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We present an approach for cataloging an
organization’s skill assets based on electronic
communications. Our approach trains
classifiers using messages from skill-related
discussion groups and then applies those
classifiers to a different distribution of person-
related e-mail messages. We present a
general framework, called cross training, for
addressing such discrepancies between the
training and test distributions. We outline two
instances of the general cross-training
problem, develop algorithms for each, and
empirically demonstrate the efficacy of our
solution in the skill-mining context.

An increasing number of knowledge-intensive orga-
nizations prize their human skill set as their primary
asset. Like any asset, skills can only be fully utilized
if they are well understood and carefully cataloged.
The ability to locate people with specified skills is
crucial for many business activities, including man-
aging projects, answering questions, and building
project teams. An organization-level catalog of em-
ployee skills serves as the basis for identifying skill
gaps, and in quantifying an organization’s value.1–3

Skill assets present two difficulties beyond those as-
sociated with conventional assets. First, because each
individual has a large and unique set of skills, the
size of the skill catalogs for an organization is quite
large. Second, characterization of skill assets is of-
ten more subjective than conventional assets. Both
of these difficulties make the creation and contin-
uous maintenance of this catalog over time an ex-
ceedingly expensive operation. This expense and the

importance of the information itself spurred our in-
vestigation of automated methods for addressing the
problem.

Any automatic means of creating and maintaining
a skills catalog must rely on a data source with sev-
eral specific properties. (1) It must be inexpensive
to access electronically—a cost-effective solution can-
not rely on expensive data. (2) The data must be ubiq-
uitous and inclusive—our goal is a comprehensive
skill catalog, thus our data source must comprehen-
sively cover an organization’s employees. (3) The
data source must contain rich personal data—a per-
son’s skills are multifaceted, and capturing a mean-
ingful piece of this picture will require rich data about
that person. (4) The data source must be current and
continuously updated, because we are interested in
maintaining a skill catalog over time.

For many organizations the only data source that sat-
isfies all four of our requirements is personal elec-
tronic communications. This includes e-mail, post-
ings into public or private discussion groups, and
documents authored by the individual. In this paper
we refer collectively to these forms of person-related
content as personal communications or person-re-
lated messages. We refer to the problem addressed
in this paper as the skill-mining problem, that is, the
problem of creating and maintaining a skill catalog,
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a mapping from a set of employees to a set of busi-
ness-relevant skill categories.

We tackle the skill-mining problem using inductive
learning techniques to induce a skill detector for each
business-relevant skill and then apply these to an or-
ganization’s personal communications. The skill de-
tector must make a single person-level prediction us-
ing the set of messages related to that person.
However, it is difficult to obtain training data for
which a single label is assigned to a collection of mes-
sages. The labeled training data that are naturally
available for this task are individual skill-related mes-
sages.

Thus successful skill mining requires dealing with a
mismatch between the training and test distributions.
This mismatch stretches the traditional inductive
learning framework, which assumes that both the
training and testing data are obtained from a single
distribution.4 We define a generalization of the con-
ventional inductive learning framework, called cross
training, to address this mismatch between the train-
ing and test distributions. We propose solutions for
specific instances of the cross-training framework and
show how these can be applied to the skill-mining
problem.

In the next section we formulate the skill-mining
problem precisely and explain the nature of the mis-
match between the training and test distributions.
The following section introduces the cross-training
framework and proposes algorithms for dealing with
specific instances of this framework. Following sec-
tions describe our implementation of these meth-
ods to address the skill-mining problem, present ex-
perimental results that show that taking advantage
of the nature of the mismatch gives good learning
performance, and provide an analysis of our results.
In the final sections we discuss related work and con-
template future work.

Skill-mining architecture

In many ways our approach to skill mining is like
many conventional text-mining approaches to mes-
sage classification.5 Thus in the next subsection we
highlight only those aspects that differ.

Data sources. Training our skill recognizers requires
data labeled by business-relevant skill categories. We
employ Usenet and internal corporate discussion da-
tabases, organized by skill topic, as our primary
sources. These data sources not only contain mes-

sages similar to our target personal communication
data but also have the advantage of being relatively
“on-topic” within each discussion group. It is impor-
tant to note that each message from these sources
has a skill label, whereas in the target prediction task
each person is assigned a skill label. Because we are
representing persons by the set of messages they au-
thor or receive, our skill recognizers are trained on
individual messages but must classify sets of mes-
sages. This discrepancy is significant, and our solu-
tion for it is detailed later.

Feature extraction. Many inductive learning tech-
niques require training and testing instances to be
represented as a fixed vector of features. We adopt
the common approach of reducing short, free-text
messages to a “bag of words.”5–7 In this represen-
tation, each position in the vector has a binary value
that represents the occurrence or nonoccurrence of
a specified word in the training or testing message.
We limit ourselves to binary features because of the
discrepancies between training and target distribu-
tions. We have observed that public discussion mes-
sages and point-to-point messages (like e-mail) dif-
fer in a number of ways; for instance, e-mail messages
are typically shorter and have a greater implied con-
text, using pronouns in place of proper nouns. Both
of these effects skew the expected feature counts.
Compression into binary features lessens the sen-
sitivity to such discrepancies.

