Dynamic Logic Semantics for UML Consistency

Greg O'Keefe

Computer Sciences Laboratory Australian National University

a model is a statement about systems

a model is a statement about systems

• but its meaning is only approximate

a model is a statement about systems

- but its meaning is only approximate
- so we can not say if it is consistent

a model is an approximate statement about systems

a model is an approximate statement about systems

a dynamic logic formula is also a statement about systems

a model is an approximate statement about systems

a dynamic logic formula is also a statement about systems

• its meaning is exact

a model is an approximate statement about systems

a dynamic logic formula is also a statement about systems

- its meaning is exact
- and we can automatically determine its consistency

a model is an approximate statement about systems

a dynamic logic formula is also a statement about systems

- its meaning is exact
- and we can automatically determine its consistency (undecidable, but most of the time)

a model is an approximate statement about systems

a dynamic logic formula is a precise statement about systems

a model is an approximate statement about systems

a dynamic logic formula is a precise statement about systems

so we translate models into dynamic logic ...

Consistency (Logic 101)

Consistency (Logic 101)

A statement is *consistent* if it is true in some situation.

The circle is red. The circle is square. consistent inconsistent

Given a system, each model is true or false.

situation/system

statement/model

true? false?

Given a system, each model is true or false.

situation/system

statement/model

true? false?

To answer model consistency questions, we need definitions of:

Given a system, each model is true or false.

situation/system

statement/model

State Machine Diagram

true? false?

To answer model consistency questions, we need definitions of:

- model (syntax)
- system (semantic domain)

Given a system, each model is true or false.

statement/model

true? false?

To answer model consistency questions, we need definitions of:

- model (syntax)
- system (semantic domain)
- when a model is true of a system (semantics)

Given a system, each model is true or false.

situation/system

statement/model

State Machine Diagram

true? false?

To answer model consistency questions, we need definitions of:

- model (syntax)
- system (semantic domain)
- when a model is true of a system (semantics)

Do we have this in the OMG documents?

Given a system, each model is true or false.

situation/system statement/model

true? false?

To answer model consistency questions, we need definitions of:

- model (syntax)
- system (semantic domain)
- when a model is true of a system (semantics)

Do we have this in the OMG documents?

To answer the questions automatically, we need

a procedure to search the (infinte) space of systems.

Class Diagram

Entry Action for State s'

send X to self.ex

Class Diagram

Sequence Diagram

State Machine for Class A

Entry Action for State s'

send X to self.ex

We want

 semantics to say this is inconsistent

Class Diagram

Sequence Diagram

State Machine for Class A

Entry Action for State s'

send \boldsymbol{X} to self.ex

We want

- semantics to say this is inconsistent
- tools to detect it

Class Diagram

Sequence Diagram

State Machine for Class A

Entry Action for State s'

send \boldsymbol{X} to self.ex

First Order Logic

First Order Logic

syntax example: $\forall x \bullet f(x) = y$

interpretation \$\mathcal{M}\$ gives us a function \$f^\$\mathcal{M}\$

First Order Logic

- interpretation \$\mathcal{M}\$ gives us a function \$f^m\$
- valuation u gives us individuals x^u, y^u

First Order Logic

- interpretation \$\mathcal{M}\$ gives us a function \$f^m\$
- valuation u gives us individuals x^u, y^u
- $\forall x \text{ needs truth of } f(x) = y \text{ under all } x \text{-variants of } u$

First Order Logic

- interpretation \$\mathcal{M}\$ gives us a function \$f^m\$
- valuation u gives us individuals x^u, y^u
- $\forall x \text{ needs truth of } f(x) = y \text{ under all } x \text{-variants of } u$
- example formula is true iff $f^{\mathfrak{M}}$ is constant with value y^{u}

First Order Logic

syntax example: $\forall x \bullet f(x) = y$

- interpretation \$\mathcal{M}\$ gives us a function \$f^m\$
- valuation u gives us individuals x^u, y^u
- $\forall x \text{ needs truth of } f(x) = y \text{ under all } x \text{-variants of } u$
- example formula is true iff $f^{\mathfrak{M}}$ is constant with value y^{u}

Dynamic Logic

First Order Logic

syntax example: $\forall x \bullet f(x) = y$

- interpretation \$\mathcal{M}\$ gives us a function \$f^m\$
- valuation u gives us individuals x^u, y^u
- $\forall x \text{ needs truth of } f(x) = y \text{ under all } x \text{-variants of } u$
- example formula is true iff $f^{\mathfrak{M}}$ is constant with value y^{u}

