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Our objective: get a generalisation of 

the complete framework, with 
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clustering such as robustness

Generalizing 

● Distributions (exponential families)
● The information theoretic distortion between 

distributions (KL divergence)
● Parameter distortions (Bregman divergences)
● The information-geometric / information theoretic 

link between clustering parameters and 
distributions

+ Get additional properties (robustness)
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Total mass in closed form:
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Given training sample               , we seek its left and right population minimizers, i.e. 
having                                                                                  , we want to compute

Theorem: we have

Robustness: add outlier      with weight   . The center moves as
If the influence function,        , has bounded norm, then the center is robust

Theorem: left robust iff robust for              ; right robust iff

Clustering: population minimizers… and robustness

left population minimizer right population minimizer
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TEMs: two examples with all details

Right population minimizer: not the 
arithmetic average, unless t=1 (Bregman 

divergences)



Experiments

(more in paper)
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Robustness (t-exponential)

TEM center remains closer to cluster, “more robust”
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