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Abstract. In the RoboCup F-180 league competition, vision is predom-
inantly provided by an overhead camera which relays a global view of the
field. There are inherent disadvantages in utilising this system, particu-
larly the delays associated with the capture, transmission and processing
of vision data. To minimise these delays and to equip the robots with
greater autonomy, visual servoing on-board the individual robots is pro-
posed. This paper presents evaluation of two visual servoing methods
for mobile robots: position-based and image-based servoing. Traditional
implementations of image-based servoing have relied on partial pose esti-
mation, negating much of the advantage gained from using this method.
This paper will present an alternative implementation of image-based
servoing for approaching objects on the ground plane, which disposes of
the pose estimation step and fully relies only on image features. To eval-
uate the suitability of both visual servoing methods to F-180, the task
of docking with the ball is used as a basis of the investigation.

1 Introduction

The implementation of vision as a form of feedback for robotic tasks is a major
field of research dating back to the 1970s, where much of the early investigation
concentrated on pattern recognition problems [6]. Owing to the reduction in
hardware costs and the increase in computing power, the focus of vision research
has turned to the introduction of visual data into the control loop of a robot.
Using visual data within the control loop has been termed visual servoing.

The classical approaches to visual servoing are position-based servoing and
image-based servoing. In position-based servoing the world pose of the target is
estimated from the image, generally based on a geometric model of the object,
and a position-based control signal is generated accordingly. In image-based
servoing, the motion is controlled directly based on information from the image
plane, with the control error signal being the difference between a desired feature
vector, and the current feature vector. However, there are problems with image-
based servoing such that large undesired motions of the robot can occur, and



the object may move out of camera view [10, 12]. To deal with these problems,
recent work has examined 2 1

2D visual servoing, where the camera displacement
between current and desired positions is estimated in 3D coordinates without
the need for a 3D model of the target [8]. Other work emphasises robot path
planning in image space to avoid the problems of loosing the object from the
field of view [10, 12].

In this paper, we examine visual servoing for on-board control in the RoboCup
F-180 League. Currently, vision for most F-180 teams is provided by an overhead
camera which relays a global view of the field and all game-play information back
to a host computer. The disadvantages of a global vision system are the delays
inherent in the capture, transmission and processing of the image by the host,
which then issues commands to the robot. By employing vision on-board each
individual robot, and using visual servoing to produce a much ‘tighter’ closed-
loop control, decisions can be made by the robot without the intervention of the
host.

The possibility of integrating both global and on-board vision provides the
advantage of being able to select whichever form of vision is most appropriate
for a particular task. For reflex actions such as aiming and shooting at goal,
on-board vision would most likely be appropriate. Higher-level actions such as
team strategies would be handled by global vision.

In F-180, the environment is well-known so a model of the object is available,
facilitating position-based servoing. Further, in dealing with specific tasks such as
chasing the ball, the problem is well posed for image-based servoing. We present
the algorithms for both these approaches, and demonstrate through real robotic
experiments using the University of Melbourne entries to the F-180 League as
the platform for experimentation that both approaches are suitable for the F-180
league.

2 Theory

2.1 Position-Based Servoing

In position-based control, the task of positioning the robot is based on

1. extraction of image features during iteration of the control loop, and
2. evaluation of an estimate of the target pose with respect to the camera.

An error signal is determined from the difference between the current and desired
pose. This error signal acts as an input to the system control law, as shown in
Figure 1. Corke [3] states that the advantage of position-based control is that
it neatly separates the computation of the feedback signal from the estimation
problems involved in computing the pose from visual data. Corke, Hager and
Hutchinson [7] contend that, in general, image-based control is preferable to
position-based control due to factors such as positioning accuracy of the system
being less sensitive to camera calibration, and the computational advantages
which can be gained from a reduced number of transforms. However, Martinet
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Fig. 1. Position-Based Control System

and Gallice [9] demonstrated that using non-linear state feedback, 3D visual
features can still be incorporated into the control loop and achieve performance
comparable to image-based servoing.

