
Graph Search

P@trik Haslum

ANU/NICTA

2012

2 / 37

Demo Code

http://users.cecs.anu.edu.au/
˜patrik/searchdemo/

http://users.cecs.anu.edu.au/~patrik/searchdemo/
http://users.cecs.anu.edu.au/~patrik/searchdemo/

Graph Search Problems 3 / 37

“Tree” vs. “Graph” Search

{{p}, {¬p,q}}

{∅, {q}}

¬p

{{q}}

{∅}

¬q

∅

q

p

* Decision variables &
constraints.

* Search space is a tree.

* Solution is a valid node.

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(4,1)

(4,2)

(4,3)

* States & moves.

* Search space is a graph.

* Solution is a path from
initial state to target state.

Graph Search Problems 4 / 37

Single- and Multi-Agent Path-Finding

* Computer games, Robotics.

* Non-collision constraint.

* Movement constraints.

* Fixed discretisation (grid):

* Roadmap.

* k agents, n positions: O(nk)
states.

Graph Search Problems 5 / 37

Reachability in Discrete State Systems

* Systems modelled by components with discrete states
and (partially) synchronised transitions.

* k components with n states: O(nk) system states.

* Verification
(model checking).

* DES Diagnosis.

Graph Search Problems 6 / 37

Genome Edit Distance Computation

S4

G11
S6S7

S3

S1

−G84 S5

S2

→ S4

−S7

−S6G11

S3

S1

−G84 S5

S2

→ S4

−S7

−S3−S6

G11

S1

−G84 S5

S2

→ S4

−S7

−S3S6

G11

S1

−G84 S5

S2

* States: Signed (cyclic) permutations.
- n elements: 2n × (n − 1)! states.

* Moves: Segment inversion, transposition & transversion.

Graph Search Problems 7 / 37

Puzzles and Games

Graph Search Problems 8 / 37

“Graph” vs. “Tree” Model

* A “graph” problem can be expressed in “tree” form:
- Decision variables: 1st move, 2nd move, ...
- Constraint: Sequence of moves forms a contiguous path

in the state space.

* This requires a bound on path length:
- If the bound is less than the length of the shortest

optimal path, solution won’t be optimal (and if less than
the length of the shortest path, we won’t find any
solution).

- Formulation grows linearly with bound.
- Worst-case bound is the number of states.

Graph Search: Some Terminology 9 / 37

Search Space Representation
* Explicit graph representation:
- Ok for “small” graphs (e.g., roadmaps)

* Implicit (inductive) graph representation:
- Initial state: s0.
- Successor function: succ(s) = {(m1, s1), . . . , (mk , sk)}.

* Structured implicit representation:
- States are assignments of values (from a finite domain)

to (a fixed set of) state variables.
- Moves are instances of operators, which have

preconditions and effects on (a subset of) variables.
- Typically exponentially compact.

* Minimise path cost = sum of move costs along path.
- No negative cycles, so minimum is well-defined.
- Typically, assume cost(m) ≥ 0 for all moves.

Graph Search: Some Terminology 10 / 37

States and Nodes

n0

n0.state = s0

n

n.state = s

nG

nG.state = sG

min cost-so-far (g)
est. cost-to-go (h),
distance-to-go (d)

* State: Element of the state space (graph vertex).

* Node: State reached from initial state via specific path.

* g(n): Cost of cheapest path to n.state discovered so far.

* h(s): Estimated cost of cheapest path from s to any goal
state (heuristic function).

* d(s): Estimated length of shortest path from s to goal.

* g?(s): Cheapest cost of any path from s0 to s.

* h?(s): Cheapest cost of any path from s to any goal state.

Best-First Search 11 / 37

Best-First Search
1: open, closed : Set of Node(state, g, parent).
2: Initialise open = {Node(s0,0,·)}, closed = ∅.
3: while open 6= ∅ do
4: select best node n in open
5: Remove n from open, add it to closed.
6: if n.state is a goal state then
7: return n.
8: for (m, s′) ∈ succ(n.state) do // expand n
9: if 6 ∃n′ ∈ open ∪ closed : n′.state = s′ then

10: Add Node(s′, n.g + cost(m), n) to open.
11: else if n.g + cost(m) < n′.g then
12: Set n′.g = n.g + cost(m) and n′.parent = n.
13: if n′ ∈ closed then // Reopen n′

14: Move n′ back to open.
15: return null.

Best-First Search 12 / 37

Which Node is “Best”?

* Uniform-Cost Search: n with min n.g.

* Counting cost(m) = 1 for all moves:
- Breadth-First Search: n with min n.g.
- Depth-First Search: n with max n.g.

* Greedy Search: n with min h(n.state).

