Data Representation: Objectives

@ refs: [O’H&Bryant, sect 2.1,2.4], [Tanembaum, appendix B], related web links

@ understand how binary data is organized on a computer, and the units for counting
them

@ understand how characters and strings are encoded as bit patterns

@ understand the difference between the big- and little-endian storage conventions

COMP2300: Data Representation 2015 <4< <o p pp»

Bit, Byte and Word

@ basic unit of memory is the bit (Binary digIT)
@ one bit is too small to be generally useful, so bits are grouped together:

M nibble: 4 bits (cf. a hex digit)

I byte: 8 bits (e.g. 1010 1010 or 1000 0001)

M word: 1, 2, 4 or 8 bytes (usually 4 or 8)

M word length depends on processor, operating system, etc. (e.g. 8 bytes for
Intel/AMD’s x86-64 and most modern architectures)

@ data and machine instructions are normally stored and accessed in words (in
memory)

B main memory can be thought of as a large array of bytes

B modern computers can access memory in units of bytes and words (and data
sizes in-between)
@ data of a certain size must be properly aligned

COMP2300: Data Representation

2015 <4< <o p p» 2

Kilobyte, Megabyte, Gigabyte, ...

There are a number of different standards about the size of data — care must be taken

(depends on the context). (figure from Wikipedia)
Multiples of bytes VeT-E @® my current desktop machine
Sl decimal prefixes Binary IEC binary prefixes has:
Name Value usage Name Value B 3072 KiB cache memory,
(Symbol) (Symbol)

8.0 GiB main memory
kilobyte (kB/KB) 10° 21? kibibyte (kiB) 210

B 282 GiB hard disk, with
megabyte (MB) 10° 220 mebibyte (MiB) 220 1 GiB
gigabyte (GB) 10° 230 gibibyte (GiB) 230 0.6 GiB swap space
werabyte (T8) 102 240 tepipyie rigy 2% @ CD-ROMs store around

petabyte (PB) 1015 259 pebibyte (PiB) 250 703 MiB

exabyte (EB) 1018 250 oxpibyte (EiB) 250 @® DVDs store around 4.3 to
zettabyte (ZB) 1021 270 zebibyte (ziB) 270 8.0 GiB

yottabyte (YB) 1024 280 yobibyte (YiB) 280 @ mass storage systems:
See also: Multiples of bits - Orders of magnitude of data ~1PB

COMP2300: Data Representation 2015 <4< <o p pp 3

Characters and Strings

@ text can be stored in memory by using a number to represent every character

B ASCII (American Standard Code for Information Interchange): 7 bits, 128
characters (see man ascii)

I EBCDIC: Extended Binary-Coded Decimal Interchange Code (8 bits)

B UCS/UNICODE: attempts to extend ASCII to other languages (65,536
characters) (even tengwar is there!)

B UTF-8is a variable width standard that can represent Unicode characters and
is backward compatible with ASCII

@ a string is a sequence of characters, usually terminated with
a byte value of 0

® cxample: 43 4F 4D 50 32 33 30 30 001g

COMP2300: Data Representation 2015 <4< <o p pp» 4

Big-endian versus Little-endian Integers

small (how small?) integers are sometimes stored in one byte

most integers are stored in (longer) words; how are they arranged in memory?
Example: 126540713+ stored in 4 bytes: 00000111 10001010 11011011 10101001,

Address big-endian little-endian
FF1e 10101001 00000111
FEq6 11011011 10001010
FD{¢ 10001010 11011011
FCis 00000111 10101001

big-endian stores the most significant byte (MSB) at the lowest address in the word,
little-endian in the highest (see also endian.c. Origin of term endian)

FC FD FE FF
litle: [LSB_| \ [MSB |

big: [MSB_| [[LB |

similar to use of me@cs.anu.edu.au OR me@au.edu.anu.cs (e.g. JANET
network in the UK)

little endian: (Intel) more natural and consistent way to pick up 1, 2, 4, or longer
byte integers (making multi-precision arithmetic easier)

big endian: (SPARC, IBM) MSB first gives easy testing of +ve/-ve. Numbers stored
in order they are printed, making binary to decimal conversion easier

potential confusion in communication with differing endianness!

COMP2300: Data Representation 2015 <4< <o p P 5