2.2 Image-Based Servoing

Image-based control consists of specifying the positioning task directly from the
image without an estimation of the pose of the target. Feedback is purely from
the image plane, and the error signal is computed as the difference between the
desired feature vector fd and the current feature vector f . A feature vector is
a set of visual features such as the coordinates of vertices or the areas of the
faces of an object. Elements of the task are therefore specified in the image space
rather than the world space. i.e. in pixels rather than Cartesian coordinates.
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Fig. 2. Image-Based Control System

It is ideal in image-based control to reduce an appropriate error function e
such that when the desired position is achieved, e is 0. While the error function is
defined in the image parameter space, the input to the robot is in the task space,
as shown in Figure 2. Therefore, in order to relate changes in image features
to changes in the position of the robot, the concept of an image Jacobian is
introduced [3, 4, 7, 11]. The following relationship is then given,

ḟ = Jṗ (1)



where p = [x, y, z]T is a point in the body frame and ṗ the velocities of this
point. As shown by Sharma, Sutanto and Varma [11], the Jacobian is evaluated
from
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Assuming that the image Jacobian is square and non-singular, a simple con-
trol law can be determined as

ṗ = kJ−1 (fd − f(t)) (3)

where k is a diagonal gain matrix which will implement simple proportional
control.

Image-based control possesses underlying weaknesses since visual data is in-
terpreted using a constantly refined Jacobian matrix as part of the control loop.
Chaumette and Malis [1, 2] exposed the possibility of a local minimum being
reached and the image Jacobian being singular during servoing. In order to avoid
these problems, 2 1

2D visual servoing combines visual features obtained directly
from the image with position-based features [8].

3 Implementation

3.1 Position-Based Servoing

Since an image is two-dimensional, it is difficult to extract three-dimensional
(3D) Cartesian coordinates, because depth is unknown. However, the 3D co-
ordinates are required to properly implement the control system. In order to
calculate the depth of the centroid of an object, an assumption was made that
the object will always be on the ground and of known size, which is reasonable to
assume for the ball. Since the camera height and tilt angle were known, the posi-
tion of any image objects was determined by triangulation. Once the position of
the object was determined, a simple proportional and derivative controller was
used regulate the motion of the robot to achieve the docking position.

3.2 Image-Based Servoing

For the simple task of docking the robot with a ball, the degrees of freedom
considered were translation forwards and backwards, and rotation about the
current position of the robot. Translation sideways was deemed redundant, since
this can be achieved through a combination of forward motion and rotation.

The pinhole camera model was selected for the perspective projection, and
the feature vector f = [u, v]T was utilised, where u and v represent the image



coordinates of the centroid of the object. Using the coordinate system in Figure 3,
the velocity of a point p was expressed relative to the camera frame as,

ẋ = zω (4)
ẏ = 0 (5)
ż = −xω + vx (6)

where vx and ω were the chosen degrees of freedom shown in Figure 4. Note that
the camera used for on-board vision had non-unit aspect ratio and was oriented
on its side to achieve the greatest possible depth of vision. Thus to reflect the
reorientation of the camera, the normal convention of having u and v representing
the horizontal and vertical coordinates was changed (see equation 7). As well as
viewing the ball when docked with the robot, it was considered more important
to be able to perceive objects at a distance, rather than to have a wider viewing
range close to the robot. This is reflected in the image coordinate system.
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were used to express the velocities in (4) in terms of the feature parameters

ẋ = zω (8)
ẏ = 0 (9)

ż = −vz

λ
ω + vx (10)

Using these relationships the differential change in the image features was
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zẋ − xż
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Equations (12) and (14) can be written in matrix form as,[
u̇
v̇

]
=

[
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] [
vx

ω

]
= Jv (15)

The relationship between robot velocities and changes in the image is therefore

v = J−1ḟ =
[
−z(λ2 + v2)/λ2u vz/λ2

−v/uλ 1/λ

]
ḟ (16)

A simple proportional controller was used to regulate the motion of the robot
for image-based servoing. The aim of this investigation was not to examine the
performance of the control system, but rather to focus on the characteristics of
the visual-servoing methods. The simplest control system was therefore chosen.

