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Abstract— A new method is presented for detecting trian-
gular, square and octagonal road signs efficiently and robustly.
The method uses the symmetric nature of these shapes,
together with the pattern of edge orientations exhibited by
equiangular polygons with a known number of sides, to
establish possible shape centroid locations in the image. This
approach is invariant to in-plane rotation and returns the
location and size of the shape detected. Results on still images
show a detection rate of over 95%. The method is efficient
enough for real-time applications, such as on-board-vehicle
sign detection.

I. I NTRODUCTION

Improving safety is a key goal in road vehicle devel-
opment. Driver support systems that help drivers react to
changing road conditions can potentially improve safety.
Our research focusses on systems that support the driver
in controlling the car, whilst keeping the driver in the loop.

Sign recognition is an important task for a driver support
system. Signs give useful information and appear clearly
in the environment. However, drivers sometimes miss signs
due to distractions or lack of concentration. It may then be
helpful to make them aware of the information they have
missed. Two approaches are useful here for different types
of sign: critical signs and information signs. For critical
signs, the driver should make an adjustment in their control
of the vehicle. An in-car system can perceive whether the
driver is already aware of a critical sign by his or her
reaction or lack of it, e.g. not slowing down in response
to speed signs, or failing to react to stop or give way
signs. For less urgent information signs, such as warning
or direction signs, a recent sign could simply appear on a
discrete display that the driver can view when convenient.

The fast radial symmetry operator [1] provides an ef-
ficient means for finding radially symmetric features in
images. In particular, it has been shown to effectively detect
the circles on Australian speed signs, reliably identifying
potential speed sign locations in images from a vehicle
based vision platform [2]. We generalise this method to
detect triangular, diamond (square) and octagonal signs,
generating detectors fast enough to run at many frames
per second.

We present an algorithm to detect the class of shapes
containing regular polygons and circles. These can be
viewed as circles represented by a number of equilateral

and equiangular linear edges, where the number of edges
varies between three (a triangle) to infinite (a circle). This
class encapsulates most of the common sign types, i.e.,
triangular, diamond, square, octagonal, and round. Our
algorithm detects these shapes robustly and quickly.

This class of detectors has complexityO(Nkl), where
l is the maximum length of the segments,k is the number
of radii (scales) being considered, andN is the number of
pixels in the image. Note that for small shapes,l andk are
small numbers. Comparable algorithms such as the gener-
alised Hough transform [3] are far more computationally
complex. Even recent high speed implementations of the
generalised Hough transform on specialised hardware take
multiple seconds to recognise a single shape [4].

Other general work on perceptual grouping [5] takes
a similar approach in terms of finding local support for
shapes. However, this work does not use pixel-based gra-
dient information, and works at the level of edge segments
for gradient. A complexity ofk2 was reported wherek
is the number of edge segments, however, for a cluttered
image, if the segment size is one pixel,k may be of the
order of the size of the image.

The class of shape detectors presented in this paper
is specialised for real-time performance by exploiting the
nature of shapes that vote to a centre point. This makes the
algorithm robust to missing pixels due to lack of contrast
or incorrect gradient direction estimates, as the vote for
the centre-point will be high. These shape detectors are
parametric in their formulation, and can be applied easily
and efficiently in situations where constraints are available
from the embodiment of the vision system, such as the
appearance of road signs to a car. This is in keeping with
the embodied vision algorithm approach [6], exploiting the
constraints of the system the algorithm is placed within to
facilitate fast and robust computation.

Our shape detection approach has strong robustness to
changing illumination as it detects shapes based on edges,
and will efficiently reduce the search for a road sign
from the whole image to a small number of pixels. The
real advantages become apparent when our detectors are
considered as part of a system with a sign recognition
technique. With traditional detection methods that return
regions of interest, every pixel in these regions must be



searched, for every size of sign that can appear, as well as
every possible sign. However, our new detectors accurately
return the centroid, scale and shape of candidate signs.
Thus, few pixels need to be examined for recognition and
the shape and size are known. Subsequent computation
is well targeted, and comparatively little computation is
needed to assess a candidate.

