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Abstract

We formally develop category theory up to Yoneda’s lemma, using Isabelle/HOL /Isar,
and survey previous formalisations. By using recently added Isabelle features, we
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1 Introduction

Formalised mathematics is a computer science discipline largely ignored by
mathematicians. There are good reasons for this. It takes months to become
a competent user of any proof assistant. Once the tool has been mastered,
even the most elementary results take days of tedious labour to reproduce.
Perhaps worst of all, the resulting formal text is mostly incomprehensible to
anyone unfamiliar with the tool in question.

If it were possible to produce formalisations without excessive effort, then
mathematicians might do so for increased confidence. If there are errors in a
proof, they will almost certainly be detected in the attempt to formalise it.

In order to minimise the effort required, and maximise the value of the
result, the formalisation should be as close as possible to its informal origins.

Recent advances in proof assistant technology, implemented in Isabelle [20]
have made it possible to reduce the gap between formal and informal work.
One of our aims is to demonstrate this. Category theory is an appropriate
test, because category theory is “notoriously hard to formalize in any kind of
system” [12, Page 20].
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We begin with a survey of existing formalisations of category theory.
The bulk of the paper is an overview of our own formalisation using Is-
abelle/HOL/Isar. Our concluding remarks include some plans for further
work.

2 Survey

The key features of a category theory formalisation are: language, type system,
representation, automation, coverage, and project status.

Proof assistants provide a language for defining concepts, stating theorems
and giving proofs. There are two styles of proof language: procedural and
declarative. Most proof assistants use the procedural style. A procedural
proof consists of instructions, called tactics, showing how to reach the goal
theorem by applying the logic’s rules.

Note that these are “proofs” only in a broad sense, as they lack two impor-
tant properties. First, there is generally no proof object about which we can
reason meta-theoretically. Secondly, ordinary readers will not be convinced
to accept the conclusion by inspecting such a proof: instead one must first
believe in the soundness of the proof checker, then execute it.

Declarative proof languages [18] [5] [33] [31] [12] [35] [27] seek to overcome
this second defect. They emulate the “mathematical vernacular” [18, §F.3],
where we make assumptions and state claims which we justify using previous
claims and assumptions.

Proof assistants also come equipped with a type system. For our pur-
poses, the main species are mono-typed, simply typed and dependently typed.
“Mono-typed” refers to systems such as first order logic, where there is really
no interesting type system. Simply typed systems have atomic types and type
constructors which combine types to yield new types. The higher order logic
of the HOL prover [29] is simply typed. Dependent type systems have type
constructors that also take terms. For example, for each pair of natural num-
bers (m,n) we have a type of m x n matrices. Coq [13] and NuPrl [1] have
dependent type systems.

A useful survey and comparison of theorem proving assistants can be found
in [34].

There are choices to be made when encoding preformal concepts in a formal
system. These choices affect how easily the development proceeds and how
much effort is required to interpret it. As a simple example, we may represent
functors as pairs of functions, or we might leave the action on objects implicit.

Some of the developments we examine have automation of proof as a main
objective, whilst others give explicit detailed proofs. Automation is a worthy
goal in its own right of course, but it is also important for readable formalisa-
tion because lengthy proofs of obvious facts are distracting.

The developments which cover more of the theory deserve greater atten-
tion, as this is an indication that they are doing something right. This judge-
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ment must be made with caution however: it is possible that good ideas have
been unfruitful for practical reasons, or that bad ideas have been overcome by
sheer hard work. To compare the amount of theory covered, we will use the
table of contents of the standard text [15]. T dub this the “MacLane metric”.

Finally, we are interested in whether a formalisation is under active de-
velopment, runs on the current version of its proof assistant, or is of merely
historical interest.

We now examine each of the developments in turn. They are grouped
according to the proof assistant used. We give more space to the better de-
veloped formalisations.

2.1 Coq and Lego

Peter Aczel led a project, Galois [3], whose aim is “to formalise some ab-
stract algebra in a predicative style”. Part of this work was a formalisation
of category theory using Lego [2]. This formalisation covers very little the-
ory, and is not being actively developed. However, its novel representation of
categories in dependent type theory has been adopted by the most successful
formalisation: the Coq [13] development of Saibi and Huet [26] [25].

