Clustering above Exponential Families with Tempered Exponential Measures

Ehsan Amid, Richard Nock and Manfred K. Warmuth

Google Research

<u>Why this work</u>: *k*-means = popular clustering, partition of space $\mathfrak{X} \subseteq \mathbb{R}^d$ by finding set of centers $\mathfrak{C} \doteq {\mathbf{c}_j}_{j \in [k]}$ minimizing loss to *m*-sample, $\mathbb{E}_{i \sim [m]} [\min_{j \in [k]} D(\theta_i \| \mathbf{c}_j)]$

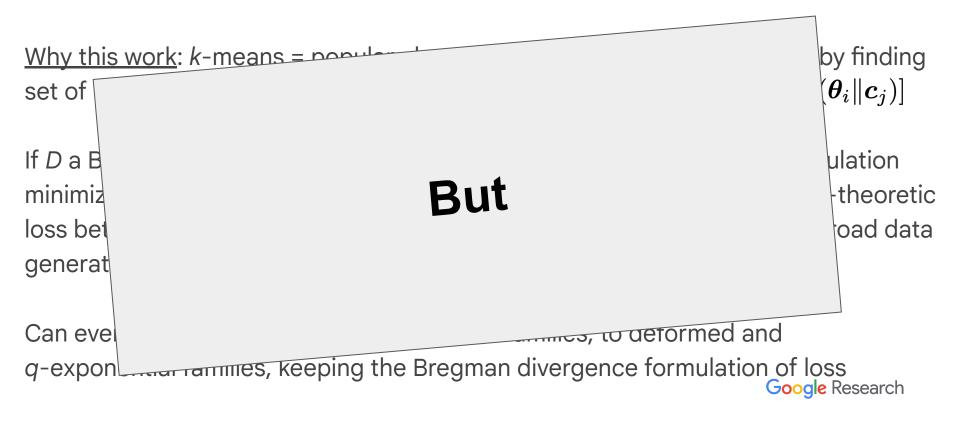
<u>Why this work</u>: *k*-means = popular clustering, partition of space $\mathfrak{X} \subseteq \mathbb{R}^d$ by finding set of centers $\mathfrak{C} \doteq {\mathbf{c}_j}_{j \in [k]}$ minimizing loss to *m*-sample, $\mathbb{E}_{i \sim [m]} [\min_{j \in [k]} D(\theta_i \| \mathbf{c}_j)]$

If *D* a Bregman divergence (Mahalanobis, Itakura-Saito, KL, etc.) then population minimizers trivial to compute **and** we equivalently minimise an information-theoretic loss between *distributions* in exponential families \Rightarrow embeds *k*-means in broad data generating processes

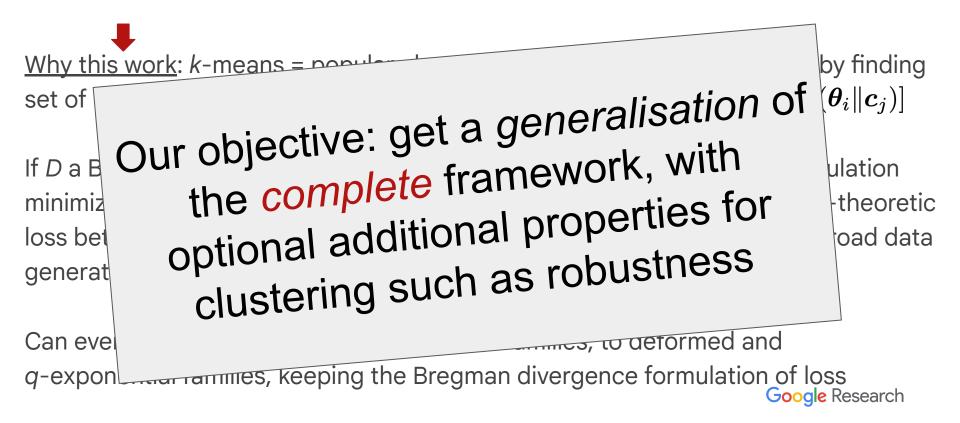
<u>Why this work</u>: *k*-means = popular clustering, partition of space $\mathfrak{X} \subseteq \mathbb{R}^d$ by finding set of centers $\mathfrak{C} \doteq {\mathbf{c}_j}_{j \in [k]}$ minimizing loss to *m*-sample, $\mathbb{E}_{i \sim [m]} [\min_{j \in [k]} D(\theta_i \| \mathbf{c}_j)]$

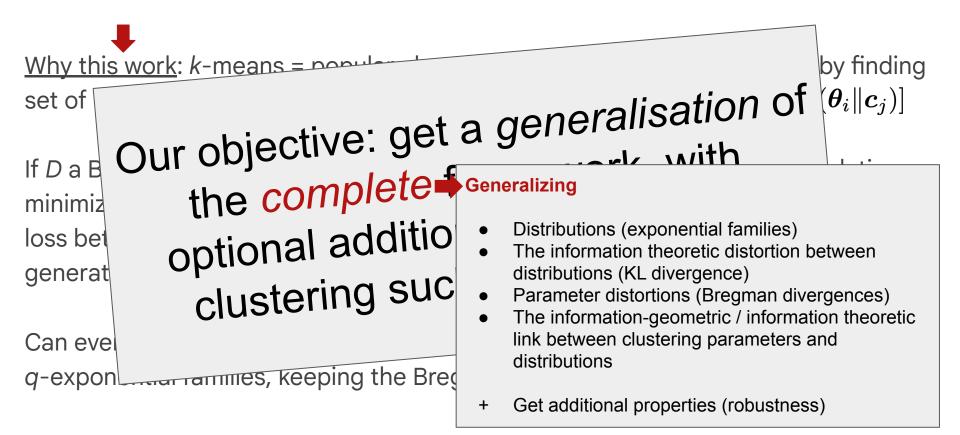
If *D* a Bregman divergence (Mahalanobis, Itakura-Saito, KL, etc.) then population minimizers trivial to compute **and** we equivalently minimise an information-theoretic loss between *distributions* in exponential families \Rightarrow embeds *k*-means in broad data generating processes