II. BACKGROUND

Road sign recognition research has been around since
the mid 1980’s. A direct approach is to apply normalised
cross-correlation to the raw traffic scene image. This is
computationally prohibitive, but can be eased somewhat
by approaches such as simulated annealing [7]. Another
method for controlling computation is presented by [8]:
applying templates to an edge image of the road scene. A
distance-to-nearest-feature transform is applied to smooth
the matching space for coarse-to-fine matching, and a hier-
archical structure of templates eases the burden of a large
number of templates. However, this is still computationally
intensive and so unsuitable for an in-the-loop system.

Many approaches have used separate stages for sign
detection and classification of different types of sign [9],
[10], [11], [12]. Especially when a large number of sign
types are to be classified. We argue this can be an effective
means of managing computation for even a small number
of sign types if detection can be efficiently achieved.
Further, this can facilitate real-time operation by allowing
possibly computationally intensive classification to be per-
formed on only a small part of the image, without requiring
assumptions about where signs may appear.

Colour segmentation is the most common method for
the initial detection of signs. Typically, this is based on the
assumption that the wavelength arriving at the camera from
a traffic sign is invariant to the intensity of incident light.
This assumption usually manifests in the statement that
HSV (or HSI) space is invariant to lighting conditions [12].
A great deal of the research in this area exploits a detection
stage based on this assumption [12], [13], [9], [11], [14],
[15], [16], either finding the signs, or eliminating much of
the image from further processing. However, the camera
image isnot invariant to changes in the chromaticity of the
incident light. Further, as signs fade over time the colour
of the signs is not invariant.

Another approach to detection isa priori assumptions
about image formation. For instance, assuming the road is
approximately straight allows large portions of the image to
be ignored when looking for signs. Combined with colour
segmentation, Hsu and Huang [16] look for signs in only
a restricted part of the image. However, such assumptions
can break down on curved roads, or with bumps such as
speed humps. A more sophisticated approach is to use some
form of detection to facilitate scene understanding, and thus
eliminate a large region of the image. For example, Piccoli
et. al [13] suggest large uniform regions of the image
correspond to road and sky, and thus only look alongside
the road and below the sky where signs are likely to appear.
However, this is inadequate in cluttered road scenes, such

as tree-lined streets. They also suggest ignoring one side of
the image as relevant signs will only appear on one side.
This is not the case, however, on dual carriageways where
signs typically appear on both sides of the road.

In this paper we present an application of a new class of
shape detectors to visual road sign detection. Our approach
uses gradient elements to detect signs based on shape.
Triangular, square, diamond, octagonal and circular signs
can be detected in this manner.

III. ROAD ENVIRONMENT STRUCTURE

There is much possible variation in the appearance of
a sign in an image. Throughout the day, and at night
time, lighting conditions can vary enormously. A sign may
be well lit by direct sunlight, or headlights, it may be
completely in shadow on a bright day, or heavy rain may
blur the image of the sign. Ideally, signs have clear colour
contrast, but over time they can become faded, yet still be
clear to drivers. Although signs appear by the road edge,
this may be far from the car on a multi-lane highway – to
the left or right, or very close on a single lane exit ramp.
Further, while signs are generally a standard distance above
the ground, they can also appear on temporary roadwork
signs at ground level. Thus it is not simple to restrict the
possible positions of a sign within an image of a road
scene. By modelling the road [17], it may be possible to
dictate parts of the image where a sign cannot appear, but
road modelling has its own computational expense, and, as
discussed previously, colour-based methods are not robust.

However, the roadway is well structured, and the appear-
ance of road signs is highly restricted. They must be of a
particular size, and have particular colours and shapes for
individual signs. Unless the sign has been tampered with,
signs will appear approximately orthogonally to the road
direction. Finally, signs are always placed, so the driver can
easily see them without having to look away from the road.
Typically, we can assume signs are upright alongside the
road, however, with minor accidents, signs can occasionally
appear tilted, our detectors are robust to this variation.

