® @
-
Clustering above Exponential Families
with Tempered Exponential Measures

Ehsan Amid, Richard Nock and Manfred K. Warmuth

Google Research ‘ ‘ ‘




Exponential families & k-means clustering

Why this work: k-means = popular clustering, partition of space X C R by finding

set of centers € = {c¢; }j¢[x) Minimizing loss to m-sample, Eiw[m][nel%il] D(6;]|c;)]
J
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If D a Bregman divergence (Mahalanobis, Itakura-Saito, KL, etc.) then population
minimizers trivial to compute and we equivalently minimise an information-theoretic
loss between distributions in exponential families = embeds k-means in broad data
generating processes
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Exponential families & k-means clustering

Why this work: k-means = popular clustering, partition of space X C R by finding

set of centers € = {c¢; }j¢[x) Minimizing loss to m-sample, EiN[m][Hel%II;l] D(6;]|c;)]
J

If D a Bregman divergence (Mahalanobis, Itakura-Saito, KL, etc.) then population
minimizers trivial to compute and we equivalently minimise an information-theoretic
loss between distributions in exponential families = embeds k-means in broad data
generating processes

Can even be generalized above exponential families, to deformed and

g-exponential families, keeping the Bregman divergence formulation of loss
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Exponential families & k-means clustering

Why this work: k-me by finding

generalisation of (6illc;)]

Our objective: get a ralisat
the completeseeneraiiing

. 1t e Distributions (exponential families)
Opt\Oﬂa\ add““o e The information theoretic distortion between
. SUC distributions (KL divergence)
|n e Parameter distortions (Bregman divergences)
C\USter g e The information-geometric / information theoretic
link between clustering parameters and
distributions

g-expon , Keeping the Breg
+ Get additional properties (robustness)




From Exponential families to Tempered Exponential Measures

Axiomatic characterization

Set of probability measures satisfying a
constraint on their expectation

) { = [ ¢(z) p(x) d¢ = h, }
Pin =

f plx) dEé= 1
() 2 0,Vx € I)C.

+constraint to maximize entropy

H(P) = —/plogpd€

= get an exponential family

p?(fv) o exp(8' p(x) — G(0))
0 = VG—l(h) T Google Research
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From Exponential families to Tempered Exponential Measures

Set of unnormalized measures satisfying
a constraint on their expectation

Axiomatic characterization

Set of probability measures satisfying a

E: x)dé = h,
constraint on their expectation P = {ﬁ f;[fﬁ 1 tfdcz P )d€ = }
5 = [ ¢(x) p(x) d¢ = A, p(xz) > 0,Vx € X,
Pun = fp d§ = 1
p(x) >0,V € f)C.
+constraint to maximize entropy te|0,1],t* =1/(2—1)
H(P) = —/plogpd€

= get an exponential family

p?(w) o exp(8' ¢(x) — G(0))
0 = VG_l(h) cumulant

natural parameter



From Exponential families to Tempered Exponential Measures

Set of unnormalized measures satisfying
a constraint on their expectation

Axiomatic characterization

Set of probability measures satisfying a

: : : Ez x)dé = h,
constraint on thelr expectatlon Py = {ﬁ fg[qb 1 tfdgz- 1, e = }
5 = [ ¢(x) p(x) d¢ = A, p(xz) > 0,Vx € X,
Piin = [(P) 4 vdﬁe—:% +maximize a generalized Tsallis entropy
plx) > 0,V . ~
+constraint to maximize entropy ’Ht /plogtp log,_, p)d¢
1
H(P)=— | plogpd¢ tempered log — log, (z) = — (21t —1)
= get an exponential family
po(x) o< exp(8' p(x) — G(O)) Concave, %mri log, = log
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From Exponential families to Tempered Exponential Measures

Set of unnormalized measures satisfying
a constraint on their expectation

Epl¢] = [ o(z) p(x)dE = h}

Axiomatic characterization

Set of probability measures satisfying a
constraint on their expectation Py = {ﬁ

i { = [ ¢(x) p(x) A€ = A, }
Pin =

f plx) dE= 1
+constraint to maximize entropy

fp 1t d€—1
p(x) > 0,Vx € X.

+maximize a generalized Tsallis entropy
Hy(P) = — / (plog, p — log, 4 p)d¢

() 2 0,V € f)C.

