
subsequent breakthroughs have occurred in which the machine learning part has been 
substantially improved – not just the hardware component as was essentially the case 
for IBM’s Deep Blue. One such breakthrough, AlphaGo, which again uses deep neural 
networks, achieved the remarkable ability to be able to train a machine Go player 
without any other information than the game’s rules to start with, training itself from the 
sole observation of games. It was able to reach superhuman performance in just a few 
days of self-training.201 There is little doubt that these recent advances in reinforcement 
learning will have significant impact in other fields, in particular, robotics.

On the more sober side, we now know that just an excerpt of Facebook data can 
basically allow a machine to know us better than our own family.202 Independently of 
the considerations of this chapter, this invites a different kind of question than the ones 
classically asked when a data breach happens, namely, what could be achieved with 
this kind of data, what could we do with it, and what could be learned from it?

Still, we need better machine learning
But the machine is – unfortunately – still not perfect in circumstances where we 
wish it were. For example, we know that deep learning models are sometimes 
brittle to classification:203 slightly altering a road sign with a change that would make 
no difference for a human can produce dramatic changes in the output of a deep 
neural network for computer vision. Making machine learning more robust is a very 
important challenge for the field. The application of machine learning in such areas as 
autonomous cars will also be an important challenge for regulators.

After the Cambrian explosion of machine learning
It is appropriate at this point to come back to the Cambrian analogy, and now try to 
complete it, as shown in Figure 5. We now know better what happened during the 
Earth’s Cambrian explosion, and it is easy to make a more complete analogy with 
machine learning, where oxygen becomes data and the technology gets to conquer 
a dimension of technology previously unavailable, because the proper infrastructure 
for data collection and storage, and the necessary computational power, was not 
available. There is, as shown in Figure 5, considerable heat and excitement in the field, 
as exemplified by the fact that one of its two major conferences (NeurIPS, ‘Advances 
in Neural Information Processing Systems’) was sold out faster than some rockstar 
concerts in 2018 – and, it turns out, for a large crowd of 8,000+ registrants.



101

Figure 5 
 
The parallel with the Cambrian explosion (left) for machine learning (right) is in fact 
quite striking if we make the effort to go until its end, risking a speculative answer on 
the future of machine learning (Fox, D. (2016). ‘What sparked the Cambrian explosion?’, 
Nature, Vol. 530, pp 268-270).

What is interesting is what comes next. If the current state of Cambrian paleontology is 
accurate, the Cambrian explosion saw the rise of predators – literally born in the food 
pantry of evolution. One should be careful of drawing a parallel with machine learning, 
but nonetheless there is a lot of opportunistic behaviour that is observable in the field, 
especially on its industrial side. 

In particular, there is currently a rise in the interest of collecting data whose machine 
learning-based exploitation should prove far more valuable than Facebook-level 
data: medical data. It is arguably more valuable because one’s preferences as stored 
in Facebook will inevitably change through years. On the contrary, the one who 
possesses the medical data of people – and in particular its lowest level description, as 
in genetic sequences – possesses them forever.xii

 
There’s no doubt that machine learning technology will be here to lead science 
breakthroughs on such data. One can only hope that the lessons from the past 
successes, threats and failures will contribute to shaping good practices and safe usage 
for our ever-more-personal information to be used, because it suggests that the ones in 
position to solve the related problems will be in the position to rule our tech planet. We 
are probably, from this standpoint, witnessing the beginning of an age that is going to 
reshape our relation to technology, in part under the influence of machine learning. 

xii And of course, one’s genetic data also potentially discloses information about other people as well, forever.
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The toolbox to make this work at proper scale
To finish on a positive note, from a technical standpoint, the field of machine learning 
embraced mathematics early as a strong backup field to safeguard its algorithms and 
theories. This obviously started with statistics but rapidly spread to a host of different 
mathematical horizons and theories. I believe mathematics will be instrumental in 
contributing to safely developing the field further. This will be an absolute necessity.
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