Our algorithm searches the image for features of the
expected shapes. As signs almost always appear in the
orthogonal direction to the road, provided our camera
points in the direction of vehicle motion, the surface of all
signs will be parallel to the image plane of the camera. On
a rapidly curving road it may be that the sign only appears
parallel to the image plane briefly, but this will be when
the vehicle is close to the sign, so it will appear large in
the image. If we are processing images at frame rate, and
we are able to recognise a sign reliably from only a small
number of frames then generally we are safe to assume
that the sign is parallel to the image plane.

IV. D ETECTING ROAD SIGN CANDIDATES

A. Shape Detection Method

We extend the fast radial symmetry transform [1] to
detect regular polygons. This method operates on the
gradient of a gray-scale image. Firstly, insignificant gra-
dient elements, whose magnitudes are less than a specified
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Fig. 1. Voting lines associated with a gradient element when searching
for different shapes.

threshold1, are set to zero and the remaining elements
normalised. Each remaining non-zero gradient element
votes for a potential circle centre a distancer away (where
r is the radius of the circle being targeted) along the line of
the gradient vector. The vote is placed at the closest pixel
to this point.

The points voted for are calledaffected pixelsand are
defined by:

p±ve(p) = p± round(rg(p)) ,

whereg(p) is the unit gradient at pointp. There are posi-
tive p+ve and negativep−ve affected pixels corresponding
to points that the gradient points towards and away from
respectively. Since we do not knowa priori whether a
sign will be lighter or darker than the background we use
both positively and negatively affected pixels concurrently.
However, if such information is known it can be used.

To extend this voting scheme to regular polygons we
define the ‘radius’ of a polygon as the perpendicular
distance from an edge to the centroid. Further, rather than
gradient elements voting for a single point, a line of votes
is cast describing possible shape centroid positions that
would account for the observed gradient element.

Figure 1 shows different votes cast by a gradient element
g(p) when searching for different shapes at a given radius
(only the votes associated with the positively affected pixel
are shown). Whereas in the case of a circle a single vote
is cast per gradient element, a line of votes is cast when
searching for straight-sided shapes. The white bars indicate
potential centroid locations that receive a positive vote, and
the dark bars indicate locations that receive a negative vote.
The negative voting is introduced to attenuate the response
generated by straight lines too long to correspond to shape
edges at the target radius.

The length of the line of pixels voted for is defined by
w as shown in Figure 2. The width parameterw is chosen
so that every point on a shape edge will cast a vote for the
correct shape centroid, and is given by:

w = round
(
r tan

π

n

)
,

where r is the radius andn the number of sides of the
polygon being targeted.

The line on which the affected pixels lie can be approx-
imated by:

L(p,m) = p±ve(p) + round(mḡ(p)) ,

1A threshold equal to 5% of the maximum possible gradient magnitude
was used for our experiments.
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Fig. 2. Line of pixels voted for by a gradient element
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Fig. 3. Example ofn-angle gradient projected from a pointp

where ḡ(p) is a unit vector perpendicular tog(p). The
pixels receiving a positive vote are then given by:

L(p,m)|m ∈ [−w,w],

and those receiving a negative vote by:

L(p,m)|m ∈ [−2w,−w − 1] ∪ [w + 1, 2w].

Whether targeting circles or regular polygons, all votes
are accumulated into a vote imageOr. Figure 4 (b) shows
an example vote image for an octagonal target.

Regular polygons are equiangular i.e., their sides are
separated by a regular angular spacing; for ann-sided
polygon this is360/n degrees. To improve our detection of
these shapes we introduce a rotationally invariant measure
of how well a set of edges fits a particular angular spacing.