Can even be generalized above exponential families, to deformed and *q*-exponential families, keeping the Bregman divergence formulation of loss Google Research



Why this	Work: k-means = populated Universal modeling with Bregman	by finding
set of	Universal modeling with bieg	$(oldsymbol{ heta}_i \ oldsymbol{c}_j)]$
lf D a B		ulation
minimiz		theoretic
loss bet		oad data
generat	drawbacks, such do low robustness to outliers (a Bregman robustness)	
Can eve	robustness to outlione (divergence lacks robustness)	
	rannes, keeping the Bregman divergence formulation of lo	DSS e Research





Axiomatic characterization

Set of probability measures satisfying a constraint on their expectation

$$ilde{\mathcal{P}}_{t|\boldsymbol{\hbar}} \doteq egin{cases} & \left. \mathbb{E}_{ ilde{P}}[\boldsymbol{\phi}] \doteq \int \boldsymbol{\phi}(\boldsymbol{x}) \, ilde{p}(\boldsymbol{x}) \, \mathrm{d}\xi = \boldsymbol{\hbar}, \ & \int ilde{p}(\boldsymbol{x}) \, \mathrm{d}\xi = 1, \ & ilde{p}(\boldsymbol{x}) \geq 0, orall \boldsymbol{x} \in \mathfrak{X}. \end{aligned}
ight.$$

+constraint to maximize entropy $H(P) \doteq -\int p \log p d\xi$ \Rightarrow get an exponential family

$$p_{oldsymbol{ heta}}(oldsymbol{x}) \propto \exp(oldsymbol{ heta}^ op \phi(oldsymbol{x}) - G(oldsymbol{ heta}))$$
 $\stackrel{\uparrow}{oldsymbol{ heta}} =
abla G^{-1}(oldsymbol{\hbar})$
 $\operatorname{ratural parameter}$
 $\operatorname{cumulant}$

Google Research

Axiomatic characterization

Set of probability measures satisfying a constraint on their expectation

$$ilde{\mathcal{P}}_{t|\boldsymbol{\hbar}} \doteq egin{cases} & \mathbb{E}_{ ilde{P}}[\boldsymbol{\phi}] \doteq \int \boldsymbol{\phi}(\boldsymbol{x}) \, ilde{p}(\boldsymbol{x}) \, \mathrm{d}\xi = \boldsymbol{\hbar}, \ & \int ilde{p}(\boldsymbol{x}) \, \mathrm{d}\xi = 1, \ & ilde{p}(\boldsymbol{x}) \geq 0, orall \boldsymbol{x} \in \mathcal{X}. \end{cases}$$

+constraint to maximize entropy

 $H(P) \doteq -\int p \log p d\xi$ $\Rightarrow \text{ get an exponential family}$

$$p_{oldsymbol{ heta}}(oldsymbol{x}) \propto \exp(oldsymbol{ heta}^ op \phi(oldsymbol{x}) - G(oldsymbol{ heta}))$$
 $\stackrel{\uparrow}{oldsymbol{ heta}} =
abla G^{-1}(oldsymbol{\hbar})$
 $\operatorname{ratural parameter}$
 $\operatorname{cumulant}$

Set of unnormalized measures satisfying

a constraint on their expectation

$$\tilde{\mathcal{P}}_{t|\boldsymbol{\hbar}} \doteq \left\{ \tilde{p} \middle| \begin{array}{c} \mathbb{E}_{\tilde{P}}[\boldsymbol{\phi}] \doteq \int \boldsymbol{\phi}(\boldsymbol{x}) \, \tilde{p}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{\xi} = \boldsymbol{\hbar}, \\ \int \tilde{p}(\boldsymbol{x})^{1/t^*} \, \mathrm{d}\boldsymbol{\xi} = 1, \\ \tilde{p}(\boldsymbol{x}) \ge 0, \forall \boldsymbol{x} \in \boldsymbol{\mathfrak{X}}. \end{array} \right\}$$

$$t \in [0,1], t^* \doteq 1/(2-t)$$

Axiomatic characterization

Set of probability measures satisfying a constraint on their expectation

$$ilde{\mathbb{P}}_{t|\boldsymbol{\hbar}} \doteq egin{cases} \tilde{\mathbb{P}}_{t|\boldsymbol{\hbar}} \doteq egin{array}{c} \mathbb{E}_{ ilde{P}}[oldsymbol{\phi}] \doteq \int oldsymbol{\phi}(oldsymbol{x}) \, ilde{p}(oldsymbol{x}) \, \mathrm{d}\xi = oldsymbol{\hbar}, \ \int ilde{p}(oldsymbol{x}) & \mathrm{d}\xi = 1, \ ilde{p}(oldsymbol{x}) \geq 0, orall oldsymbol{x} \in \mathfrak{X}. \end{cases}$$

+constraint to maximize entropy

 $H(P) \doteq -\int p \log p d\xi$ $\Rightarrow \text{ get an exponential family}$

$$p_{\theta}(\boldsymbol{x}) \propto \exp(\boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\boldsymbol{x}) - G(\boldsymbol{\theta}))$$

 $\stackrel{\uparrow}{\boldsymbol{\theta}} = \nabla G^{-1}(\boldsymbol{\hbar})$ cumulant
natural parameter

Set of **unnormalized** measures satisfying a constraint on their expectation

$$\tilde{\mathcal{P}}_{t|\hbar} \doteq \left\{ \tilde{p} \middle| \begin{array}{c} \mathbb{E}_{\tilde{P}}[\boldsymbol{\phi}] \doteq \int \boldsymbol{\phi}(\boldsymbol{x}) \, \tilde{p}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{\xi} = \boldsymbol{\hbar}, \\ \int \tilde{p}(\boldsymbol{x})^{1/t^*} \, \mathrm{d}\boldsymbol{\xi} = 1, \\ \tilde{p}(\boldsymbol{x}) \ge 0, \forall \boldsymbol{x} \in \boldsymbol{\mathfrak{X}}. \end{array} \right\}$$

