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Abstract. Omni-drive systems operate by having individual wheels apply 
torque in one direction in the same way as a regular wheel, but are able to slide 
freely in another direction (often perpendicular to the torque vector).  The key 
advantage of omni-drive systems is that translational and rotational motion are 
decoupled for simple motion.  However, in considering the fastest possible 
motion this is not necessarily the case.  In this paper, we review all the current 
popular designs of omni-drive transport systems, and compare them in terms of 
practical and theoretical considerations. We then present a kinematic analysis 
that applies to two major omni-drive robot vehicles classes, for any number of 
wheels.  Finally, we show that for three-wheeled omni-drive transport systems 
and certain ranges of trajectories and starting conditions, a curved path can be 
traversed faster than a straight-line path, we confirm this result experimentally.  

 
 

1 Introduction 
 
Of mobile robots, wheeled drives are by far the most common means of 
transportation.  Wheeled systems support accurate odometry over smooth flat 
surfaces.  Within the class of wheeled systems, the majority are differential drive, 
where two parallel wheels execute straight-lines by moving with the same velocity, 
or curves with differences in velocity.  Ackerman steering is common for larger 
vehicles, particularly road vehicles.  However, omni-drive and synchro-drive 
vehicles have the kinematic advantage of allowing continuous translation and 
rotation in any direction.  Synchro-drive systems have a number of wheels that are 
aligned in a common direction, and can be turned in any direction.  This advantage is 
apparent for transport systems in confined spaces such as factory floor robots [2].  
Also, in competitive high-speed environments, such as the RoboCup competitions, 
this agility has demonstrated great advantage.  For example to move sideways, a 
differential drive robot can turn 90 degrees, move forward, and then turn back to its 
original direction.  An omni-drive robot can execute a single sideways motion, and 
further can easily track a moving object while maintaining a required orientation with 
respect to it, such as following a ball, while maintaining the alignment of a kicking 
mechanism.  Omni-drive robots have the particular advantage of decoupling 
translational and rotational motion.  The kinematics of omni-drive systems are well 
known [2], and many designs have been published, e.g., six wheels [1], three wheels 
[4], and four wheels [5].  However, analysis of omni-drive motion on curved paths 
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has been inadequate to date.  Such an analysis is necessary to optimise performance 
of this type of robot in high-speed competitive domains.  That the robot can move in 
any direction with any rotational velocity is adequate for path planning if speed is not 
a key consideration, however we want to optimise the performance of the robot for 
translational paths when rotation is not constrained.   

We are interested in optimising robot performance for the Robocup F180 
League, a competitive environment where speed is important.  Approaches such as 
the dynamic window [3] can be used to exploit these faster curved paths presented 
here.  The dynamic window was developed on synchro-drive robots.   

In this paper, we review omni-directional ground transport systems before 
examining a particular class of omni-drive vehicles, orthogonal universal wheel-
based systems, in more detail.  Finally, we look at the motion of omni-drive systems 
for curved paths.  We find that, theoretically, omni-drive systems can travel between 
points faster for certain curved trajectories than in a straight line.  We verify this 
result experimentally. 
 
1.1 Omni-drive transport systems 
 
The basis of the most common omni-drive transport systems is wheels that allow free 
motion in a direction that is not parallel to the wheel’s drive direction.  By combining 
a number of such wheels, each is able to apply a force on the centre of mass of the 
transport system, and as each wheel has some axis along which it can freely rotate, a 
velocity can be induced by the other wheels in this direction.  The well-known omni-
directional transport systems can be separated into two basic classes: orthogonal 
wheels (pairs of near-spherical wheels), and universal wheels (wheels with rollers).   
 
1.1.1  Universal wheels 
 
The universal wheel (see figure 2.1.1) has a set of rollers aligned around its rim that 
make contact with the ground.  Carlisle [2] describes two alternative wheel designs.  
In the standard design the rollers are aligned so that the wheel can roll freely 
orthogonally to its driving direction.  We will refer to such wheels as orthogonal 
universal wheels.  Platforms with three or more such wheels can produce full omni-
directional motion, i.e., arbitrary translation and rotation can be performed, and are 
decoupled.  A second wheel design has the rollers able to free wheel at a non-
orthogonal angle to the driving direction of the wheel, typically 45 degrees, e.g., 
[2,5]. 