A setoid is a triple consisting of a type, a relation on the type and a proof
that the relation is an equivalence. The universe of the type, factored by the
equivalence looks pretty much like a set. The homsets in Aczel’s and Saibi’s
formalisations are setoids, and the objects are types.

The material from [15, I,ILIII] is covered, including Yoneda’s lemma. In
addition, Freyd’s adjoint functor theorem is proved and an example Cartesian
Closed Category is given. The current version [24] consists of 105 .v files, and
is compatible with the current (7.4) version of Coq.

This is a difficult piece of work to understand unless you are familiar with
constructive dependent type theory. Its relationship to category theory as
usually presented in maths texts is indirect at best. However, it does develop
more category theory than the other existing formalisations.

The diploma thesis [8] extends an older version of Saibi’s development,
giving an alternative definition of natural transformation, and proving a couple
of extra results on adjunctions and developing the theory of cocartesian liftings

[6]-

2.2 Mizar

There are two distinct developments of category theory in Mizar [5] consisting
of about 30 “articles”. Most of [15, L,IT,ITI] is covered, but little beyond that.
There are no adjunctions or general limits. The developments are part of a
large integrated library of formalised mathematics. As a result there are many
more examples than in other developments, including categories of groups,
rings, and modules, and posets considered as categories.
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The main difference between the two Mizar developments is the treatment
of arrows. One uses the usual definition where a category has a collection of
arrows, and has source and target functions from arrows to objects. Homsets
are then defined in terms of these. The other development follows the alter-
native definition in [15, §1.8], where the function hom from pairs of objects to
sets of arrows is part of the category definition.

The Mizar library is under active development. The most recent Mizar
articles on category theory are from 2001. The Mizar library is maintained to
keep it compatible with the current version of the proof checker.

Most computer systems for formalised mathematics use a typed A-calculus
as their foundation. Mizar is the exception. Its logic is classical and first order.
Its axioms are those of Tarski-Grothendieck set theory, which is “basically
the Zermelo-Frankel set theory with the axiom of choice replaced by Tarski’s
stronger axiom [28] of the existence of arbitrarily large, strongly inaccessible
cardinals.” [22].

Another difference is the style of the proofs. Mizar along with Automath
[18] originated the recently popular notion of “declarative” proof. It is possible
to follow the reasoning in a Mizar proof.

Mizar does very little automation: proofs must be given to it in full de-
tail. As a result, Mizar formalisations are very long. The article which proves
Yoneda’s lemma is 1730 lines long, and depends on at least 8 category theory
related articles of similar size, as well as more basic ones. Our own formalisa-
tion below consists of 1208 lines, and is in our view, too long for its content.
Long proofs of obvious facts do not help the reader to understand the reason-
ing.

Another disadvantage of Mizar is the lack of introductory documentation.
Also, the source code for the system is not openly available. This seems
inappropriate for such foundational work, where everything must be doubted
and examined, nothing taken on trust.

2.8 NuPrl

In 1990, Altucher and Panangaden published “A Mechanically Assisted Con-
structive Proof in Category Theory” [4]. T seems that no further work has
been done on this NuPrl [1] development. The focus was automation of proof,
and extraction of programs from those proofs. This ability is a key feature of
NuPrl. Category theory was seen a promising subject matter because of its
connections with type theory and functional programming, and because the
routine “diagram chasing” proofs seem amenable to automation.

The source files for this development seem to be unavailable. It would
be unlikely to work with the current version of the system in any case. The
exposition in [4] is very limited. It is claimed that definitions were given
for subobjects, limits, adjunctions, Cartesian closed categories and triples.
The development is focused on proving the adjoint functor theorem [15, V.6,
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Theorem 2.

A much more recent development in NuPrl is that of Tjark Weber pre-
sented in [30]. This masters thesis is concerned with program transformations
“anamorphisms” and “catamorphisms”, which are defined in terms of cate-
gory theory. After defining category and functor, algebras and coalgebras and
homomorphisms are introduced. These notions are then used to define the
program transformation concepts.