+maximize a generalized Tsallis entropy $H_t(\tilde{P}) \doteq -\int (\tilde{p}\log_t \tilde{p} - \log_{t-1} \tilde{p})d\xi$ tempered log $\longrightarrow \log_t(z) \doteq \frac{1}{1-t} (z^{1-t} - 1)$

Concave, $\lim_{t \to 1} \log_t = \log_t$

Axiomatic characterization

Set of probability measures satisfying a constraint on their expectation

$$ilde{\mathbb{P}}_{t|\boldsymbol{\hbar}} \doteq egin{cases} & \mathbb{E}_{ ilde{P}}[\boldsymbol{\phi}] \doteq \int \boldsymbol{\phi}(\boldsymbol{x}) \, ilde{p}(\boldsymbol{x}) \, \mathrm{d}\xi = \boldsymbol{\hbar}, \ & \int ilde{p}(\boldsymbol{x}) & \mathrm{d}\xi = 1, \ & ilde{p}(\boldsymbol{x}) \ge 0, orall \boldsymbol{x} \in \mathfrak{X}. \end{cases}$$

+constraint to maximize entropy

 $H(P) \doteq -\int p \log p d\xi$ $\Rightarrow \text{ get an exponential family}$

$$p_{oldsymbol{ heta}}(oldsymbol{x}) \propto \exp(oldsymbol{ heta}^{ op} oldsymbol{\phi}(oldsymbol{x}) - G(oldsymbol{ heta}))$$
 $\stackrel{\uparrow}{oldsymbol{ heta}} =
abla G^{-1}(oldsymbol{\hbar})$
 $\operatorname{cumulan}$
 $\operatorname{cumulan}$

Set of unnormalized measures satisfying a constraint on their expectation

$$\tilde{\mathcal{P}}_{t|\boldsymbol{\hbar}} \doteq \left\{ \tilde{p} \middle| \begin{array}{c} \mathbb{E}_{\tilde{P}}[\boldsymbol{\phi}] \doteq \int \boldsymbol{\phi}(\boldsymbol{x}) \, \tilde{p}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{\xi} = \boldsymbol{\hbar}, \\ \int \tilde{p}(\boldsymbol{x})^{1/t^*} \, \mathrm{d}\boldsymbol{\xi} = 1, \\ \tilde{p}(\boldsymbol{x}) \ge 0, \forall \boldsymbol{x} \in \boldsymbol{\mathfrak{X}}. \end{array} \right\}$$

+maximize a generalized Tsallis entropy $H_t(\tilde{P}) \doteq -\int (\tilde{p}\log_t \tilde{p} - \log_{t-1} \tilde{p}) \mathrm{d}\xi$ $\log_t(z) \doteq \frac{1}{1-t} \left(z^{1-t} - 1\right)$

 $\Rightarrow \text{get a tempered exponential measure}$ $\tilde{p}_{t|\theta}(\boldsymbol{x}) \propto \frac{\exp_t(\boldsymbol{\theta}^{\top}\boldsymbol{\phi}(\boldsymbol{x}))}{\exp_t(G_t(\boldsymbol{\theta}))}$ $\stackrel{\uparrow}{=} \nabla G_t^{-1}(\boldsymbol{\hbar}) \qquad \text{cumulant}$

$$\widetilde{p}_{t|\boldsymbol{\theta}}(\boldsymbol{x}) \propto \exp_t(\boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\boldsymbol{x}) \ominus_t G_t(\boldsymbol{\theta}))$$
 $z \ominus_t x \doteq \frac{z - x}{1 + (1 - t)x}$

Tempered Exponential Measures

Set of unnormalized measures satisfying a constraint on their expectation

$$\tilde{\mathcal{P}}_{t|\boldsymbol{\hbar}} \doteq \left\{ \tilde{p} \middle| \begin{array}{c} \mathbb{E}_{\tilde{P}}[\boldsymbol{\phi}] \doteq \int \boldsymbol{\phi}(\boldsymbol{x}) \, \tilde{p}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{\xi} = \boldsymbol{\hbar}, \\ \int \tilde{p}(\boldsymbol{x})^{1/t^*} \, \mathrm{d}\boldsymbol{\xi} = 1, \\ \tilde{p}(\boldsymbol{x}) \ge 0, \forall \boldsymbol{x} \in \boldsymbol{\mathfrak{X}}. \end{array} \right\}$$

+maximize a generalized Tsallis entropy $H_t(\tilde{P}) \doteq -\int (\tilde{p}\log_t \tilde{p} - \log_{t-1} \tilde{p}) \mathrm{d}\xi$ $\log_t(z) \doteq \frac{1}{1-t} \left(z^{1-t} - 1 \right)$

⇒ get a tempered exponential measure

$$\widetilde{p}_{t|\boldsymbol{ heta}}(\boldsymbol{x}) \propto rac{\exp_t(\boldsymbol{ heta}^{ op}\boldsymbol{\phi}(\boldsymbol{x}))}{\exp_t(G_t(\boldsymbol{ heta}))_{ ext{Google Research}}}$$

 $\boldsymbol{ heta} = \nabla G_t^{-1}(\boldsymbol{\hbar})$
cumulant

$$\tilde{p}_{t|\boldsymbol{\theta}}(\boldsymbol{x}) \propto \exp_t(\boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\boldsymbol{x}) \ominus_t G_t(\boldsymbol{\theta}))$$

 $z \ominus_t x \doteq \frac{z-x}{1+(1-t)x}$

Cumulant in closed form:

$$G_t(\boldsymbol{\theta}) = (\log_t)^* \int (\exp_t)^* (\boldsymbol{\theta}^\top \boldsymbol{\phi}(\boldsymbol{x})) d\xi$$
$$(\log_t)^* (z) \doteq t^* \log_{t^*} \left(\frac{z}{t^*}\right)$$
$$(\exp_t)^* (z) \doteq t^* \exp_{t^*} \left(\frac{z}{t^*}\right)$$
$$\exp_t(z) \doteq [1 + (1 - t)z]_+^{1/(1 - t)} \text{ tempered exp}$$
$$[.]_+ \doteq \max\{0, .\} \qquad \lim_{t \to 1} \exp_t = \exp_t(z)$$