Orthogonal universal wheels are usually placed all at the same distance from the 
centre of the transport system with their driving direction vector aligned tangentially 
to the circle connecting them, and with a uniform angle between neighbouring pairs 
of wheels, see Figure 3.1.2.  Both three [2] and four [1] wheeled configurations have 
been published.  The three-wheeled design is mechanically simpler and maintains 
contact with the ground at all times on rough surfaces, provided there is adequate 
clearance for the chassis.  For the four-wheeled version, suspension is necessary to 
guarantee contact by all wheels on uneven surfaces, complicating the design.  
However, in 2002, the Cornel University F180 Robocup team demonstrated that 
suspension was unnecessary for four wheeled systems if the ground surface is flat. 



For transport systems using non-orthogonal universal wheels a minimum of four 
wheels are required.  The standard configuration (e.g., [2,5]) has two rows of two 
wheels with all driving directions aligned.  Forward motion occurs by driving all 
motors forwards, sideways motion occurs by setting each motor in the opposite 
direction to its neighbours.  Rotation about the centre of mass can be induced by 
spinning the wheels on one side in the opposite direction of the other side.  However, 
such platforms also require suspension to guarantee ground contact on uneven 
surfaces, complicating the design.  Carlisle also criticises the poor efficiency of the 
sideways motion [2].  We do not consider this design family further in this paper. 
 
1.1.2 Orthogonal wheels 
 
Pin and Killough [6] describe transport systems based on orthogonal wheels.  The 
idea is that a pair of wide, almost spherical, wheels are placed with their axels in 
orthogonal directions.  The wheels are able to rotate freely about their axels.  A 
bracket holds the extremities of the wheel axel, which allows it to be driven to roll on 
its portion of spherical surface, while free-wheeling in the orthogonal direction.  This 
gives the same effect as the universal wheels.  With correctly aligned wheels that are 
close to spherical, and have synchronised motion, ground contact on one spherical 
surface or the other is assured at all times while leaving sufficient clearance for the 
bracket.  Thus, an orthogonal pair can drive in one direction and slide in the 
orthogonal direction.  Again, by combining three or more such wheel pairs it is 
possible to produce omni-directional motion.  They present two designs: one where 
the wheels of a pair are aligned radially from the centre of the robot; and, a more 
complex design where the wheels of a pair are aligned tangentially.  The latter case 
simplifies the robot kinematics and dynamics because the wheels can be placed such 
that the point of contact is always a constant distance from the centre of the robot for 
all wheels. 

Watanabe, et. al., [8] present a dynamic model and control scheme for a 
restricted class of three-wheeled omni-drive robots where the centre of mass is the 
same distance from the contact points for all wheels.  This corresponds to the 
tangentially aligned pairs variant of Pin and Killough’s orthogonal wheel design, 
where the centre of mass of the robot corresponds to its physical centre (the simplest 
case of an omni-drive robot for dynamics). 

Pin and Killough favour their orthogonal wheels design over the universal 
wheel-based design.  The major reasons given are: the lack of continuous contact 
with the ground given a single set of rollers; fewer parts; and, a smaller wheel well.  
These advantages of the orthogonal wheel design have been reduced for builders of 
mobile platforms of certain sizes by the availability of mass-market universal wheels 
that are small and reasonably priced.  Constructing a platform using pre-
manufactured universal wheels (at the sizes for which they are available) is simpler 
than constructing an orthogonal wheel-base and the size difference when restrictions 
apply (such as F180 Robocup) is often not significant.  Wheels with two rows of 
rollers, as shown in Figure 2.1.1, ensure smooth contact with the ground, but add a 
complication for control and odometry in that the point of contact of the wheel 
moves between the inner and outer row of rollers.  However, if the distance between 
the rollers is small in comparison with the radius of the transport system, the problem 
remains manageable.  Trade-offs like these have currently lead to the greater 



popularity of the orthogonal universal wheel design, as can be particularly seen in the 
small and medium leagues of the Robocup competition [7]. 