In order to find the inverse Jacobian, J must be square and non singular,
that is, the determinant must be non-zero.

|J| = −uλ/z − u · v2/(zλ) + u · v2/(zλ)
= −uλ/z (17)

According to Equation (17), the determinant can be zero only if either u is zero,
or z is infinite. However, in practice these occurrences were defined as a no-
ball case at the image-processing stage and handled prior to the control system.
Thus, the Jacobian could be considered as always non-singular. Furthermore,
in our experiments the underlying error function was monotonic and no local
minima occurred in the control loop.

The derivation given for the image Jacobian considered the camera axis hor-
izontal to the ground. However, for this implementation, the camera was tilted
to enable the ball to be seen when at the base of the robot. The main effect
of the tilt angle is to introduce a constant scaling factor into the robot control



velocities. This scaling factor can be absorbed by the gain factor (k) in the con-
trol law. It was found through experimentation that the appropriate selection of
the controller gains results in the derived control law being effective even with
camera tilt. The non-tilt derivation can therefore be used in the general case.

As discussed by Corke [3], many image-based models still require the depth
of the target in the formulation of the image Jacobian. This results in a par-
tial pose estimation, which is the basis of the position-based model. By utilising
the image size of the target as an indicator of the relative distance from the
camera, Zhang and Ostrowski [12] were able to remove the dependence of the
image Jacobian on the depth of the target. However, for the implementation of
image-based control used in this investigation, image size was not considered
an accurate representation of the depth because the entire object might not be
recognised. This was a major problem encountered, as specular reflections and
self-shadowing under the F-180 competition overhead lighting conditions caused
variable recognition of the ball. In F-180 most dominant teams rely only on over-
head cameras, and the lighting design is more suitable for overhead applications.
However, the centroid height was determined to be a more robust ball feature
when the ball is close, as partial occlusion will only change the distance estimate
slightly. Although it does cause larger errors when the ball is far away, the con-
trol behaviour will not be significant different compared with when it is close by.
Depth was therefore expressed as a function of the chosen image features and
the geometry of the camera placement, as shown in Figure 5.

���������	�


����

�

������������������

λ

αθ �

Fig. 5. Camera Placement

Using the geometry of the camera placement shown in Figure 5, the depth z
and angle α were evaluated to be

z =
h

sin θ cos α + cos θ sinα
(18)

α = arctan
(u

λ

)
(19)

Since the angle of elevation of the camera is known, both sin θ and cos θ were
evaluated as constants. Furthermore, using (19) and Pythagoras’ Theorem, cos α
and sinα can be evaluated, allowing z to be determined.



4 Experimental Procedure

Two forms of experiments were designed to analyse the behaviour of each method
of visual servoing: docking with a static ball, and docking with a moving ball.
Both experiments performed docking with an orange golf ball, as used in RoboCup
competition. The purpose of these tests was to observe the effects of system pa-
rameters such as frame rate, computation time and calibration.

In the static experiment the ball was placed at three locations in front of
the robot: to the left, in the center, and to the right of the robot. The ball
was also placed at differing distances from the robot: near, middle and far away
from the robot respectively. Figures 6(a) and (b) illustrate where the placement
locations were placed relative to the robot. The ruler seen in these images is 1m
in length. For the moving target tests, the ball was released from a ramp of fixed
height and rolled towards the robot. The ramp allowed reasonable repeatability
of tests with a consistent velocity. The robot was required to track varying ball
trajectories at 90◦, 45◦, and almost parallel to the robot’s line of vision.