Defineγ(x, y) = nθ(x, y) whereθ = 6 g is the gradient
angle, andn is the number of sides of the target polygon.
Let v be the unit vector field such that6 v(x, y) = γ(x, y).
For a given set of edge pointspi, the magnitude of the
vector sum

∑
i v(pi) indicates how well the set of edges

g(pi) fits the angular spacing defined byn.
Consider the example in Figure 5. Three edge pointspi

are sampled from the sides of an equilateral triangle. The
unit gradient vectors and their associated angles are shown
in (a). By multiplying the gradient angles byn (n = 3 for
a triangle) the resulting vectors share the same direction if,
and only if, their original orientations were spaced360/n
degrees apart. Thus the magnitude of the vector sum of
thesen-angle vectors is maximal if the edge points occur
at the targeted angular spacing.

To utilise this result we construct a vector field of
projectedn-angle gradients by considering each non-zero
element ofg and projecting its associatedn-angle vector
v(p) onto its voting space as shown in Figure 3 (note
the sign is reversed when projecting onto negatively voted
pixels). Vectors projected onto the same pixel are summed.
The result is a vector fieldBr, whose magnitude indicates
how well the gradient elements voting on each point match
the target angular spacing. Figure 4 (c) shows an example
of such a magnitude image for an octagonal target.

For increasingn then-angle representation is limited by
the accuracy of the gradient orientation estimate. However,
it is perfectly adequate forn = 8 (e.g. Figure 4 (c)) which
is the maximum required for road sign detection.
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Fig. 4. Searching for octagons in an image. (a) original300 × 400
image, (b) vote imageOr for r = 40 (c) magnitude of equiangular
image‖Br‖ for r = 40 (d) result for radiusr = 40, (e) total result over
all radii r ∈ [6, 40], (f) detected octagons.

Once the vote imageOr and the equiangular image
Br have been computed the final shape responseSr is
determined for the radius in question as:

Sr(p) =
Or(p)‖Br(p)‖

(2wr)2
.

The denominator is a scaling factor that facilitates compar-
isons of results across different radii.

Then-angle representation is not relevant to circles since
a circle has edges at all orientations, however, in principle
‖Br‖ can still be computed by summing relevantly orien-
tated (all) vectors voting on each point, giving‖Br‖ = Or,
which makes the circular radial symmetry algorithm [1] an
extrema in this class of algorithms.

The transform is typically calculated over a set of radii
r ∈ R, whereR is the set of radii values at which the road
sign is expected to appear. The combined result imageS
is obtained by summing over allr ∈ R.

When searching across multiple radii, maxima are first
identified in the combined imageS, then verified to appear
with sufficient magnitude in one or more of the radial re-
sultsSr from which the position and radius are determined.

Figure 6 presents an overview of the algorithm, and
Figure 4 shows outputs at different stages of the detection
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Fig. 5. Example of three edge pointspi on a triangle. Showing (a) the
angles of the unit gradient vectors, and (b) the resulting vectors obtained
by multiplying the gradient angles byn (n = 3)

1) Determine the gradient vector field. Threshold the
magnitude, setting values below the threshold to zero
and those above to unity. Denote the outputg.

2) Determine then-angle gradient such that‖v‖ = ‖g‖
and 6 v = n6 g.

3) For each radius under consideration:
a) Consider each non-zero element ofg in turn, for

each such element:
i) Determine the vote locations.

ii) Accumulate the contribution to the vote im-
ageOr , and the equiangular imageBr .

b) Calculate the output imageSr at radiusr, as
Or(p)Br(p), and accommodate for scale.

4) SumSr over all radii r ∈ R to determine the final
output imageS.

Fig. 6. Summary of the algorithm.

of octagons in an example image. Note that although
the size and location of the shapes are recovered the
orientation is not since the operator is orientation invariant
(the detected octagons are drawn with zero orientation).