* A?: n with min f (n) = g(n) + h(n.state).

* Search is informed (a.k.a. heuristic) iff node evaluation
uses estimated cost-to-go (h).

* Node reopening only required to ensure optimality – and
not even always for that.

* If optimality not required, can return as soon as goal node
is generated.

Best-First Search 13 / 37

A?: Admissibility
* h is admissible iff h(s) ≤ h?(s) for all s.

* Theorem: If h is admissible, A? returns an optimal path.

n0 n?1 n?k n?k+1 nG

n′ m′

* At any time, some node on optimal path is in open.

* f (n?k+1) = g?(n?k+1.state) + h(n?k+1.state) ≤
g?(n?k+1.state) + h?(n?k+1.state) = f ?.

* If g(n′) + cost(m′) > f ?, n?k+1 is selected before nG with
parent n′.

Best-First Search 14 / 37

A?: Consistency
* h is consistent (a.k.a. monotone) iff h(s) ≤ cost(m) + h(s′)

for all s, (m, s′) ∈ succ(s).
* Theorem: If h is consistent, A? reopens no node.
* To reopen n, must first close it (i.e., select it for expansion).

n?−1n′ n
m?
−1m′

* Suppose g(n′) + cost(m′) > g?(n.state):
f (n?−1) = g?(n?−1.state) + h(n?−1.state) ≤
g?(n?−1.state) + cost(m?

−1) + h(n.state) =
g?(n.state) + h(n.state) < g(n′) + cost(m′) + h(n.state)

* f (n′) = g(n) + cost(m) + h(s′) ≥ g(n) + h(n.state) = f (n)
for (m, s′) ∈ succ(n.state) – f non-decreasing along path.

* Next open node on optimal path to n.state is selected
before n with parent n′.

Best-First Search 15 / 37

A?: Optimal Efficiency

* If h is admissible, any unexpanded node n can potentially
lie on a path to goal with cost f (n).
- To prove optimality of path with cost f ?, must expand

every node with f (n) < f ?.

* A? expands:
- every node with f (n) < f ? – once, if h is consistent;
- some nodes with f (n) = f ? (depends on tie-breaking);
- and no node f (n) > f ?.

* Theorem: No algorithm using the same consistent h, the
same tie-breaking policy, and no additional information
about the search space can guarantee path optimality with
fewer node expansions than A?.

Best-First Search 16 / 37

Can we do better?

* Use a better heuristic:
- Heuristic inconsistency can lead to an exponential

number of re-expansions – but only in really pathological
cases.

- A stronger inconsistent heuristic is typically better than a
weaker consistent heuristic.

* Use tie-breaking:
- Standard A? policy: Prefer node with smaller h.
- fmin = (minn∈open f (n)) ≤ f ?: If cheapest generated goal

node has g = fmin + minm cost(m), it is optimal.

* Use more information about the search space:
- Symmetry and partial-order reduction.
- Geometric shortest-path pruning on roadmaps.

Best-First Search 17 / 37

Greedy Search

* d(n) estimates the number of moves to goal, which equals
the number of nodes that must be expanded to reach the
goal: following d only can reach the goal quicker.

* Greedy on h: similar, if path length and cost correlate.

* No guarantee on the number of nodes expanded.

* No guarantee on solution length or cost.

Best-First Search 18 / 37

Weighted A? (WA?)

* BFS on f (n) = (1− α)g(n) + αh(n), where α ∈ [0,1].

* Interpolates between A? and greedy:
- α = 0: Uniform-cost search.
- α = 0.5: A?.
- α = 1: Greedy search.

* Alternatively, f (n) = g(n) + wh(n), where w ≥ 1.
- Equivalent to α = w

w+1 .

* Theorem: If h is admissible, the cost of the path returned
by WA? is no more than w = α

1−α times the optimal cost.

Best-First Search 19 / 37

Continued Search

* Instead of returning the first goal node:
- let nbest be the cheapest goal node discovered so far;
- continue search until open = ∅ (or out of time/memory);
- prune from open any n with g(n) + h(n) ≥ gbest (using

admissible h).

* Any new solution will be strictly better than current nbest.

* With node reopening, continued search eventually finds
an optimal solution (like branch-and-bound).

* Can use any evaluation function to select next node from
open.

Memory-Limited Search 20 / 37

Do we really need closed?

* Storing closed nodes saves work but consumes memory.
- Time (expansions) and space proportional to number of

states (without reopening).

* Which closed nodes do we really need to store?
- If the graph is acyclic, none.
- If a goal state is reachable and the node evaluation

function strictly increasing with path length, none.
- Else, nodes on current path to the current node.