Tempered Exponential Measures

Set of unnormalized measures satisfying a constraint on their expectation

$$\tilde{\mathcal{P}}_{t|\boldsymbol{\hbar}} \doteq \left\{ \tilde{p} \middle| \begin{array}{c} \mathbb{E}_{\tilde{P}}[\boldsymbol{\phi}] \doteq \int \boldsymbol{\phi}(\boldsymbol{x}) \, \tilde{p}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{\xi} = \boldsymbol{\hbar}, \\ \int \tilde{p}(\boldsymbol{x})^{1/t^*} \, \mathrm{d}\boldsymbol{\xi} = 1, \\ \tilde{p}(\boldsymbol{x}) \ge 0, \forall \boldsymbol{x} \in \boldsymbol{\mathfrak{X}}. \end{array} \right\}$$

+maximize a generalized Tsallis entropy $H_t(\tilde{P}) \doteq -\int (\tilde{p}\log_t \tilde{p} - \log_{t-1} \tilde{p}) \mathrm{d}\xi$ $\log_t(z) \doteq \frac{1}{1-t} \left(z^{1-t} - 1\right)$

 $\begin{array}{l} \Rightarrow \text{ get a tempered exponential measure} \\ \tilde{p}_{t|\boldsymbol{\theta}}(\boldsymbol{x}) \propto \frac{\exp_t(\boldsymbol{\theta}^\top \boldsymbol{\phi}(\boldsymbol{x}))}{\exp_t(G_t(\boldsymbol{\theta})) \text{Google Research}} \\ \stackrel{\uparrow}{\boldsymbol{\theta}} = \nabla G_t^{-1}(\boldsymbol{\hbar}) \qquad \text{cumulant} \end{array}$

$$\tilde{p}_{t|\boldsymbol{\theta}}(\boldsymbol{x}) \propto \exp_t(\boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\boldsymbol{x}) \ominus_t G_t(\boldsymbol{\theta}))$$

 $z \ominus_t x \doteq \frac{z-x}{1+(1-t)x}$

Cumulant in closed form:

$$G_t(\boldsymbol{\theta}) = (\log_t)^* \int (\exp_t)^* (\boldsymbol{\theta}^\top \boldsymbol{\phi}(\boldsymbol{x})) \mathrm{d}\xi$$

Total mass in closed form:

$$\int \tilde{p}_{t|\boldsymbol{\theta}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{\xi} = 1 + (1-t)(G_t(\boldsymbol{\theta}) - \boldsymbol{\theta}^{\top}\boldsymbol{\hbar})$$

Tempered Exponential Measures

Set of unnormalized measures satisfying a constraint on their expectation

$$\tilde{\mathcal{P}}_{t|\boldsymbol{\hbar}} \doteq \left\{ \tilde{p} \middle| \begin{array}{c} \mathbb{E}_{\tilde{P}}[\boldsymbol{\phi}] \doteq \int \boldsymbol{\phi}(\boldsymbol{x}) \, \tilde{p}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{\xi} = \boldsymbol{\hbar}, \\ \int \tilde{p}(\boldsymbol{x})^{1/t^*} \, \mathrm{d}\boldsymbol{\xi} = 1, \\ \tilde{p}(\boldsymbol{x}) \ge 0, \forall \boldsymbol{x} \in \boldsymbol{\mathcal{X}}. \end{array} \right\}$$

+maximize a generalized Tsallis entropy $H_t(\tilde{P}) \doteq -\int (\tilde{p}\log_t \tilde{p} - \log_{t-1} \tilde{p}) \mathrm{d}\xi$ $\log_t(z) \doteq \frac{1}{1-t} \left(z^{1-t} - 1\right)$

 $\begin{array}{l} \Rightarrow \text{ get a tempered exponential measure} \\ \tilde{p}_{t|\boldsymbol{\theta}}(\boldsymbol{x}) \propto \frac{\exp_t(\boldsymbol{\theta}^{\top}\boldsymbol{\phi}(\boldsymbol{x}))}{\exp_t(G_t(\boldsymbol{\theta}))\text{Google Research}} \\ \stackrel{\uparrow}{\boldsymbol{\theta}} = \nabla G_t^{-1}(\boldsymbol{\hbar}) \qquad \text{cumulant} \end{array}$

$$\tilde{p}_{t|\boldsymbol{\theta}}(\boldsymbol{x}) \propto \exp_t(\boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\boldsymbol{x}) \ominus_t G_t(\boldsymbol{\theta}))$$

 $z \ominus_t x \doteq \frac{z-x}{1+(1-t)x}$

Cumulant in closed form:

$$G_t(\boldsymbol{\theta}) = (\log_t)^* \int (\exp_t)^* (\boldsymbol{\theta}^\top \boldsymbol{\phi}(\boldsymbol{x})) \mathrm{d}\xi$$

Total mass in closed form:

$$\tilde{p}_{t|\boldsymbol{\theta}}(\boldsymbol{x})\mathrm{d}\xi = 1 + (1-t)(G_t(\boldsymbol{\theta}) - \boldsymbol{\theta}^{\top}\boldsymbol{\hbar})$$

 $\tilde{p}_{t|\boldsymbol{\theta}}^{1/t^*} \text{= co-density}$

Tempered Exponential Measures

Set of unnormalized measures satisfying a constraint on their expectation

$$\tilde{\mathcal{P}}_{t|\boldsymbol{\hbar}} \doteq \left\{ \tilde{p} \middle| \begin{array}{c} \mathbb{E}_{\tilde{P}}[\boldsymbol{\phi}] \doteq \int \boldsymbol{\phi}(\boldsymbol{x}) \, \tilde{p}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{\xi} = \boldsymbol{\hbar}, \\ \int \tilde{p}(\boldsymbol{x})^{1/t^*} \, \mathrm{d}\boldsymbol{\xi} = 1, \\ \tilde{p}(\boldsymbol{x}) \ge 0, \forall \boldsymbol{x} \in \boldsymbol{\mathfrak{X}}. \end{array} \right\}$$