B. Implementation and real-time issues

To adapt the algorithm for road sign detection, it need
only be applied to radii practical for detecting signs in
traffic images. A shape with a small number of pixels as
its radius may well constitute a sign, however, there will
be insufficient pixels present to discern what the sign says,
and so there is no point in further processing until the sign
is close enough to be recognised. Also in normal driving
conditions a sign will never appear closer to the camera
than several metres. Given a camera of approximately
known focal length, we can impose an upper limit on
the possible radius of shapes to look for. As the basic
shape of a sign will be clear, even if it is faded, we set
a threshold that requires a large number of the possible
edge pixels to be detected. Further consistency checking
can be performed over time i.e., a shape must appear for
at least two concurrent frames, its radius must not have
changed greatly during that time, and it must not move far
in the image.

Previously [2] we demonstrated that shape detection
can combine effectively with classification. With the circle
detector only, the fast radial symmetry detector, 40 and
60 signs were detected and classified correctly in the
vast majority of cases using normalised cross-correlation.



This was based on a bank of sign templates covering the
expected radii. The candidate radius was identified by the
detector, only that template and the ones nearest to it were
correlated over a5×5 region around the extracted centroid
of the sign. The full classification was implemented in C++
to evaluate real-time performance. For a320× 240 image,
the full radial symmetry detection and classification was
able to be run at 20Hz, with classification taking≤ 1ms.
Figure 7 (b) shows an example of a detected and correctly
classified frame taken during the operation of this system.

(a) (b)

Fig. 7. (a) The ANU/NICTA Intelligent Vehicle. The cameras are
mounted where the rear view mirror would be. (b) Speed sign detection
and classification system in operation.

V. PERFORMANCE

Performance was tested on a diverse set of 45 images
containing road signs. A large collection of such images
was obtained via Google, from which test images were ran-
domly selected and sub-sampled to a common size. Each
shape detector was tested on 15 images containing road
signs of the targeted shape, Figure 8 shows a representative
sample of these images annotated with the detection results
generated by the algorithm.

The results are summarised in Table I and show strong
detection performance across all shapes. The algorithm
only fails in two instances and these are shown in Fig-
ure 10. In one case this is due to occlusion (a), whilst
the other (b) is caused by lack of contrast and indistinct
edge between the sign and the background. The occlusion
would not occur if the stop sign was viewed from the road
– generally roads are maintained to ensure such signs are
not occluded. The case of failure due to insufficient contrast
can be addressed by taking gradients on all colour channels
and summing the results (in these results only gray-scale
gradients were used). The yellow sign in Figure 10 (b)
stands out as a dark diamond in the blue colour channel.

Figure 9 shows some of the more challenging signs
detected by the algorithm. These include unorthodox oc-
tagonal signs in (a) and (b) that would not be detected
by a colour-based scheme looking for red stop signs;
(c) a triangular sign viewed from a non-fronto-parallel
perspective and partly obscured by foliage; and (d) a
diamond sign against a cluttered background providing
little contrast with the sign.

The lack of false positives for the octagonal signs can be
attributed to their distinctive shape and angular spacing –

(a) (b)

Fig. 10. Instances where sign detection failed

TABLE I

PERFORMANCE ON STILL IMAGES

Shape Correctly detected No. false positives No. targets
octagon 95% 0 15
square 95% 15 19
triangle 100% 10 15

there are few other ‘octagon-like’ shapes likely to occur
in an image. The square, diamond and triangle shapes,
however, occur more prevalently and whilst the majority
of the shapes detected did correspond to instances of these
shapes, these did not always correspond to road signs.
Nonetheless, this is not a problem for our algorithm, since
its purpose is to efficiently findpotential sign locations.
Furthermore, when applying this method to video taken
onboard a vehicle temporal consistency can be used to
discard many accidental views that do not correspond to
approaching signs (as per [2]).

VI. CONCLUSION

A novel shape-based technique was introduced and ap-
plied to detecting road signs in images. The method extends
the concept of the fast radial symmetry transform to detect
regular polygons. It was tested on a range of images
containing road signs and correctly detected signs in over
95% of cases. The method is invariant to in-plane rotation,
being able to detect signs viewed at any orientation, and
returns the location and size of the shape detected. The low
complexity of the algorithm makes it suited for real-time
sign detection onboard an intelligent vehicle.
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