Dynamic Logic

syntax example: $\langle y := f(x) \rangle x = y$

• $\langle program \rangle \varphi$ means φ might be true after program runs

First Order Logic

syntax example: $\forall x \bullet f(x) = y$

- interpretation \$\mathcal{M}\$ gives us a function \$f^m\$
- valuation u gives us individuals x^u, y^u
- $\forall x \text{ needs truth of } f(x) = y \text{ under all } x \text{-variants of } u$
- example formula is true iff $f^{\mathfrak{M}}$ is constant with value y^{u}

Dynamic Logic

- $\langle program \rangle \varphi$ means φ might be true after program runs
- program means binary relation over valuations

First Order Logic

syntax example: $\forall x \bullet f(x) = y$

- interpretation \$\mathcal{M}\$ gives us a function \$f^m\$
- valuation u gives us individuals x^u, y^u
- $\forall x \text{ needs truth of } f(x) = y \text{ under all } x \text{-variants of } u$
- example formula is true iff $f^{\mathfrak{M}}$ is constant with value y^{u}

Dynamic Logic

- $\langle program \rangle \varphi$ means φ might be true after program runs
- program means binary relation over valuations
- x := t relates u to the x-variant with $x \mapsto t^{\mathfrak{M}, u}$

First Order Logic

syntax example: $\forall x \bullet f(x) = y$

- interpretation \$\mathcal{M}\$ gives us a function \$f^m\$
- valuation u gives us individuals x^u, y^u
- $\forall x \text{ needs truth of } f(x) = y \text{ under all } x \text{-variants of } u$
- example formula is true iff $f^{\mathfrak{M}}$ is constant with value y^{u}

Dynamic Logic

- $\langle program \rangle \varphi$ means φ might be true after program runs
- program means binary relation over valuations
- x := t relates u to the x-variant with $x \mapsto t^{\mathfrak{M}, u}$
- more syntax: $ho;
 ho'
 ho \cup
 ho'
 ho^*
 ho^* [
 ho] arphi$

System States and Evolution

Statics: What is a system state?

System States and Evolution

Statics: What is a system state?

• a system state is a valuation

System States and Evolution

Statics: What is a system state?

- a system state is a valuation
- objects are individuals, they persist
Statics: What is a system state?

- a system state is a valuation
- objects are individuals, they persist
- attributes, association ends are "array" variables

Statics: What is a system state?

- a system state is a valuation
- objects are individuals, they persist
- attributes, association ends are "array" variables

Dynamics: How can a system evolve?

Objects do actions, if conditions allow:

Statics: What is a system state?

- a system state is a valuation
- objects are individuals, they persist
- attributes, association ends are "array" variables

Dynamics: How can a system evolve?

Objects do actions, if conditions allow: guard?; action

Statics: What is a system state?

- a system state is a valuation
- objects are individuals, they persist
- attributes, association ends are "array" variables

Dynamics: How can a system evolve?

Objects do actions, if conditions allow:

 $\varepsilon \equiv ((sc(x, M, y)); x.send M to y) \cup (ac(x)); x.accept))^*$

Statics: What is a system state?

- a system state is a valuation
- objects are individuals, they persist
- attributes, association ends are "array" variables

Dynamics: How can a system evolve?

Objects do actions, if conditions allow:

$$\varepsilon \equiv ((\mathit{sc}(x, M, y)?; x. \mathtt{send} \ M \ \mathtt{to} \ y) \cup (\mathit{ac}(x)?; x. \mathtt{accept}))^*$$

$$sc(x, M, y) \equiv x.class = ExternalEntity$$

 $\lor (head(x.todo) = send M to y)$
 $x.send M to y \equiv y.intray := append(y.intray, M);$
 $x.todo := tail(x.todo)$

Class Diagram

For each diagram, a range of interpretations is possible, even desirable. Here we give rather weak ones.

Class Diagram

For each diagram, a range of interpretations is possible, even desirable. Here we give rather weak ones. (*They are shorter!*)

Class Diagram

For each diagram, a range of interpretations is possible, even desirable. Here we give rather weak ones. (*They are shorter!*)

$$CD \equiv [\varepsilon](\forall x \bullet x.class = A \longrightarrow size(x.ex) = 1 \land (\forall y \bullet y \in x.ex \longrightarrow y.class = B))$$

State Machine Diagram

We do not yet specify which objects the state machine diagram applies to, so the formulae have a free variable.

State Machine Diagram

We do not yet specify which objects the state machine diagram applies to, so the formulae have a free variable.

 $SM_s(x) \equiv [\varepsilon](x.state = s \lor x.state = s')$

$$SM_t(x) \equiv [\varepsilon](x.state = s \land head(x.intray) = W$$

 $\longrightarrow [x.accept] x.state = s')$

Weaving as Formation

Aspect Oriented Modelling and model "weaving" are hot research topics. In this formal setting, it is clear and simple.