Fig. 6. Placement of the ball and test locations relative to the robot, as seen from
(a) an overhead view and (b) the robot camera

5 Results and Discussion

Two sets of results for each experiment were collected for analysis. The results
were of the overhead view of the test and of the on-board camera view. The
overhead camera provided a world-space view of the path taken by the ball and
the robot as docking occurred. The overhead view was also used to track changes
in velocities as the robot approached the docking position. This was achieved by
knowing the sampling rate used for the camera. The on-board view was used to
observe the changes in ball position within the image frame. This data provided
a better understanding of the servoing behaviour of the robot as it attempted to



reach the commanded position. Note that the overhead camera was used only to
record the motion of the robot for evaluation, not for servoing, which was done
by on-board vision.

A representative sample of the results is given in Figures 7 to 9. Figure 7
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Fig. 7. Local camera view of two tests

presents the tests as seen by the on-board camera. Figures 8 and 9 present
the global view of the tests seen by the overhead camera. The overhead plots
contain markers at one-second intervals, while the local camera has markers at
half-second intervals. The markers for image-based control are depicted by the
“◦”, and for position-based control by the “∗” marker. Complete results for all
tests are given in [5].

From the results obtained there was no discernible difference in the perfor-
mance of the two methods. Both servoing implementations were able to track
the ball reliably, and were able to successfully approach the docking position.
Neither method was able to achieve the exact docking position due to the in-
ability of the robot to move when given low-velocity commands. This was a
potential control system problem which could be solved through the implemen-
tation of more advanced controllers. However, the simple controllers used for the
experiments still demonstrated that visual servoing using either method can be
satisfactorily achieved. Furthermore, during operation in the actual F-180 com-
petition it would not be desirable to stop next to the ball, but rather to move to
the ball at the highest speed possible in order for it to be picked up on a roller.

It was noticed that for the image-based method that the robot travelled at
constant velocities to the docking position, whilst the velocities for the position-
based method had a ramping effect. This is attributed to the different controllers
used for each implementation. A proportional controller was used for the image-
based method and accounted for the constant or linear velocities observed. For
the position-based implementation, a derivative controller was added, introduc-
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Fig. 8. Overhead camera view of far distance static ball test

ing the ramping effect. The ramping effect was due to the predictive nature of
a derivative controller, evidenced by the reduction in the commanded speed as
the robot approached the docking position.

The position-based method was a much more intuitive means of visual ser-
voing than the image-based method. Position-based servoing is essentially an
extension of image-based servoing by the addition of a pose estimation step.
Both methods required the extraction of image features in the feedback loop.
The derivation of the Jacobian proved difficult to analyse for errors due to the
coupling involved in the evaluation of the velocities. The position-based servoing
was therefore a more straightforward method to conceptualise and implement.

In terms of computational costs, image-based servoing was much cheaper
than position-based servoing. The removal of the transformation from image
space to Cartesian world space allowed computation involving only addition,
subtraction, multiplication, and division operations. The additional cost of us-
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Fig. 9. Overhead camera view of near distance moving ball test

ing tan and arctan operations made position-based control much more computa-
tionally expensive. It needs to be considered, though, that when the complexity
of the task increases, the computational cost of the image-based method would
increase in proportion to the size of the Jacobian matrix. Image-based servoing
could therefore potentially be more expensive than position-based methods for
complex tasks.

In an application such as visual servoing calibration effects are an important
issue to be considered. It was observed that for position-based servoing, external
and internal calibration issues such as camera positioning and angle of field-of-
view will cause errors in position estimation. However in image-based servoing,
the main effect of calibration was from determination of the focal length, an
integral step in the development of the image Jacobian. To minimise the erro-
neous influences of calibration and to achieve reliable servoing, it was therefore
important for both servoing methods that the calibration be conducted offline.



6 Conclusion

In this paper, it has been shown that it is possible for visual servoing to be per-
formed on board the F-180 robots under RoboCup conditions. The two classical
methods of position-based and image-based servoing both satisfactorily achieved
the task of docking a robot with static and moving targets. In conducting this
investigation it was shown that both methods had advantages and disadvan-
tages over each other and neither proved to be a superior implementation. As
such both are equally suitable to be used in the F-180 League, and the decision
on using either method would be based on which features of position-based and
image-based servoing are more desirable.
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