H(P) =-— /plogpd§ log,(2) = : i ; (2" —1)
= get an exponential family mm) = get a tempered exponential measure
p?@) x exp(8 (x) — G(6)) Fo(@) exp (0 ' ¢(z))

6 =vVG(h) chuIant T eXpt(Gt(e))Go gle Research

natural parameter 0 =VG;'(h) cumulant



Alternative expression

Prio(x) o exp, (0 p(x) ©f G1(0))

< — X

z@txi

14+ (1—-1t)x

Tempered Exponential Measures

Set of unnormalized measures satisfying
a constraint on their expectation

. Epl¢] = [ o(x) p(x) d§ = A,
Piun=14DP

[B(®)/" de = 1
p(x) > 0,Vx € f)C.
+maximize a generalized Tsallis entropy
Hy(P) = — / (plog, p — log,_1 p)d§
L1 1-t
log,(2) = - (2 1)
= get a tempered exponential measure
exp; (0 ¢())
eXPy (Gt (9 ) )Go gle Research
0 =VG;'(h)
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Alternative expression

Prio(x) o exp, (0 p(x) ©f G1(0))

< — X

S

Cumulant in closed form:
Gi(6) = (1og,)" [ (exp,)" (67 p(a))aé
(log,)" (2) = t"logy- (=)

(exp,;)” () = t* expyn (i)

. 1/(1—t
expy(z) = [1+ (1 — 1)z +/( te)mpered exp
lim exp, = exp
t—1

Tempered Exponential Measures

Set of unnormalized measures satisfying
a constraint on their expectation

. Ep¢] = [ ¢(z)b(x) d§ = A,
Piun=14DP

fp 1 t* d§ — 1
p(x) > 0,Vx € f)C.
+maximize a generalized Tsallis entropy
Hy(P) = — / (plog, p — log,_, p)d§
L1 1-t

log,(2) = - (2 1)
= get a tempered exponential measure
exp; (0 ¢())

exp; (Gt (9 ) )Go gle Research
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Alternative expression

Pro(x) x exp, (0" @d(x) O G¢(0))
Z — X

1+(1—-t)x

Z@t$i

Cumulant in closed form:

Gi(6) = (1og,)" [ (exp,)" (67 p(a))aé

Total mass in closed form:

/ Bro(x)dE = 1+ (1 —1)(Gy(68) — 8T h)

Tempered Exponential Measures

Set of unnormalized measures satisfying
a constraint on their expectation

i Ep¢] = [ ¢(z)b(x) d§ = A,
Piun=14DP

fp 1 t* d§ — 1
p(x) > 0,Vx € f)C.
+maximize a generalized Tsallis entropy
Hy(P) = — / (plog, p — log,_, p)d§
L1 1-t
log,(2) = - (2 1)
= get a tempered exponential measure
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Alternative expression

Pro(x) x exp, (0" @d(x) O G¢(0))
Z — X

1+(1—-t)x

Z@t$i

Cumulant in closed form:

Gi(6) = (1og,)" [ (exp,)" (67 p(a))aé

Total mass in closed form:

/ Bro(x)dE = 1+ (1 —1)(Gy(68) — 8T h)

~1/t" :
pt|0 = co-density

Tempered Exponential Measures

Set of unnormalized measures satisfying
a constraint on their expectation

) { Epl¢] = [ ¢(x) p(x) dE = B, }
Piun=14DP

[B(®)/" de =1,
+maximize a generalized Tsallis entropy

p(x) > 0,Vx € X.

Hy(P) = — / (plog, p — log,_; p)d¢

lit (zl—t_l)

= get a tempered exponential measure
exp (0" ¢(x))

exp; (Gt (9 ) )Go gle Research
0 =VG;'(h)

log,(z) =

ﬁtw(m) X

cumulant



Information Geometric Distortions (gen. Bregman divs)

Information-theoretic distortion between two TEMs, generalizing (reverse) KL
divergence:

~ ~ . dﬁt|é dpi|e - f = —log,
Ft(Pt|é||Pt|0) =/f< dé Ot ae - dpye x@tyi[xl‘t—yl‘tqtl]?
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Information Geometric Distortions (gen. Bregman divs)

Information-theoretic distortion between two TEMs, generalizing (reverse) KL

divergence:

- e dpyg  dpye \ . f=—log
Ft(Pt|é”Pt|0) :/f< dt€| Ot dg - dpye 1;1

T Qy Y - [xl—t . yl—t i 1]+
Theorem: for any 2 members of the same TEM family, F.(,4l|Pys) = Be,(6]16), with

BG (é”g) — Gt(é) - Gt(e) o (é _ H)TVGt(H) }Bregman divergence
t 1+ (1—1)Gy(6)
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Clustering: population minimizers

Given training sample{0; }.2 ,, we seek its left and right population minimizers, i.e.
having L;(0) = E;[Bg,(0]|6;)] ; L:(0) = E;[Bg,(0;]|0)] , we want to compute
0} = arg mein Ly(0) ; 0f = arg mein L.(0)

left population minimizer right population minimizer
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Clustering: population minimizers

Given training sample{0; }.2 ,, we seek its left and right population minimizers, i.e.
having L;(0) = E;[Bg,(0]|6;)] ; L:(0) = E;[Bg,(0;]|0)] , we want to compute
9} = arg mein Ly(0) ; Hf = arg mein L.(0)

left population minimizer right population minimizer
Theorem: we have

01 = VGt_l(OA* . EZVGt(Hz)) Hr = [; !

expy (G(6:))

.0,

o, >0

Precise interval to search (Cf paper)
Closed forms available in particular cases
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Clustering: population minimizers... and robustness