Weaving as Formation

Aspect Oriented Modelling and model "weaving" are hot research topics. In this formal setting, it is clear and simple.

action - state join

Put action on todo list when object enters state.

$$SM_p(x) \equiv [\varepsilon][x.\texttt{accept}](x, \texttt{state} = \texttt{s}' \longrightarrow x.\texttt{todo} = \texttt{send} \ \texttt{X} \ \texttt{to} \ \texttt{x}.\texttt{ex})$$

Weaving as Formation

Aspect Oriented Modelling and model "weaving" are hot research topics. In this formal setting, it is clear and simple.

action - state join

Put action on todo list when object enters state.

$$SM_p(x) \equiv [\varepsilon][x.\texttt{accept}](x, \texttt{state} = s' \longrightarrow x.\texttt{state} = s' \longrightarrow x.\texttt{todo} = \texttt{send } X \texttt{ to } x.\texttt{ex})$$

state machine - class join

Make objects of class A obey state machine formulae.

 $SM \equiv [\varepsilon](\forall x \bullet x.class = A \longrightarrow SM_s(x) \land SM_t(x) \land SM_p(x))$

Sequence Diagram

Semantic tableaux theorem provers

Semantic tableaux theorem provers

• a formula φ is valid iff $\neg \varphi$ is inconsistent

Semantic tableaux theorem provers

- a formula φ is valid iff $\neg \varphi$ is inconsistent
- if a complete search for an interpretation to satisfy ¬φ finds none, then it is a proof of φ

Semantic tableaux theorem provers

- a formula φ is valid iff $\neg \varphi$ is inconsistent
- if a complete search for an interpretation to satisfy ¬φ finds none, then it is a proof of φ
- we can use these interpretation finders to demonstrate model consistency

Semantic tableaux theorem provers

- a formula φ is valid iff $\neg \varphi$ is inconsistent
- if a complete search for an interpretation to satisfy ¬φ finds none, then it is a proof of φ
- we can use these interpretation finders to demonstrate model consistency

Semantic tableaux theorem provers

- a formula φ is valid iff $\neg \varphi$ is inconsistent
- if a complete search for an interpretation to satisfy ¬φ finds none, then it is a proof of φ
- we can use these interpretation finders to demonstrate model consistency

Our search

 we drop CD \lapha SM \lapha SEQ into a tableau prover, turn the handle and then ...

Semantic tableaux theorem provers

- a formula φ is valid iff $\neg \varphi$ is inconsistent
- if a complete search for an interpretation to satisfy ¬φ finds none, then it is a proof of φ
- we can use these interpretation finders to demonstrate model consistency

- we drop CD \lapha SM \lapha SEQ into a tableau prover, turn the handle and then ...
- it gives us a system where X = Y, showing that the UML model *is* consistent, hmmm!

Semantic tableaux theorem provers

- a formula φ is valid iff $\neg \varphi$ is inconsistent
- if a complete search for an interpretation to satisfy ¬φ finds none, then it is a proof of φ
- we can use these interpretation finders to demonstrate model consistency

- we drop CD \lapha SM \lapha SEQ into a tableau prover, turn the handle and then ...
- it gives us a system where X = Y, showing that the UML model *is* consistent, hmmm!
- so next time we add X.name = "X" etc. to our theory

Semantic tableaux theorem provers

- a formula φ is valid iff $\neg \varphi$ is inconsistent
- if a complete search for an interpretation to satisfy ¬φ finds none, then it is a proof of φ
- we can use these interpretation finders to demonstrate model consistency

- we drop CD ∧ SM ∧ SEQ into a tableau prover, turn the handle and then ...
- it gives us a system where X = Y, showing that the UML model *is* consistent, hmmm!
- so next time we add X.name = "X" etc. to our theory
- and then the UML model can be shown inconsistent

• By translating models into dynamic logic we

• By translating models into dynamic logic we

• give precise meaning

• By translating models into dynamic logic we

- give precise meaning
- enable consistency check

• By translating models into dynamic logic we

- give precise meaning
- enable consistency check
- Why DL? Why not TLA+, Z, ASM's, OCL (?!), ...?

- By translating models into dynamic logic we
 - give precise meaning
 - enable consistency check
- Why DL? Why not TLA+, Z, ASM's, OCL (?!), ...?
- With DL we have made action outline statements.

- By translating models into dynamic logic we
 - give precise meaning
 - enable consistency check
- Why DL? Why not TLA+, Z, ASM's, OCL (?!), ...?
- With DL we have made action outline statements.
 - ignore irrelevant detail

- By translating models into dynamic logic we
 - give precise meaning
 - enable consistency check
- Why DL? Why not TLA+, Z, ASM's, OCL (?!), ...?
- With DL we have made action outline statements.
 - ignore irrelevant detail
 - raise the level of abstraction