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The Big Picture

a model is a statement about systems

but its meaning is only approximate

so we can not say if it is consistent

a dynamic logic formula is also a statement about systems

its meaning is exact

and we can automatically determine its consistency

(undecidable, but most of the time)

so we translate models into dynamic logic ...
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Consistency (Logic 101)

In a situation, each statement is true or false.

The circle is red. true

The circle is red. false

A statement is consistent if it is true in some situation.

The circle is red. consistent
The circle is square. inconsistent
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A model is a statement about systems

Given a system, each model is true or false.

situation/system statement/model

true? false?

To answer model consistency questions,
we need definitions of:

model (syntax)

system (semantic domain)

when a model is true of a system (semantics)

Do we have this in the OMG documents?

To answer the questions automatically, we need

a procedure to search the (infinte) space of systems.
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We want

semantics to say this is
inconsistent

tools to detect it

Sequence Diagram

Class Diagram

State Machine for Class A

Entry Action for State s′

send X to self.ex
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Dynamic Logic (Logic 201)

First Order Logic

syntax example: ∀x • f (x) = y

interpretation M gives us a function f M

valuation u gives us individuals xu, yu

∀x needs truth of f (x) = y under all x-variants of u

example formula is true iff f M is constant with value yu

Dynamic Logic

syntax example: 〈y := f (x)〉x = y

〈program 〉ϕ means ϕ might be true after program runs

program means binary relation over valuations

x := t relates u to the x-variant with x 7→ tM,u

more syntax: ρ; ρ′ ρ ∪ ρ′ ρ∗ ϕ? [ρ]ϕ
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System States and Evolution

Statics: What is a system state?

a system state is a valuation

objects are individuals, they persist

attributes, association ends are “array” variables

Dynamics: How can a system evolve?

Objects do actions, if conditions allow:

guard ?; action

ε ≡ ((sc(x , M, y)?; x .send M to y) ∪ (ac(x)?; x .accept ))∗

sc(x , M, y) ≡ x .class = ExternalEntity

∨ (head(x .todo) = send M to y)

x .send M to y ≡ y .intray := append(y .intray , M);

x .todo := tail(x .todo)
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Class Diagram

For each diagram, a range of interpretations is possible, even
desirable. Here we give rather weak ones.

(They are shorter!)

CD ≡ [ε](∀x • x .class = A //

size(x .ex) = 1 ∧
(∀y • y ∈ x .ex // y .class = B))
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State Machine Diagram

We do not yet specify which objects the state machine diagram
applies to, so the formulae have a free variable.

SMs(x) ≡ [ε](x .state = s ∨ x .state = s′)

SMt(x) ≡ [ε](x .state = s ∧ head(x .intray) = W
// [x .accept ] x .state = s′)
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Weaving as Formation

Aspect Oriented Modelling and model “weaving” are hot
research topics. In this formal setting, it is clear and simple.

action - state join

Put action on todo list when object enters state.

SMp(x) ≡ [ε][x .accept ](
x .state = s′ //

x .todo = send X to x .ex )

state machine - class join

Make objects of class A obey state machine formulae.

SM ≡ [ε](∀x • x .class = A // SMs(x) ∧ SMt(x) ∧ SMp(x))
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Sequence Diagram

SEQ ≡ class(ee) = ExternalEntity ∧
a.class = A ∧ b.class = B ∧
〈ε〉(sc(ee, W , a) ∧ 〈ee.send W to a〉
〈ε〉(ac(a) ∧ 〈a.accept 〉
〈ε〉(sc(a, Y , b) ∧ 〈a.send Y to b〉>)))



Consistency: the search for a satisfying system

Semantic tableaux theorem provers

a formula ϕ is valid iff ¬ϕ is inconsistent

if a complete search for an interpretation to satisfy ¬ϕ finds
none, then it is a proof of ϕ

we can use these interpretation finders to demonstrate
model consistency

Our search

we drop CD ∧ SM ∧ SEQ into a tableau prover, turn the
handle and then . . .

it gives us a system where X = Y , showing that the UML
model is consistent, hmmm!

so next time we add X .name = “X” etc. to our theory

and then the UML model can be shown inconsistent
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By translating models into dynamic logic we

give precise meaning
enable consistency check

Why DL? Why not TLA+, Z, ASM’s, OCL (?!), ...?
With DL we have made action outline statements.

ignore irrelevant detail
raise the level of abstraction



Summary

By translating models into dynamic logic we
give precise meaning

enable consistency check

Why DL? Why not TLA+, Z, ASM’s, OCL (?!), ...?
With DL we have made action outline statements.

ignore irrelevant detail
raise the level of abstraction



Summary

By translating models into dynamic logic we
give precise meaning
enable consistency check

Why DL? Why not TLA+, Z, ASM’s, OCL (?!), ...?
With DL we have made action outline statements.

ignore irrelevant detail
raise the level of abstraction



Summary

By translating models into dynamic logic we
give precise meaning
enable consistency check

Why DL? Why not TLA+, Z, ASM’s, OCL (?!), ...?

With DL we have made action outline statements.

ignore irrelevant detail
raise the level of abstraction



Summary

By translating models into dynamic logic we
give precise meaning
enable consistency check

Why DL? Why not TLA+, Z, ASM’s, OCL (?!), ...?
With DL we have made action outline statements.

ignore irrelevant detail
raise the level of abstraction



Summary

By translating models into dynamic logic we
give precise meaning
enable consistency check

Why DL? Why not TLA+, Z, ASM’s, OCL (?!), ...?
With DL we have made action outline statements.

ignore irrelevant detail

raise the level of abstraction



Summary

By translating models into dynamic logic we
give precise meaning
enable consistency check

Why DL? Why not TLA+, Z, ASM’s, OCL (?!), ...?
With DL we have made action outline statements.

ignore irrelevant detail
raise the level of abstraction