2.4 Isabelle and HOL

Lockwood Morris has used HOL [29] to formalise most of [15, LILIII], includ-
ing Yoneda’s lemma. There are no publications yet, nor has there been a public
distribution of the HOL code. My sources are an unpublished manuscript [17]
and email correspondence with the primary author.

Like the older NuPrl effort [4], the focus here is on automation. Tactics
have been written to automate the most common proof tasks, such as showing
that a given term denotes an arrow or object of the category under consider-
ation, and breaking complex predicates into simple subgoals.

Whilst Coq and NuPrl have dependent types, HOL and Isabelle have only
simple types. This makes category theory subject to annoying koans like
“what is the composite of uncomposable arrows?” and “what is the component
of a natural-transformation at a non-object?” These do not arise in dependent
type systems, because the relevant terms and formulae are ill typed.

Johan Glimming’s 2001 masters thesis “Logic and Automation for Algebra
of Programming” [10] contains a development of some elementary Category
Theory in Isabelle/HOL /Isar [20] [31]. Most of chapter I and parts of Chapter
IT of [15] are covered. The proofs are in procedural style, using Isar’s “tactic
emulation”.

2.5 Others

The work described in “Computational Category Theory” [23] is not a for-
malisation of category theory, since there is no means to prove anything. It
consists of ML structures and functions that represent the main ideas of cat-
egory theory. For example, like many formalisations, a category over a pair
of types is a tuple of four functions: source target identity and composition.
The difference is that there are no axioms. Instances of the ML structure Cat
can have Dom(14) # A for example.

Even so, the structures defined could be used in a formal development.
Furthermore, the code could perhaps form the basis of a categorical “logical
framework” [21].

Definitions for most ideas from [15, L,II,III] are given, plus toposes.

The final chapter, “Formal Systems for Category Theory” of [23] describes
two formalisations.
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The first, due to Joseph Goguen uses his pioneering algebraic specification
language OBJ [11]. Only the most elementary notions are defined. As OBJ
is “algebraic”, the only formulae are equations, and the only inference rule is
equational rewriting. There are no explicit proofs, only automated rewriting.
This would surely limit how far the theory could go.

The chapter also summarises Roy Dyckhoff’s [9] encoding of category the-
ory using the Goteborg Type Theory System. Category theory is directly
represented as a type system, with atomic types such as Cat and Func, and
rules such as

A Cat B : Cat
Func(A, B) : type
This is a novel and attractive approach to category theory and foundations,
worthy of further investigation.

We also note the survey on formalised category theory of Takahisi Mohri

16].
3 Development

The full text of the formal development, produced automatically by Isabelle, is
27 pages long. It is available on the internet [19], along with the Isabelle/HOL
source files. In what follows we give most of the definitions, some of the results
and a couple of proofs.

We have tried to keep the representation of categories in this formal setting
as close as possible to the usual descriptions in mathematical texts.

A category is defined as a sextuple. The category record type takes two
type parameters, one each for the arrow and object types. Isabelle’s record
facility allows us to name the components, and to use these names as projec-
tions. We also define abbreviated forms (beginning with upper case letters)
for use in locales, where the category can be omitted or specified by a numeric
subscript.

record ('o, 'a) category =
ob :: "o set (Ob1 70)
ar :: 'a set (Ar1 70)
dom :: 'a = ‘o (Doma - [81] 70)
cod :: 'a = 'o (Codr - [81] 70)
id :: 'o = 'a (Id1r - [81] 80)
comp :: 'a = 'a = 'a (infix] 1 60)

Between parentheses at the end of each line are syntax annotations. For
example the first one (Ob; 70) is like saying “We write Ob; or simply Ob for
ob C when the context makes it clear that it is C we are referring to.” It might
be better if this syntax could be given separately.