Given training sample{0; }.2 ,, we seek its left and right population minimizers, i.e.
having L;(0) = E;[Bg,(0]|6;)] ; L:(0) = E;[Bg,(0;]|0)] , we want to compute
9} = arg mein Ly(0) ; Of = arg mein L.(0)

left population minimizer right population minimizer
Theorem: we have 1
01 — VGt_l(Oé* . EzVGt(HZ)) 91« = Ez - 0;
1— (
exp; ' (G1(6;))

new old

Robustness: add outlier 8« with weight €. The center moves as 6]7" — 077 = € - 2(0.)
If the influence function, z(.), has bounded norm, then the center is robust
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Clustering: population minimizers... and robustness

Given training sample{0; }.2 ,, we seek its left and right population minimizers, i.e.
having L;(0) = E;[Bg,(0]|6;)] ; L:(0) = E;[Bg,(0;]|0)] , we want to compute
0} = argmin L;(0) ; 0f = arg mein L.(0)

6
left population minimizer right population minimizer
Theorem: we have 1
0, = VG; o -E;VG(0;)) 6, =E, [ - - ez]
T exp; ' (G(6:))

new old

Robustness: add outlier @« with weight €. The center moves as 0, — 0, =e- z(0,)
If the influence function, z(.), has bounded norm, then the center is robust

Theorem: left robust iff robust for ¢ = 1 ; right robust iff Conale Re

(G+(0) =Q(||6]) A (t#1




TEMs: two examples with all details

TEM Support A 0 G;(h)
1D t-exponential {O, (f:tz)tAJ A 3__—)2‘t t* (%)24 —t* . (logﬁ (tﬂ*) — 1)
1D t-Gaussian (u = 0) —\/llft, \/11775 o2 —% (ce=V/2)1 7 o3t —% - (logges (2¢2.B) — 1)




TEMs: two examples with all details

TEM Support A 0 G;(h)
1D t-exponential {0, (f:f)tAJ A 3_—)2‘t t* (%)2% —t* . (logﬁ (tﬁ*) — 1)
1D t-Gaussian (4 =0) | [, x| |0 —f2 (@vDToS T | —5 - (log.. (2 R)— 1)

TEM

G4(6)

Bg,(6]6)

1D t-exponential

1D t-Gaussian (u = 0)

(log;)” ( J/—0

1

~log, . ((~6)™

t*

2

P . ((g)Hx - (2 — %) - log,. (g) _ 1)
- ((\/Q)H —(3—1) - log 1/ - 1)

Two distinct generalisations of Itakura-Saito
divergence !




TEMs: two examples with all details

TEM Support A 0 G;(h)
1D t-exponential {O, (f:tz)tAJ A =3 t* (%)24 —t* . (log2 1 () - 1)
ID ¢-Gaussian (1= 0) | [~ i, =] | 0~ (VDT | 5 (logue (262H) — 1)
TEM G(0) Bg,(0)|6)
1 2—t* A
1D t-exponential —logy_, ((—9)2—t) t* ((g) — (2 —t*) - log;- (g) — 1)
A 3—t* A
1D t-Gaussian (u = 0) (log,)” (\7—_—0) £ (( %) — (3 —=1t*) - log;. \/g — 1)
TEM 6, 6:
1D t—exponential _E'L \‘W- /Ez ‘WJ —Ez [(—01)2_1:*]
- — B —1 | /R |—1 || = 1 . E, It
1D t-Gaussian (s = 0) | —E | e | /E: | e } e B [( 9;) ]




TEMs: two examples with all details

TEM Support A 0 G;(h)
1D t-exponential {O, (f:f)tAJ A 3__—)2‘t t* (%)24 —t* . (logﬁ (tﬁ*) — 1)
1D +-Gaussian (u=0) | [~ Ay, As] | 02— (@D 0¥ | —5 - (log,.. (22 h) — 1)
TEM G(0) Bg,(0)|6)
1 N 2—tF / 2\ \
1D t-exponential —log,_, ((—H)Q—t) t* -

1D t-Gaussian (u = 0)

(log,)" (55)

Right population minimizer: not the
arithmetic average, unless =1 (Bregman
divergences)

TEM 6, 0,
1D t—exponential —Ez \‘W- /Ez -WJ —Ez [(—01)2_1:*]
: _ BN - O (P S . 1 _ 1 B | (—p) 355
1D t-Gaussian (s = 0) | —E | e | /E: | e e B [( 9;) ]




Experiments

(more in paper)
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Robustness (t-exponential)

(exp. family)
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Robustness: cluster (red), 1 heavy outlier (green)
moves away = resulting cluster center (blue)




Robustness (t-exponential)

Exponential family case robust, but center
still moves “far’

(exp. family)
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Robustness: cluster (red), 1 heavy outlier (green)
moves away = resulting cluster center (blue)




Robustness (t-exponential)
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Robustness (t-exponential)
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Robustness: cluster (red), 1 heavy outlier (green)
moves away = resulting cluster center (blue)



Thank You

Richard Manfred K.
Nock Warmuth
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