+maximize a generalized Tsallis entropy $H_t(\tilde{P}) \doteq -\int (\tilde{p}\log_t \tilde{p} - \log_{t-1} \tilde{p}) \mathrm{d}\xi$ $\log_t(z) \doteq \frac{1}{1-t} \left(z^{1-t} - 1\right)$

 $\begin{array}{l} \Rightarrow \text{ get a tempered exponential measure} \\ \tilde{p}_{t|\boldsymbol{\theta}}(\boldsymbol{x}) \propto \frac{\exp_t(\boldsymbol{\theta}^\top \boldsymbol{\phi}(\boldsymbol{x}))}{\exp_t(G_t(\boldsymbol{\theta})) \text{Google Research}} \\ \stackrel{\uparrow}{\boldsymbol{\theta}} = \nabla G_t^{-1}(\boldsymbol{\hbar}) \qquad \text{cumulant} \end{array}$

Information Geometric Distortions (gen. Bregman divs)

Information-theoretic distortion between two TEMs, generalizing (reverse) KL divergence:

$$F_{t}(\tilde{P}_{t|\hat{\theta}} \| \tilde{P}_{t|\theta}) \doteq \int f\left(\frac{\mathrm{d}\tilde{p}_{t|\hat{\theta}}}{\mathrm{d}\xi} \oslash_{t} \frac{\mathrm{d}\tilde{p}_{t|\theta}}{\mathrm{d}\xi}\right) \cdot \mathrm{d}\tilde{p}_{t|\theta} \qquad \qquad f \doteq -\log_{t} \\ x \oslash_{t} y \doteq [x^{1-t} - y^{1-t} + 1]_{+}^{\frac{1}{1-t}}$$

Information Geometric Distortions (gen. Bregman divs)

Information-theoretic distortion between two TEMs, generalizing (reverse) KL divergence:

$$F_t(\tilde{P}_{t|\hat{\theta}} \| \tilde{P}_{t|\theta}) \doteq \int f\left(\frac{\mathrm{d}\tilde{p}_{t|\hat{\theta}}}{\mathrm{d}\xi} \oslash_t \frac{\mathrm{d}\tilde{p}_{t|\theta}}{\mathrm{d}\xi}\right) \cdot \mathrm{d}\tilde{p}_{t|\theta} \qquad \qquad f \doteq -\log_t \\ x \oslash_t y \doteq [x^{1-t} - y^{1-t} + 1]_+^{\frac{1}{1-t}}$$

Theorem: for any 2 members of the same TEM family, $F_t(\tilde{P}_{t|\hat{\theta}} \| \tilde{P}_{t|\theta}) = B_{G_t}(\hat{\theta} \| \theta)$, with

$$B_{G_t}(\hat{\boldsymbol{\theta}} \| \boldsymbol{\theta}) \doteq \frac{G_t(\hat{\boldsymbol{\theta}}) - G_t(\boldsymbol{\theta}) - (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})^\top \nabla G_t(\boldsymbol{\theta})}{1 + (1 - t)G_t(\hat{\boldsymbol{\theta}})} \ \ \text{Bregman divergence}$$

Google Research

Clustering: population minimizers

Given training sample $\{\boldsymbol{\theta}_i\}_{i=1}^m$, we seek its left and right population minimizers, i.e. having $L_1(\boldsymbol{\theta}) \doteq \mathbb{E}_i[B_{G_t}(\boldsymbol{\theta} \| \boldsymbol{\theta}_i)]$; $L_r(\boldsymbol{\theta}) \doteq \mathbb{E}_i[B_{G_t}(\boldsymbol{\theta}_i \| \boldsymbol{\theta})]$, we want to compute $\boldsymbol{\theta}_l \doteq \arg\min_{\boldsymbol{\theta}} L_l(\boldsymbol{\theta})$; $\boldsymbol{\theta}_r \doteq \arg\min_{\boldsymbol{\theta}} L_r(\boldsymbol{\theta})$

left population minimizer

right population minimizer

Clustering: population minimizers

Given training sample $\{\theta_i\}_{i=1}^m$, we seek its left and right population minimizers, i.e. having $L_1(\boldsymbol{\theta}) \doteq \mathbb{E}_i[B_{G_t}(\boldsymbol{\theta} \| \boldsymbol{\theta}_i)]$; $L_r(\boldsymbol{\theta}) \doteq \mathbb{E}_i[B_{G_t}(\boldsymbol{\theta}_i \| \boldsymbol{\theta})]$, we want to compute

$$\boldsymbol{\theta}_{\mathrm{l}} \doteq \arg\min_{\boldsymbol{\theta}} L_{\mathrm{l}}(\boldsymbol{\theta}) \quad ; \quad \boldsymbol{\theta}_{\mathrm{r}} \doteq \arg\min_{\boldsymbol{\theta}} L_{\mathrm{r}}(\boldsymbol{\theta})$$

left population minimizer

right population minimizer

Theorem: we have

$$\boldsymbol{\theta}_{\mathrm{l}} = \nabla G_t^{-1}(\alpha_* \cdot \mathbb{E}_i \nabla G_t(\boldsymbol{\theta}_i))$$

$$\boldsymbol{\theta}_{\mathrm{r}} = \mathbb{E}_{i} \left[\frac{1}{\exp_{t}^{1-t}(G_{t}(\boldsymbol{\theta}_{i}))} \cdot \boldsymbol{\theta}_{i}
ight]$$

 $\alpha_* > 0$

Precise interval to search (*Cf* paper) Closed forms available in particular cases