Homsets are defined in the obvious way.
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constdefs
hom :: [('0,’a,’m) category-scheme, "o, 'o] = 'a set (Homa - -)
hom CAB={f.fcar C& dom Cf=A& cod Cf =B}

The corresponding definition in MacLane [15, page 27] is

home(a,b) = {f | f is an arrow f:a ——=0bin C}

A locale [14] is a named collection of fixed arbitrary objects, assumptions
and definitions. It saves a lot of repetition, and emulates informal mathemat-
ical practice. Here, a fixed object C is assumed to satisfy the given rules. We
have written the assumptions as rules (using meta-connectives =) rather
than axioms (using object-connectives —).

The locale also yields a predicate, so that we can write category X to
assert that X satisfies the assumptions in the locale.

The arrows in the comp-types assumption denote function sets. When ap-
plied to a member of Hom B C', the composition operation returns a function
that, when applied to a member of Hom A B, yields a member of Hom A C.

locale category = struct C +
assumes dom-object [intro]:
f € Ar = Dom f € Ob
and cod-object [intro]:
feAr = Cod f € Ob
and id-left [simp]:
feAr=1Id (Codf)-f=f
and id-right [simp]:
feAr=f-Id (Domf)=Ff
and id-hom [intro]:
A€ Ob= Id A€ Hom A A
and comp-types [intro]:
NA B C. (comp C) : (Hom B C) — (Hom A B) — (Hom A C)
and comp-associative [simp]:
feAr—= g€ Ar = h € Ar
= Cod h = Dom ¢ = Cod g = Dom f

= f-(g-h)=(f-9) -h

Although this associativity rule is fairly clear, we hope in future work to
get closer to statements such as MacLane’s [15, page 7]

Associativity. For given objects and arrows in the configuration

afbgckd

one always has the equality

ko(gof)=(kog)of
7
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It may even be possible to admit arbitrary diagrams as formulae. Then
the diagram above could be the antecedent and the equation the consequent
of a conditional formula.

We skip the few trivial lemmas about categories, and move on to the
definition of the category of sets. Rather than assuming that there is one
universe that contains every set, we define the category of subsets of a given
universe set U. MacLane [15, page 11] calls these categories Ensy or just
Ens. The type of this set is a parameter determining the type of the category.

We define the arrows of set categories to be triples, to make the domain
and codomain explicit.

record ’c set-arrow =
set-dom :: 'c set
set-func :: 'c = 'c
set-cod :: 'c set

Not every instance of the record type set-arrow is a legitimate arrow. We
define a predicate, which states that the domain and codomain are in the
universe, that the function takes the domain into the codomain and that
the function is “extensional” on the domain. This means that outside that
domain, the function takes the value “arbitrary”. Without this, the arrows

N 4 N and N 2% N would be distinct, which is not what we want. The
theory of functions with restricted domains is developed in the Isabelle/HOL
theory src/HOL/Library/FuncSet.thy in the Isabelle 2003 distribution [20].

Note that we introduce a new symbol ® for set arrow composition. Once
we have established that our set categories are indeed categories, we will be
able reason about them within category locales using - for arrow composition.

constdefs
set-arrow :: ['c set, 'c set-arrow] = bool
set-arrow U f = set-dom f C U & set-cod f C U
& (set-func f): (set-dom f) — (set-cod f)
& set-func f € extensional (set-dom f)
set-id :: ['c set, 'c set] = 'c set-arrow
set-id U = As€Pow U. (set-dom=s, set-func=Az€s. x, set-cod=s))
set-comp :: ['c set-arrow, 'c set-arrow] = 'c set-arrow (infix ® 70)
set-comp g f =
(
set-dom = set-dom f,
set-func = compose (set-dom f) (set-func g) (set-func f),
set-cod = set-cod ¢
)
set-cat :: 'c set = ('c set, 'c set-arrow) category
set-cat U =
(
ob = Pow U,
ar = {f. set-arrow U f},



O’KEEFE

dom = set-dom,
cod = set-cod,

id = set-id U,
comp = set-comp

We must now show that this structure satisfies the category axioms. For
example:

lemma set-id-left:
assumes [ € ar (set-cat U)
shows set-id U (set-cod f) © f = f

and

lemma set-id-hom:
assumes A € ob (set-cat U)
shows id (set-cat U) A € hom (set-cat U) A A

and eventually

theorem set-cat-cat:
category (set-cat U)

Functors are pairs of functions. The present development does not include
functor categories, but to do so it would be necessary to combine these pairs
with their domain and codomain categories.

record ('o1,’al,'02,'a2) functor =
om :: ol = 02
am = 'al = a2

We would like to write F'A and F'f, as is the usual informal notation.
Although we could define a particular F' to be overloaded in this way, we can
not define functors as functions that take objects to objects and arrows to
arrows. Attempting to do so yields an angry message from the type inference
module. Instead we define an alternative explicit notation.