* Depth-first search can be seen as BFS, where
- open is a stack (last in, first out); and
- nodes with no open successor are removed from closed.
- Time proportional to number of paths, space

proportional to longest path length (linear space).

Memory-Limited Search 21 / 37

Recursive Depth-First Search

1: function DFS(n, stack)
2: if n.state is a goal state then
3: return n.
4: for (m, s′) ∈ succ(n.state) do
5: if 6 ∃n′ ∈ stack : n′.state = s′ then // Cycle check
6: Let r = DFS(Node(s′,n.g + cost(m),n), [n, stack])
7: if r 6= null then
8: return r
9: return null.

1: DFS(Node(s0, 0, ·), []).

Memory-Limited Search 22 / 37

Pruning and Backed-Up Values

* If h is admissible, f0(n) = g(n) + h(n.state) is a lower
bound on the cost of any path to goal through n.
- Given a cost bound b, can prune any node with f (n) > b.

* If h is admissible,

fk(n) = min
n′∈succ(n)

fk−1(n′)

is also a lower bound on the cost of any path to goal
through n.
- fk(n) is f with a k -deep look-ahead: fk(n) ≥ fk−1(n).
- Can use any cut-off (instead of fixed depth): f(·)(n) is

known as the backed-up value of n.

Memory-Limited Search 23 / 37

Recursive Search for an Optimal Path

* Branch-and-Bound:
- Single continued DFS.
- After first solution, set b = g(nbest) and prune nodes that

cannot lead to a better solution (f (n) ≥ b).

* Iterative Deepening A? (IDA?):
- Repeated cost-bounded DFS with increasing bounds.
- Initial bound: b = h(s0).
- If no solution within current bound, set next bound to

backed-up value of root.

* Recursive Best-First Search (RBFS):
- DFS(n) with cost bound given by the best alternative

node off the path to n.
- “Simulates” A? by reconstructing path to best open node.

Memory-Limited Search 24 / 37

Recursive DFS Branch-and-Bound

1: function DFS(n, stack)
2: if n.state is a goal state then
3: Set nbest = n, b = g(nbest)
4: else
5: for (m, s′) ∈ succ(n.state) do
6: if 6 ∃n′ ∈ stack : n′.state = s′ then
7: if g(n) + cost(m) + h(s′) < b then
8: DFS(Node(s′,n.g + cost(m),n), [n, stack])

1: Initialise nbest = null, b =∞.
2: DFS(Node(s0, 0, ·), []).

Memory-Limited Search 25 / 37

Recursive IDA? (DFS)
1: function DFS(n, stack, b)
2: if n.state is a goal state then
3: Set nbest = n.
4: return g(n).
5: Set fmin =∞. // backed-up value of n after the loop
6: for (m, s′) ∈ succ(n.state) do
7: if 6 ∃n′ ∈ stack : n′.state = s′ then
8: if g(n) + cost(m) + h(s′) ≤ b then
9: fbu = DFS(Node(s′,n.g + cost(m),n), [n, stack]).

10: if nbest 6= null then
11: return fmin.
12: fmin = min(fbu, fmin).
13: else
14: fmin = min(g(n) + cost(m) + h(s′), fmin).
15: return fmin.

Memory-Limited Search 26 / 37

Recursive IDA? (Main)

1: Initialise nbest = null, b = h(s0).
2: while nbest = null ∧ b <∞ do
3: b = DFS(Node(s0,0, ·), [],b).

* Why restart from the initial node?
- Number of paths generally grows exponentially with

depth:
- DFS branch-and-bound performs unbounded DFS

before discovering the first solution; can explore an
arbitrarily deep (and thus large) subtree.

- IDA? explores no path with cost > f ?.
- IDA?’s work is dominated by the last unsuccessful

iteration.

Memory-Limited Search 27 / 37

A little memory can go a long way...

* If states are reachable by many paths,
linear-space search (DFS/IDA?)
performs much more work than BFS.

* A transposition table caches backed-up
values of (a limited set of) states: use
T [s] in place of h(s) if s encountered
again.

* However, with cycle checking, the
backed-up value depends on the path,
not only state; naive CC + TT is
incomplete and non-optimal.

vr

· · · · · · · · · · · ·

vc

· · ·· · ·

Memory-Limited Search 28 / 37

IDA?-GTT

* Instead of caching backed-up value, cache cost of
cheapest path to s.

* In each iteration (i), need only expand s when reached by
one cheapest path:
- Prune n if T [n.state] = (c, ·) and g(n) > c.
- Prune n if T [n.state] = (c, i) and g(n) = c.
- Else, store T [n.state] = (g(n), i) before expanding n.

* If no state on current path is ever dropped from T , this
replaces the cycle check.