In the remainder of this paper we examine motion models that are common to 
the orthogonal wheels and the orthogonal universal wheel designs.  Previously there 
has been some study of the motion of a three-wheeled omni-drive robot (e.g. [2,8]), 
the kinematics for body motion, and dynamics for restricted cases, have been 
presented.  In this paper, we extend this analysis to the kinematics of n-wheeled 
robots.  We also analyse the motion of robots on curved paths, and examine the 
implications for maximal speed, and experimentally verify the derived results. 
 
2 Analysis of omni-drive systems 
 
In this section, we analyse the motion of omni-drive systems.  We first describe the 
motion of a simple two wheeled omni-wheel system.  We use this to introduce the 
velocity augmentation factor, the motion equations, and derive the general case for 
an n-wheeled system.  In this analysis we examine the case of orthogonal universal 
wheels, however, the analysis is the same for the orthogonal wheels design.  This 
analysis does not apply to non-orthogonal universal wheel-based systems. 
 
2.1 A simple omni-wheeled system 
 
A single wheel can only propel itself in the direction of applied force. The simplest 
possible omni-wheel system that is capable of moving in something other than a 
straight-line has two wheels attached together so that their directions of driving force 
are not parallel, as shown in Figure 2.1.1.  Due to the angling of the omni-wheels, by 
varying the speed at which each wheel rotates, we are able to drive the system in any 
direction we choose.  It must be noted at this point that the system described in 
Figure 2.1.1 is not an omni-drive as it is not capable of arbitrary simultaneous 
translation and rotation, which requires a minimum of three wheels. 
 
 
 
 
 
 
 
Figure 2.1.1:  Simple omni-wheeled system with angled universal wheels. 
 
2.2 Induced velocity 
 
While the system described in Figure 2.1.1 may appear simple, the kinematics are 
non trivial.  The nature of the omni-wheel means that a wheel can obtain a velocity 
(in its direction of sliding) without applying any driving force itself.  The force 
comes from the motion of the other wheel.  We refer to this velocity as induced 
velocity.  Consider Figure 2.2.1. 
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Figure 2.2.1: Wheel 1 on the right is driving.  Wheel two on the left is locked, Vw1 is 
the velocity of driving wheel one, and Vinw2 is the induced velocity of wheel two. 
 

In Figure 2.2.1, wheel 1 (right) is driving, while wheel 2 (left) is locked, that is 
cannot rotate about its axle.  Assuming no slippage, only rolling in the direction 
perpendicular to the driving direction of wheel 2 is possible.  In this case, the system 
will rotate about a single point that must lie along a line perpendicular to the velocity 
of each wheel.  The centre of rotation may be found at the intersection of the lines 
perpendicular to Vw1 and Vinw2.  Wheel 2, which provides no driving force, has 
obtained the velocity Vinw2.  This is the induced velocity. 
 
2.3 Omni-wheeled system motion 
 
We now consider the motion of a simple omni-wheeled system, where rotation is 
fixed.  Consider Figure 2.3.1, showing the vectors acting on one driving wheel. 
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Figure 2.3.1:  Analysis of omni-wheel 
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where, Vw is the velocity of the wheel, θ is the reference wheel angle, Vin is the 
induced velocity on wheel, φ is the reference body velocity angle, and Vb is the body 
velocity of robot. 

Now Vin and Vw are always orthogonal: 
 
Vb

2 = Vw
2 + Vin

2        (1) 
 
Also: 
 
Vin

2  = Vb
2 + Vw

2  - 2 Vw Vb cos(θ - φ)    
 
        = Vb

2 + Vw
2  - 2 Vw Vb (cosθ cosφ + sinθ sinφ)    (2) 

 
Substituting (2) into (1), we may obtain: 
 
Vw = Vb(cosθ cosφ + sinθ sinφ )      (3) 
 
For a given rotational velocity of the centre of mass, Ψ& , each wheel must apply 
velocity: 
 

Ψ= &RVw ,        (4) 
 
where R is the distance of the wheel from the centre of mass.  Thus, for each wheel: 
 

Ψ++= &RVV bw )sinsincos(cos φθφθ     (5) 
 
This is a general equation that is independent of the number of wheels.  Consider a 
three wheeled omni-directional vehicle with wheels arranged at angles of 0°, 120° 
and 240°, equation (5) yields: 
 
Wheel 1 (θ = 0°):      (6) Ψ+= &RVV bw φcos1

Wheel 2 (θ = 120°): Ψ++
−

= &RVV bw )sin
2
3cos

2
1(2 φφ    (7) 