Also note that for any record type whatever, there is a type called whatever-
scheme for the extensions of that record type.

syntax
-om :: ('o1,'a1,02,’a2,'m) functor-scheme = ‘o1 = 02 (-, [81])
-am :: ('o1,'a1,02,’a2,'m) functor-scheme = ‘o1 = 02 (- , [81])
translations
Fo=omF
Fo,=amF

We do things a little differently with functors. The properties of functors
are defined as predicates in a locale containing two categories. The locale
saves us two arguments on each predicate. Defining and naming the predicates
allows us to use them in our reasoning.
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Note that we assert the categories to be equal to themselves. This is a
kludge to align the types with those of the predicates.

locale two-cats = category A + category B +
assumes A = (A :: (‘o1,’al,'m1)category-scheme)
assumes B = (B :: ('02,’a2,'m2) category-scheme)

fixes preserves-dom :: ('ol,'al,’02,'a2)functor = bool
and preserves-cod :: ('ol,'al,’02,’a2)functor = bool
and preserves-id :: ('ol,’al,’02,'a2)functor = bool
and preserves-comp :: (‘ol,’al,’02,'a2)functor = bool

defines preserves-dom G =

VfeAry. G, (Domy f) = Domgy (G, f)

and preserves-cod G =

VfeAry. G, (COd1 f) = Cody (Ga f)

and preserves-id G =

VA€ Ob,. G, (Idl A) = Ids (Go A)

and preserves-comp G =

VfeAr,. VgeAry. Cody f = Domy g — Ga (g1 f) = (Ga g) 2 (Ga f)

The locale functor, used in the next lemma, adds a structure F', and asserts
these properties of it.

Here is an example of a simple result with its proof. Some assertions are
given numbers as names, so that they can be referred to later. To show that
we have a homset element, we must show that it is an arrow, and has the
correct domain and codomain.

lemma (in functor) functors-preserve-homsets:
assumes 1: A € 0Ob;
and 2: B € Ob;
and 3: f € Homy A B
shows F, f € Homg (F, A) (Fo B)
proof—
from 3
have 4: f € Ar
by (simp add: hom-def)
with F-preserves-arrows
have 5: F, f € Ary
by (rule funcset-mem)
from 4 and F-preserves-dom
have Domgy (F, ) = F, (Dom; f)
by (simp add: preserves-dom-def)
also from 3 have ... = F, A
by (simp add: hom-def)
finally have 6: Domsy (F, f) = F, A .
from 4 and F-preserves-cod
have Cody (F, f) = F, (Cody f)
by (simp add: preserves-cod-def)
also from & have ... = F, B

10
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by (simp add: hom-def)
finally have 7: Cody (F, f) = Fo B .
from 5 and 6 and 7
show ?thesis
by (simp add: hom-def)
qed

To check that we have defined what we think we have defined, it is prudent
to construct an obvious instance for each concept, and to prove that is is an
instance. We show that the pair containing the object and arrow identity
functions is a functor. We define a function which gives us this pair for a
given category, and a locale in which to prove our result.

constdefs
id-func :: ('0,’a,’m) category-scheme = ('0,’a,’0,’a) functor
id-func € = (om=(AA€ob C. A), am=(Af€ar C. f))

locale one-cat = two-cats +
assumes endo: B = A

After a few lemmas we are able to show

theorem (in one-cat) id-func-functor:
Functor (id-func A) : A — A

Again, we recycle the two-cats locale, setting the second category to be
the category of sets whose type is that of the arrows of the first category.
Homfunctors are defined, and we use the usual notation Hom(A, —). Note
that the brackets are an essential part of this notation. Homsets are written
without brackets, because they are applied curried functions.