Google Research

Clustering: population minimizers... and robustness

Given training sample $\{\boldsymbol{\theta}_i\}_{i=1}^m$, we seek its left and right population minimizers, i.e. having $L_1(\boldsymbol{\theta}) \doteq \mathbb{E}_i[B_{G_t}(\boldsymbol{\theta} \| \boldsymbol{\theta}_i)]$; $L_r(\boldsymbol{\theta}) \doteq \mathbb{E}_i[B_{G_t}(\boldsymbol{\theta}_i \| \boldsymbol{\theta})]$, we want to compute $\boldsymbol{\theta}_l \doteq \arg\min_{\boldsymbol{\theta}} L_1(\boldsymbol{\theta})$; $\boldsymbol{\theta}_r \doteq \arg\min_{\boldsymbol{\theta}} L_r(\boldsymbol{\theta})$

left population minimizer

right population minimizer

Theorem: we have

$$\boldsymbol{\theta}_{\mathrm{l}} = \nabla G_t^{-1}(\alpha_* \cdot \mathbb{E}_i \nabla G_t(\boldsymbol{\theta}_i)) \qquad \boldsymbol{\theta}_{\mathrm{r}} = \mathbb{E}_i \left| \frac{1}{\exp_t^{1-t}(G_t(\boldsymbol{\theta}_i))} \cdot \boldsymbol{\theta}_i \right|$$

Robustness: add outlier $\boldsymbol{\theta}_*$ with weight $\boldsymbol{\epsilon}$. The center moves as $\boldsymbol{\theta}_{l/r}^{new} - \boldsymbol{\theta}_{l/r}^{old} = \boldsymbol{\epsilon} \cdot \boldsymbol{z}(\boldsymbol{\theta}_*)$ If the influence function, $\boldsymbol{z}(.)$, has bounded norm, then the center is robust

Google Research

Clustering: population minimizers... and robustness

Given training sample $\{\theta_i\}_{i=1}^m$, we seek its left and right population minimizers, i.e. having $L_1(\boldsymbol{\theta}) \doteq \mathbb{E}_i[B_{G_t}(\boldsymbol{\theta} \| \boldsymbol{\theta}_i)]$; $L_r(\boldsymbol{\theta}) \doteq \mathbb{E}_i[B_{G_t}(\boldsymbol{\theta}_i \| \boldsymbol{\theta})]$, we want to compute $oldsymbol{ heta}_{
m l}\doteq rg\min_{oldsymbol{ heta}} L_{
m l}(oldsymbol{ heta}) ~~;~~oldsymbol{ heta}_{
m r}\doteq rg\min_{oldsymbol{ heta}} L_{
m r}(oldsymbol{ heta})$ right population minimizer left population minimizer Theorem: we have $\boldsymbol{\theta}_{\mathrm{l}} = \nabla G_{t}^{-1}(\alpha_{*} \cdot \mathbb{E}_{i} \nabla G_{t}(\boldsymbol{\theta}_{i})) \qquad \boldsymbol{\theta}_{\mathrm{r}} = \mathbb{E}_{i} \left| \frac{1}{\exp^{1-t}(G_{t}(\boldsymbol{\theta}_{i}))} \cdot \boldsymbol{\theta}_{i} \right|$ Robustness: add outlier $\boldsymbol{\theta}_*$ with weight $\boldsymbol{\epsilon}$. The center moves as $\boldsymbol{\theta}_{l/r}^{new} - \boldsymbol{\theta}_{l/r}^{old} = \boldsymbol{\epsilon} \cdot \boldsymbol{z}(\boldsymbol{\theta}_*)$ If the influence function, z(.), has bounded norm, then the center is robust

Google Research

Theorem: left robust *iff* robust for t = 1; right robust *iff*

TEM	Support	λ	θ	ħ	$G_t^\star(\hbar)$
1D t -exponential	$\left[0,rac{3-2t}{(1-t)\lambda} ight]$	λ	$\frac{-\lambda}{3-2t}$	$t^*\left(rac{3-2t}{\lambda} ight)^{2-t^*}$	$-t^* \cdot \left(\log_{\frac{1}{2-t^*}} \left(\frac{\hbar}{t^*} \right) - 1 \right)$
1D t-Gaussian ($\mu = 0$)	$\left[-rac{1}{\sqrt{1-t}},rac{1}{\sqrt{1-t}} ight]$	σ^2	$-rac{t^{*}}{2\sigma^{2}}$	$(c_{t^*}\sqrt{2})^{1-t^*}\sigma^{3-t^*}$	$-\frac{t^*}{2} \cdot \left(\log_{t^{**}}(2c_{t^*}^2\hbar) - 1\right)$

TEM	Support λ ℓ		θ	ħ	$G_t^\star(\hbar)$	
1D t -exponential	$\left[0,rac{3-2t}{(1-t)\lambda} ight]$	λ	$rac{-\lambda}{3-2t}$	$t^* \left(rac{3-2t}{\lambda} ight)^{2-t^*}$	$-t^* \cdot \left(\log_{\frac{1}{2-t^*}} \left(\frac{\hbar}{t^*} \right) - 1 \right)$	
1D <i>t</i> -Gaussian $(\mu = 0)$	$\left[-\frac{1}{\sqrt{1-t}},\frac{1}{\sqrt{1-t}}\right]$	σ^2	$-rac{t^*}{2\sigma^2}$	$(c_{t^*}\sqrt{2})^{1-t^*}\sigma^{3-t^*}$	$-\frac{t^*}{2} \cdot \left(\log_{t^{**}} (2c_{t^*}^2 \hbar) - 1 \right)$	
\mathbf{TEM}	$G_t(oldsymbol{ heta})$			$\ B_{G_t}(\hat{oldsymbol{ heta}}\ oldsymbol{ heta})$		
1D t-exponential	$-\log_{2-t}\left((-\theta)^{\frac{1}{2-t}}\right)$)	$t^* \cdot \left(\left(\frac{\hat{\theta}}{\theta} \right)^{2-t^*} - (2-t^*) \cdot \log_{t^*} \left(\frac{\hat{\theta}}{\theta} \right) - 1 \right)$		
1D <i>t</i> -Gaussian ($\mu = 0$)	$\left(\log_t\right)^* \left(\frac{c_{t^*}}{\sqrt{-\theta}}\right)$		$\frac{t^{*}}{2}$	$\frac{t^*}{2} \cdot \left(\left(\sqrt{\frac{\hat{\theta}}{\theta}} \right)^{3-t^*} - (3-t^*) \cdot \log_{t^*} \sqrt{\frac{\hat{\theta}}{\theta}} - 1 \right)$		

Two distinct generalisations of Itakura-Saito divergence !