Wheel 3 (θ = 240°): Ψ+−
−

= &RVV bw )sin
2
3cos

2
1(3 φφ    (8) 

 
Similar equations for this three-wheeled case appear in [6].  The translational 
component only appears also in [2].  As pointed out by Pin and Killough [6], if we 
separate Vb into x and y components, where Vbx = Vb cosφ, and Vby = Vb sinφ, this 
becomes a linear relation. We may invert the matrix for any n-wheeled system.  
Consider, for example, the three-wheeled system above:  
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Now, consider again the system shown in Figure 2.3.1, with initial conditions: θ = 
60°, Vw = 1, φ = 90°.  Substituting these values into Equation (3) gives: Vb =2/ 3  

Thus, the addition of angled omni-wheels can result in a net body velocity that is 
greater than the maximum radial velocity of the wheel.  We refer to this additional 
velocity as the Velocity Augmentation Factor (VAF).   

 

 
  
Figure 2.3.2:  3, 4 and 5 wheeled omni-drives. 
 
Let us now apply Equation (3), in particular the VAF, to some plausible omni-drive 
designs, as shown in Figure 2.3.2.  Figure 2.3.3 plots the theoretical VAF and 
average velocity obtained by varying φ over the range 0° - 360°. 

 

 
 

Figure 2.3.3:  Plots of VAF vs direction for 3, 4 and 5 wheeled omni-drives. 
 



Figure 2.3.3 shows that the four-wheeled design produces the greatest VAF of 2  
every 90°.  Furthermore, as the number of wheels increases above four, while the 
number of peaks increases, the height of the peaks will always be less than 2 , as 
the angle of the relative angle of the wheels affects the VAF.  

Consider the configurations shown in Figure 2.3.4 below.  The design on the 
right has a smaller driving angle, that is the interior angle between drive shafts, than 
the design on the left and so will generate a larger VAF.  In the five wheeled omni-
drive in Figure 2.3.2 we see that both of these designs are in fact present on the one 
system.  Here, a small driving angle will obtain a large VAF, however, the pair with 
the large driving angle will not be able to keep up.  Since the system as a whole may 
only go as fast as the pair of wheels with the largest driving angle, any more than 
four wheels and the VAF is reduced. 

 

 
 

Figure 2.3.4: Example of large (left) and small (right) driving angles. 
 
2.4 Velocity for a three-wheeled omni-drive with 

rotation 
 
Returning to Figure 2.3.2, we see that for a three-wheeled omni-drive, as used by The 
University of Melbourne, the maximum VAF is approximately 1.15, however this is 
only for travel without rotation.  We may use Equation (9), or its equivalent for 
higher numbers of wheels to consider the maximum velocity when angular velocity 
is also allowed.  We may take the two components of Vb and combine them to find 
the total velocity, and set this to a maximum given the maximal velocities for the 
wheels.    We find: 
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By maximising Equation (10) we are now able to calculate the maximum possible 
velocity for the transport system.  By inspection, we find that the equation is 
maximised under the conditions given in Table 2.4.1 below.  (Note: All values are in 
terms of a maximum wheel velocity of 1). 



 
 
Velocity Case 1 Case 2 Case 3 
V1 1 1 1 
V2 1 1 1 
V3 1 1 1 
Vb 4/3 4/3 4/3 
 

Table 2.4.1:  Conditions for maximum body velocity. 
 
This value 4/3 is greater than, in fact the square of, the maximum VAF (2/√3) found 
previously.  We can also see from Equation (9) that there will be a net rotational 
velocity of the system, i.e., the system will follow a circular path. 

We now examine a case where it will be faster to travel a curved path at higher 
velocity than to travel in a straight line.  Figure 2.4.1 shows a curved path D of radius 
R, and the corresponding direct path d.  By calculating d and D and dividing by the 
maximum speed of traversal, we calculate the time taken to traverse both paths, as 
follows:  

 
d = 2Rsin(θ/2)  D = Rθ 
v = 2/√3   V = 4/3 
 
Therefore: 
 
t = √3Rsin(θ/2)  T = 3Rθ 
            4 
 
 
Figure 2.4.1: Curved vs direct paths 
 

 
Using this information we plot t vs T to establish when the time taken to travel a 

curved path is less than the time taken to travel a direct path.  This is shown in figure 
2.4.2 below.  As we can see, for distances under approximately 7.3r, where r is the 
radius of the robot, a destination may be reached earlier by travelling a curved path 
rather than a direct path.   