locale into-set = two-cats +
assumes A = (A::(Yo,’a,'m) category-scheme)
fixes U and Set
defines U = (UNIV::'a set)
defines Set = set-cat U
assumes B-Set: B = Set
fixes homf :: ‘o = (om::'o=("a set), am::'a=("a set-arrow)|) (Hom'(-,’-"))
defines homf A = (|
om = (AB€Ob. Hom A B),
am = (Af€Ar. (set-dom=Hom A (Dom f),
set-func=(AgeHom A (Dom f). f - g),
set-cod=Hom A (Cod f))))
)

The aim is to show that homfunctors are functors. The following is among
the required lemmas.

lemma (in into-set) homf-preserves-dom:
assumes f € Ar

11
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shows Hom(A,-)o (Dom f) = dom Set (Hom(A,-)a f)
proof—
have Dom f € Ob ..
hence 1: Hom(A,-), (Dom f) = Hom A (Dom f)
by (simp! add: homf-def)
have 2: dom Set (Hom(A,-)s f) = Hom A (Dom f)
by (simp! add: homf-def)
from 1 and 2 show ?thesis by simp
qged

Eventually, we can show

theorem (in into-set) homf-into-set:
Functor Hom(A,-) : A — Set

We define natural transformations, give a reasonable notation for them
and show that the identity arrow function of a category, when restricted to
the objects of that category is a natural transformation from the identity
functor to itself.

theory NatTrans = Functors:

locale natural-transformation = two-cats + var F + var G + var u +
assumes Functor F : A — B
and Functor G : A — B
and u : 0b A — ar B
and u € extensional (0ob A)
and VA€Ob. u A € Homy (F, A) (G, A)
and VA€O0b. VBeOb. VfeHom A B. (G, f) 2 (uA) = (u B) +2 (Fa f)

This last line asserts that the following diagram commutes
F,A—*~G,A
Faof Gaf

FOBU—B>GOB

The natural transformation locale has given us a predicate whose argu-
ments are two categories, two parallel functors between them and the natural
transformation. Rather than use the default syntax

natural-transformation A B F G u
we have defined the more familiar form

u: F'= G in Func(A,B)
12
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Note that the Func(A,B) part of the expression does not really denote a
functor category. This notation is used to state a “sanity check” result

theorem (in endoNT) id-restrict-natural:
(M€O0b. Id A) : (id-func A) = (id-func A) in Func(A,A)

We combine locales to get an environment with an arbitrary category, the
corresponding category of sets, and a functor between them. Here, we define
the “sandwich” function o, which will be the witness for Yoneda’s lemma, and
what will be shown to be its inverse o, which we call “unsandwich”. Again,
we help ourselves to notational sugar.

locale Yoneda = functor + into-set +
assumes A = (A::(’o,’a,'m)category-scheme)
fixes sandwich :: ['0,'a,’0] = 'a set-arrow (o'(-,-))
defines sandwich A a = (AB€Ob.
set-dom=Hom A B,
set-func=(\f€Hom A B. set-func (F, ) a),
set-cod=F, B
)
fixes unsandwich :: ['0,’0 = 'a set-arrow| = 'a (0 '(-,-"))

defines unsandwich A u = set-func (v A) (Id A)

It is necessary to show that sandwich yields natural transformations, so a
few results like the following are needed.

lemma (in Yoneda) sandwich-funcset:
assumes A € Ob
and a € F, A
shows o(4,a) : Ob — ar Set

Then we get

lemma (in Yoneda) sandwich-natural:
assumes A € Ob
and a € F, A
shows o(A4,a) : Hom(A,-) = F in Func(A,Set)

We show that the two functions are inverses

lemma (in Yoneda) unsandwich-left-inverse:
assumes 1: A € Ob
and 2: a € F, A
shows 0 (A,0(A,a)) = a

lemma (in Yoneda) unsandwich-right-inverse:
assumes 1: A € Ob
and 2: u : Hom(A,-) = F in Func(A,Set)
shows o(A,0c" (A,u)) = u

13
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Now we have the results we need to prove our goal, but stating it requires
a couple of minor definitions.