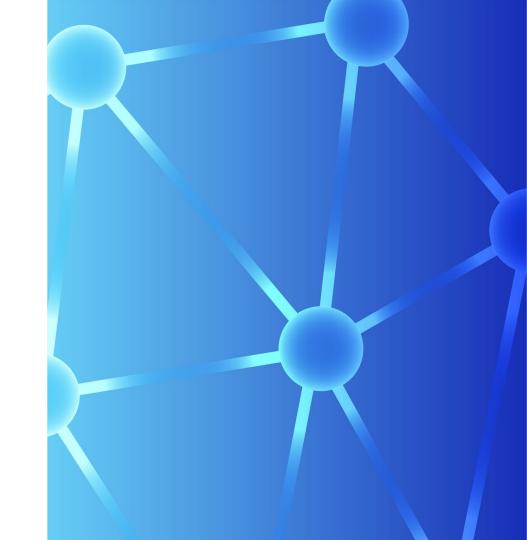
TEM	Support	λ (θ ħ	,	$G_t^{\star}(\hbar)$
1D t -exponential	$\left[0, rac{3-2t}{(1-t)\lambda} ight]$	$\lambda = \frac{-}{3}$	$\frac{-\lambda}{-2t}$ $t^*\left(\frac{3-2}{\lambda}\right)$	$\left(\frac{t}{t}\right)^{2-t^*}$	$-t^* \cdot \left(\log_{\frac{1}{2-t^*}} \left(\frac{\hbar}{t^*} \right) - 1 \right)$
1D <i>t</i> -Gaussian ($\mu = 0$)	$\left[-rac{1}{\sqrt{1-t}},rac{1}{\sqrt{1-t}} ight]$	$\sigma^2 - \frac{1}{2}$	$\frac{t^*}{2\sigma^2} (c_{t^*}\sqrt{2})^{1-1}$	$-t^*\sigma^{3-t^*}$	$-\frac{t^*}{2} \cdot \left(\log_{t^{**}}(2c_{t^*}^2\hbar) - 1\right)$
			-		
TEM	$G_t(\boldsymbol{ heta})$		$B_{G_t}(\hat{oldsymbol{ heta}} \ oldsymbol{ heta})$		
1D t -exponential	$-\log_{2-t}\left((-\theta)^{\frac{1}{2-t}}\right)$		$t^* \cdot \left(\left(\frac{\hat{\theta}}{\theta} \right)^{2-t^*} - (2-t^*) \cdot \log_{t^*} \left(\frac{\hat{\theta}}{\theta} \right) - 1 \right)$		
1D t-Gaussian ($\mu = 0$)	$\left(\log_t\right)^* \left(\frac{c_{t^*}}{\sqrt{-\theta}}\right)$		$\frac{t^*}{2} \cdot \left(\left(\sqrt{\frac{\hat{\theta}}{\theta}} \right)^{3-t^*} - (3-t^*) \cdot \log_{t^*} \sqrt{\frac{\hat{\theta}}{\theta}} - 1 \right)$		
TEM	$\boldsymbol{\theta}_1$	$\theta_{\rm r}$			
1D t-exponential	$-\mathbb{E}_{i}\left[\frac{1}{(-\theta_{i})^{1}}\right]$		$\left[\frac{1}{(-\theta_i)^{2-t^*}}\right]$		$\frac{1}{-\mathbb{E}_i\left[(-\theta_i)^{2-t^*}\right]}$
1D <i>t</i> -Gaussian $(\mu = 0)$		$\left[\frac{-t^{*}}{2}\right]/\mathbb{E}_{i}$		$-\frac{1}{(c_t*)}$	$rac{1}{(t^*)^{1-t^*}} \cdot \mathbb{E}_i\left[(- heta_i)^{rac{3-t^*}{2}} ight]$

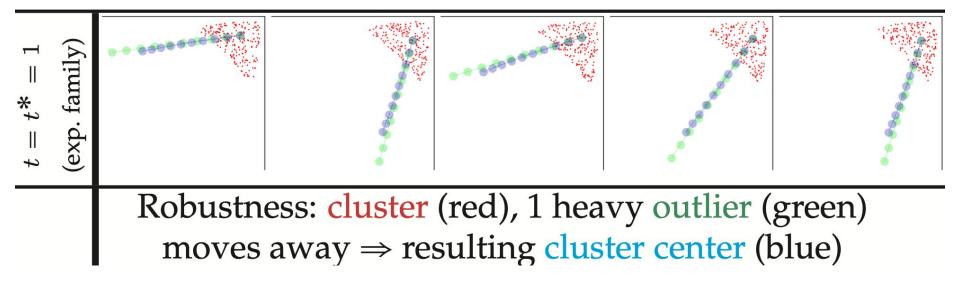
TEM	Support λ	θ ħ	į	$G^{\star}_t(\hbar)$	
1D t -exponential	$\left[0, \frac{3-2t}{(1-t)\lambda}\right] \qquad \lambda \qquad \frac{3}{3}$	$\frac{-\lambda}{3-2t}$ $t^*\left(\frac{3-2}{\lambda}\right)$	$\left(\frac{t}{2}\right)^{2-t^*}$	$-t^* \cdot \left(\log_{\frac{1}{2-t^*}} \left(\frac{\hbar}{t^*} \right) - 1 \right)$	
1D <i>t</i> -Gaussian $(\mu = 0)$	$-\frac{1}{\sqrt{1-t}},\frac{1}{\sqrt{1-t}}\right] \sigma^2 -\frac{t^*}{2\sigma^2} (c_t \cdot \sqrt{2})$		$-t^*\sigma^{3-t^*}$	$-\frac{t^{*}}{2} \cdot \left(\log_{t^{**}} (2c_{t^{*}}^{2}\hbar) - 1 \right)$	
TEM	$G_t(\boldsymbol{ heta})$		$B_{G_t}(\hat{\boldsymbol{ heta}} \ \boldsymbol{ heta})$		
1D t -exponential	$-\log_{2-t}\left((-\theta)^{\frac{1}{2-t}}\right)$	$t^* \cdot \left(\left(\begin{array}{c} 1 \\ Right population minimizer: not the \end{array} \right) \right)$			
1D <i>t</i> -Gaussian $(\mu = 0)$	$\left(\log_t\right)^* \left(\frac{c_{t^*}}{\sqrt{-\theta}}\right)$	$\frac{t^*}{2} \cdot \left(\left(\right) \right)$			
TEM	θ_1			$\theta_{\rm r}$	
1D t-exponential		$2i\left[\frac{1}{(- heta_i)^{2-t^*}} ight]$		$-\mathbb{E}_i\left[(-\theta_i)^{2-t^*}\right]$	
1D <i>t</i> -Gaussian $(\mu = 0)$	$\left -\mathbb{E}_{i} \left[rac{1}{(- heta_{i})^{rac{1-t^{st}}{2}}} ight] /\mathbb{E}$	$\left[\frac{1}{(- heta_i)^{rac{3-t^*}{2}}} ight]$	$-\frac{1}{(c_t*)}$	$rac{1}{(t^*)^{1-t^*}} \cdot \mathbb{E}_i\left[(- heta_i)^{rac{3-t^*}{2}} ight]$	