 



 
 
Figure 2.4.2:  Comparison of direct vs curved path travel times. 
 
This result is for the case of pursuing maximal velocity on both the curved and 

the straight-line paths.  Clearly different rates of curvature with lower translational 
velocities can also be pursued, however, we do not analyse the other cases here.  
Also, we have not considered system dynamics.  To confirm this result, we now 
present several experiments. 
 
3 Experiments 
 
3.1 Experimental Procedure 
 
The experiment was conducted using the robots pictured in figures 3.1.1 and 3.1.2.  
Each of the three wheels were set to a velocity and allowed to run for a significant 
period of time.  A calibrated overhead camera filmed the robot at a rate of 12.5 
frames per second facilitating accurate measurements of the path and velocities.  12 
experiments were conducted to test four states of the robot, with each state being 
tested using three alternate configurations of wheel velocities, as given in table 3.1.1.   
 

   
Figure 3.1.1: Side view of robots.   Figure 3.1.2: Base of robot 



 
 

State Wheel Velocities (cm/s) 
1 12.6 0 0 
2 12.6 -6.3 -6.3 
3 12.6 -12.6 0 
4 12.6 12.6 -12.6 

 
Table 3.1.1:  Experimental wheel velocities. 
 
In state 1, Equation (9) predicts a circular path of radius 2r, again where r is the robot 
radius (in this case 7.5cm), at a VAF of 2/3.  States 2 and 3, will result in a straight 
line path with VAF of 1.00 and 1.15 respectively, while state 4 will induce a circular 
path of radius 4r at a VAF of 1.33.  Table 3.2.1 shows the results.  We can see that 
the robot was able to travel faster along a curved path than in a straight line. 
 

 
State 

 
Theoretical 

VAF 

 
Observed 

VAF 

 
Error 

Theoretical 
Path Radius 

(r) 

Observed  
Path Radius  

(r) 

 
Error 
 

1 0.67 0.69 3.0% 2.00 1.73 14% 
2 1.00 0.99 1.0% ∞ ∞ N/A 
3 1.15 1.09 5.2% ∞ ∞ N/A 
4 1.33 1.32 0.75% 4.00 3.71 7.3% 

 
Table 3.1.2:  Experiment results. 
 
3.2 Experimental Errors 
 
Errors here may be primarily attributed to the control system used to maintain the 
desired wheel velocity.  Each wheel was under position-based control, thus, if the 
exact wheel velocity is not maintained, the robot will not travel required path or 
velocity precisely and therefore cause errors.  A further irregularity occurs due to 
dropped frames.  This results in large extremes in velocity to be calculated.  Such 
frames generally appear as outliers, and were removed from the results.   

It is difficult to precisely quantify these sources of error.  However, given that 
the actual variation from theory across multiple trials was 2.5% on average while the 
VAF is 33% we view the results as being adequate to support the theory.  
 
4 Conclusion 
 
We reviewed omni-drive robot systems and showed the reasons for the popularity of 
systems based on orthogonal universal wheels.  We presented a derivation of a 
velocity equation for an n-wheeled omni-drive robot, valid for these systems as well 
as systems using the orthogonal wheels design.  We introduced the concept of a 
velocity augmentation factor, and found that the VAF is maximal with a four-



wheeled omni-drive system.  We also found that the fastest path between to points, 
less than 7.3r of the robot, is a curved path for a three-wheeled omni-drive system, 
given particular starting conditions.  These results were verified experimentally. 

The curved path result becomes useful when considered in the context of 
competitive environments such as RoboCup, where optimising paths is of great 
advantage, especially for points close to the robot.  In the Dynamic Window 
approach [3], the robot searches through a set of possible trajectories to choose the 
best for the particular situation, given goal direction, current system state (position, 
orientation and velocities), and neighbouring obstacles.  In such an approach we can 
easily consider that some curved trajectories have different associated velocities.  
The analysis presented in this paper shows that for certain trajectories and initial 
conditions curved paths should be considered as faster paths in such an approach.   
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