In order to state the lemma, we must rectify a curious omission from the
Isabelle/HOL library. It defines the idea of injectivity on a given set, but
surjectivity is only defined relative to the entire universe of the target type.

constdefs
surj-on == ['a = 'b, 'a set, 'b set] = bool
surj-on fA B =VyeB. Jz€A. f(z)=y
bij-on :: ['a = 'b, 'a set, 'b set] = bool
bijron f A B = inj-on f A & surj-on f A B
equinumerous :: ['a set, 'b set] = bool (infix = 40)
equinumerous A B = 3f. bij-on f A B

MacLane [15, page 61] states the lemma as follows

Lemma 3.1 (Yoneda) If K : D — Set is a functor from D andr an object
in D (for D a category with small hom-sets), there is a bijection

y: Nat(D(r,.),K) = Kr

Yoneda may have called his result a lemma, but after so many inconse-
quential propositions bearing that title, an upgrade seems to be in order.

theorem (in Yoneda) Yoneda:
assumes 1: A € Ob
shows F, A = {u. u: Hom(A,-) = F in Func(A,Set)}
apply (unfold equinumerous-def bij-on-def surj-on-def inj-on-def)
apply (intro exI congl bexI balll impl)
proof—
— Sandwich is injective
fix z and y
assume 2: z € F, Aand 3: y € F, A
and 4: o(A,z) = 0(A,y)
hence 0 (4,0(A4,z)) = 0= (A,0(A,y))
by simp
with unsandwich-left-inverse
show z =y
by (simp add: 1 2 3)
next
— Sandwich covers F A
fix u
assume u € {y. y : Hom(A4,-) = F in Func (A,Set)}
hence 2: u : Hom(A,-) = F in Func (A,Set)
by simp
with 7 show o(A,0" (4,u)) = u
by (rule unsandwich-right-inverse)
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— Sandwich is into F A
from 7 and 2
have u A € hom Set (Hom A A) (F, A)
by (simp add: natural-transformation-def natural-transformation-azioms-def
homf-def )
hence u A € ar Set and dom Set (u A) = Hom A A and cod Set (u A) = F, A
by (simp-all add: hom-def)
hence uAfuncset: set-func (u A) : (Hom A A) — (F, A)
by (simp add: Set-def set-cat-def set-arrow-def)
have Id A € Hom A A ..
with uAfuncset
show 0 (A,u) € F, A
by (simp add: unsandwich-def, rule funcset-mem)
qed

end

4 Conclusions

The Isar proofs we have shown are cumbersome when compared to informal
text-book proofs. Much of the reasoning is there for the benefit of the prover,
not the reader. It is likely that better results can be obtained by more skillful
application of the existing automation. There are probably lessons to be
learned from a careful examination of the other formalisations. It is not our
aim to automate everything though, just the steps that we expect the human
reader to make for herself.

The formal language is still a burden, despite the improvements offered
by Isar, locales and syntactic extensions. In particular, we wish to reuse or
“overload” vocabulary for distinct but analogous notions. For example, in
part of the formalisation not presented here, subcategories are defined. The
obvious notation is A C B, but this led to statements being misinterpreted.
Similarly, we used the - symbol, rather than the usual o for arrow composition,
because the latter is defined as function composition.

We plan to investigate ways of acheiving the required overloading, as it
seems essential to the usual mathematical presentation. Denser proof through
improved automation automation is another high priority. Finally, to address
the problem of low productivity we plan to establish a disciplined process for
producing formalisations, and to systematically improve it.

Despite the shortcomings we have noted, the Isar proof language, locales
and flexible syntax of Isabelle have bought formalised mathematics a step
closer to being accessible to non-specialists.

Thanks to Michael Norrish, Raj Gére, Jeremy Dawson, Amnon Neeman,
Marieke Huisman, Tjark Weber, Lockwood Morris and Roy Dyckhoff for clues
and helpful emails. Thanks also to the referees for their insightful remarks.
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