
Data Representation: Objectives

● refs: [O’H&Bryant, sect 2.1,2.4], [Tanembaum, appendix B], related web links

● understand how binary data is organized on a computer, and the units for counting

them

● understand how characters and strings are encoded as bit patterns

● understand the difference between the big- and little-endian storage conventions

COMP2300: Data Representation 2015 ◭◭ ◭ • ◮ ◮◮ × 1

Bit, Byte and Word

● basic unit of memory is the bit (Binary digIT)

● one bit is too small to be generally useful, so bits are grouped together:

■ nibble: 4 bits (cf. a hex digit)

■ byte: 8 bits (e.g. 1010 1010 or 1000 0001)

■ word: 1, 2, 4 or 8 bytes (usually 4 or 8)

■ word length depends on processor, operating system, etc. (e.g. 8 bytes for

Intel/AMD’s x86-64 and most modern architectures)

● data and machine instructions are normally stored and accessed in words (in

memory)

■ main memory can be thought of as a large array of bytes

■ modern computers can access memory in units of bytes and words (and data

sizes in-between)

◆ data of a certain size must be properly aligned

COMP2300: Data Representation 2015 ◭◭ ◭ • ◮ ◮◮ × 2

Characters and Strings

● text can be stored in memory by using a number to represent every character

■ ASCII (American Standard Code for Information Interchange): 7 bits, 128

characters (see man ascii)

■ EBCDIC: Extended Binary-Coded Decimal Interchange Code (8 bits)

■ UCS/UNICODE: attempts to extend ASCII to other languages (65,536

characters) (even tengwar is there!)

■ UTF-8 is a variable width standard that can represent Unicode characters and

is backward compatible with ASCII

● a string is a sequence of characters, usually terminated with

a byte value of 0

● example: 43 4F 4D 50 32 33 30 30 0016

COMP2300: Data Representation 2015 ◭◭ ◭ • ◮ ◮◮ × 4



Big-endian versus Little-endian Integers

● small (how small?) integers are sometimes stored in one byte

● most integers are stored in (longer) words; how are they arranged in memory?

Example: 12654071310 stored in 4 bytes: 00000111 10001010 11011011 101010012

Address big-endian little-endian

FF16 10101001 00000111

FE16 11011011 10001010

FD16 10001010 11011011

FC16 00000111 10101001

FC FD FE FF

little: LSB MSB

big: MSB LSB

● big-endian stores the most significant byte (MSB) at the lowest address in the word,

little-endian in the highest (see also endian.c. Origin of term endian)

● similar to use of me@cs.anu.edu.au OR me@au.edu.anu.cs (e.g. JANET

network in the UK)

● little endian: (Intel) more natural and consistent way to pick up 1, 2, 4, or longer

byte integers (making multi-precision arithmetic easier)

● big endian: (SPARC, IBM) MSB first gives easy testing of +ve/-ve. Numbers stored

in order they are printed, making binary to decimal conversion easier

● potential confusion in communication with differing endianness!

COMP2300: Data Representation 2015 ◭◭ ◭ • ◮ ◮◮ × 5