Heuristics 29 / 37

Where do Heuristics come from?

* The heuristic is (mostly) where “knowledge of the
problem” enters search.

* Admissible heuristics:
- Typically, optimal solution to a problem relaxation.
- Manhattan Distance: h(r , c) = |r − rGoal|+ |c − cGoal|.
- Admissible, for 4-connected grid map.
- Ignores obstacles and move costs.

* Combination of heuristics:
- Maximum of admissible heuristics is admissible.
- Sum yields a stronger heuristic, but only admissible if

heuristics “count” cost of disjoint sets of moves.
- Combining non-admissible heuristics: alternation.

* Memory-based vs. solving relaxation on-line.

Heuristics 30 / 37

Abstraction

181,440 states. 72 states.

* Relaxation of structured problem representation.

* Optimal solution to abstract problem is an admissible
heuristic for the original problem.

* Abstract space is small: Precompute optimal solution and
store in a look-up table (“pattern database”, PDB).

Heuristics 31 / 37

Heuristic Impact on Search Efficiency

* Admissible heuristics in optimal search:
- Generally, the higher heuristic values, the less search.
- Difficult to quantify (without very strong assumptions).

* If h is perfect (i.e., h = h?), move costs are strictly positive
and ties broken to lower h, A? expands exactly the nodes
on one optimal path.

* If h has constant error (i.e., h = max(h? −C,0), C > 0), A?

must expand all nodes on optimal paths up to g = f ? − C.
- It’s easy to construct problems with an exponential

number of states on optimal paths.
- Assuming no transpositions, a single goal state, A? node

expansions is exponential only in C.

Heuristics 32 / 37

* Consider a single, failed iteration of IDA? without memory
(i.e., no transpositions);

* Assume uniform branching factor (b) and unit move costs.

* Eh(c): # nodes expanded by a search to cost bound c.

* Assumptions imply Eh(c) = |{n |g(n) + h(s) ≤ c}|.

* Blind search: E0(d) ≈ bd .

* Eh(d) ≈ bd−h.
- h: average heuristic value.

* But many more n with high g(n) &
small h(s) are encountered in search.

* Eh(d) ≈
∑

k=0,...,d Nd−kPh(k)
- Ni : # nodes with acc. cost (g-value) i .
- Ph(k): probability that h(s) ≤ k , for s drawn uniformly at

random from the search tree.

Perspective 33 / 37

Constraints on Search

* Completeness: yes/no.

* Solution quality:
- optimal – “reasonably good” – any solution at all.

* Time:
- milliseconds – weeks.

* Space:
- very limited (embedded device) – a few 100 Gb.

* Variation:
- new search space every problem – only init/goal change.

Perspective 34 / 37

Incomplete Search

* Local search:
- Hill-Climbing, Simulated Annealing, Tabu Search,

Random Walk.
- Population-based: PSO, GA/EA, ACO, ...
- (Warning: gross over-simplifcation!) May be good for

optimising when feasibility is easy – i.e., when we can
step from solution to solution.

* Beam Search, Iterative Broadening: BFS with limited
open.

* BFS with aggressive pruning.

Perspective 35 / 37

Any-Time and Bounded Suboptimal
Search

* Bounded suboptimal search: Find any solution with cost
no more than B times optimal.
- WA?, A?

ε , EES.
- Use more information: admissible h, inadmissible h′,

distance estimate d .

* Cost-bounded search: Find any solution with cost ≤ C.

* Any-time search: Find any solution quickly, and better
solutions given more time.
- Heuristic initial solution + branch-and-bound.
- Iterated cost-bounded or bounded suboptimal search.

Perspective 36 / 37

Large-Scale Complete/Optimal Search
* Invest effort in a very good heuristic, and strong

admissible pruning.
- Memory-based heuristics (PDBs).
- Optimal additive combination of heuristics.
- Symmetry breaking and partial-order reduction.

* Memory-limited search – but use all memory you have.
- Linear-space search with transposition table.
- SMA?.

* External memory search:
- Store parts of open/closed not currently used on disk.
- Requires organised disk access – can’t rely on swap!

* Parallel search:
- Exploit locality to avoid communication.
- Very similar to disk-based search.

Perspective 37 / 37

Repeated Search in the Same Space

* Graph stays the same, initial and goal state varies.

* Preprocess/simplify the problem:
- Precompute and store admissible pruning conditions.
- Identify useful short-cuts.

* Memory-based heuristics:
- PDBs presume same goal (or intitial) state.
- Transit heuristics.

* Precompute and store (compressed) all optimal solutions.

	Graph Search Problems
	Graph Search: Some Terminology
	Best-First Search
	Memory-Limited Search
	Heuristics
	Perspective