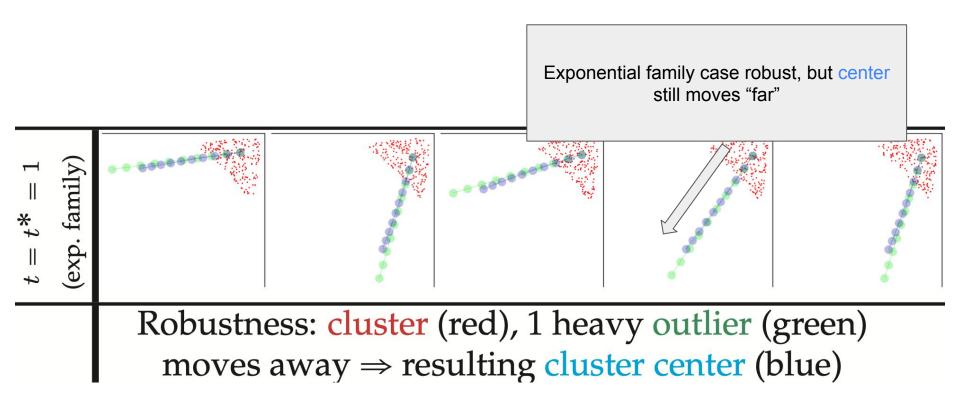
Experiments

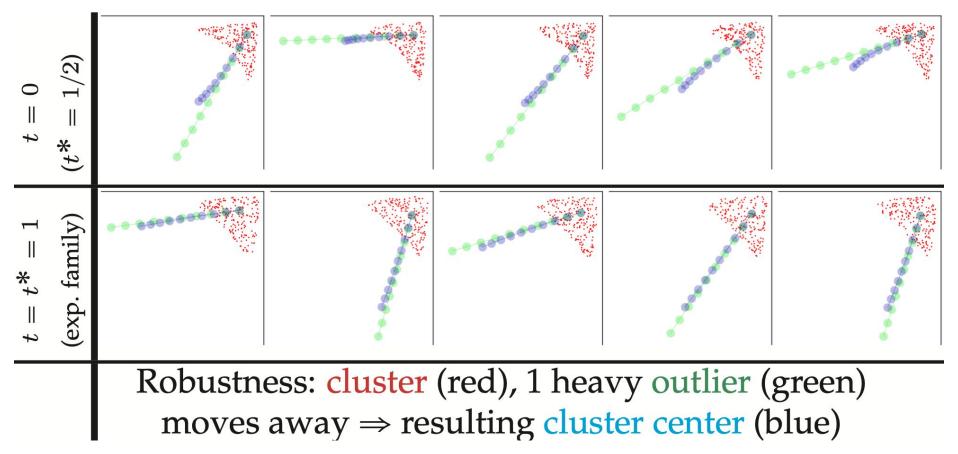
(more in paper)

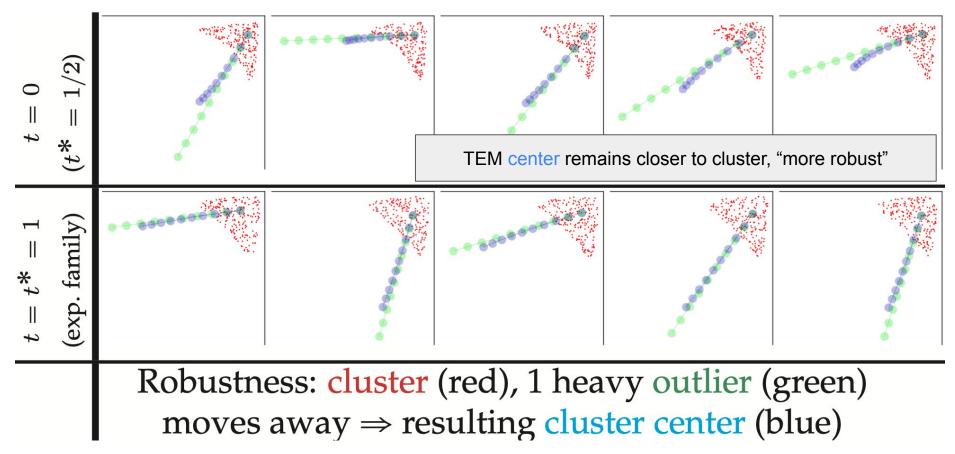
Google Research











Thank You

Ehsan Amid

Richard Nock

Google Research