Feature context. An aspect of the skill-mining prob-
lem that differentiates it from many text-mining prob-
lems is the rich word context available. The occur-
rence of each word in an electronic communication
has two types of context. The first context is the way
a word is positioned within a message. “Present in
the subject field,” “used in a quote when replying,”
or simply “part of the body” are all possible word
contexts. A second type of feature context relates to
the function of the message the word appears in.
“Sent to a distribution list,” “sent as a reply,” or “re-
ceived message” are examples of this second type of
context.

Each word can therefore give rise to several binary
features by taking into account its context. For ex-
ample, the programming-related term “hash table”
would be expressed as a series of features such as
“hash table present in the subject field” and “hash-
table in the body of a message sent to a distribution
list.” Making these distinctions can be quite impor-
tant, because the relevance of a term to a person’s
skill depends on both the vocabulary of a skill area
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and how the person uses that vocabulary—was the
word used in response to an e-mail message, or
merely received in a mass-mailed announcement?

In our work to date, we have fixed the number and
type of contexts used, guessing at a balance between
the expressivity of our hypothesis space and its com-
plexity. An interesting direction for future work is
to consider dynamically introducing various contexts
in an iterative way, thus gaining benefits of more ex-
pressive classifier rules while not blindly multiply-
ing the features used in representing the problem.

Prediction inspection as a solution for data privacy.
A crucial social issue regarding personal communi-
cation data, e-mail in particular, is privacy. E-mail
is an extremely rich source of up-to-date, personal
skill data, but at the same time ethical considerations,
and most corporate policies, prohibit publishing
those data. Skill mining provides a solution to this
problem by compressing private, person-related data
into a concise skill profile. This skill summary is con-
cise enough to make inspection by the individual be-
ing profiled feasible. Summarization and subsequent
inspection is therefore an essential step in making
use of personal communications as a data source.

Skill-mining architecture. The skill-mining process
is summarized in Figure 1. The skill-related and per-
son-related data are compressed into training and
testing instances. Classifiers are induced from the
former, transformed into skill rules, and applied to
the latter, resulting in a skill profile for each em-

ployee. Because employee skills form overlapping
sets (each employee will simultaneously have many
skills) we express the skill classification problem as
a set of binary classification problems, one for each
skill category. Once all classifications have been de-
termined for a given employee, he or she can then
examine the profile to determine which portions are
to be published. Then it is stored for use in subse-
quent knowledge management tasks.

Induction of person-based skill classifiers. The
problem of learning skill classifiers seems, at first,
just like a typical problem of learning from unstruc-
tured text. We have a corpus of labeled examples
and testing data, both of which consist of similar
kinds of text messages. So it should just be a matter
of applying our favorite learning algorithm to the
training data and using the results to classify the test
data.

However, if we look a bit closer we see two very im-
portant problems with this naive approach. First,
most of the messages contained in the testing set
(messages to friends, jokes, company-wide memos)
do not correspond to any category listed in the train-
ing set (technical information found in discussion da-
tabases). Second, the skill labels in the training data
are assigned on a message-by-message basis; how-
ever, the required skill predictions are on a person-
by-person basis. Effectively, this means that we must
classify an individual’s entire message database with
a single label denoting that person’s predicted skill
level.

Figure 1 An overview of the skill-mining process

SKILL RULES

SKILL 
CLASSIFICATION

USER 
FEEDBACK

USER 
INSPECTION

SKILL-RELATED
(DISCUSSION
DATABASE)

PERSON-RELATED
(E-MAIL DATABASE)

SKILLS
CATALOG

LEARNING 
ALGORITHM

FEATURE
EXTRACTION

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002 OBLINGER ET AL. 451



A natural approach for the second problem would
be to concatenate all person-related mail for an in-
dividual into a single “message” and try to predict
labels for it. This approach yields an enormous mes-
sage, and such a large disparity in message size is
not consistent with our representation of messages
as a bag of words or our use of binary features. In
both cases the large size exacerbates the informa-
tion loss in our representation. One might consider
other representations that are not as sensitive to mes-
sage size, but we believe that simply adopting an ap-
proach less sensitive to this difference will not be as
strong as explicitly compensating for the difference.
A method for explicitly compensating for this prob-
lem is outlined in the next section.

The simplest approach to making the training data
more amenable to the test data would be to inject
some source of representative noise into the train-
ing set. This would be very damaging, because an
average person’s message database consists almost
entirely of skill-irrelevant messages (above 95 per-
cent). This high level of artificially injected noise
would overwhelm any learning algorithm. The next
section presents our approach for compensating for
this difference between training and test data.

Cross training

Before we present a specific solution to the skill-
mining problem, we take a step back and try to char-
acterize the problem more generally. This charac-
terization not only allows this and prior work to be
expressed in a common framework; it also provides
a context for future work.

The cross-training framework. Traditional classifi-
cation learning assumes that learning is performed
on a domain expressed as a probability distribution
D over pairs (e, 1) of examples, e, and their labels,
1. Samples of the training and testing sets are drawn
independently from D. 4,8 We define cross training as
a generalization of traditional classification in which
the training and testing sets are drawn from two dif-
ferent distributions, denoted by Dsource and Dtarget. We
assume that a fixed but unknown process has gen-
erated the source and target distributions from some
underlying distribution D.

Figure 2 shows the general cross-training framework.
Learning proceeds in two stages: (1) conventional
learning is performed over Dsource, producing a clas-
sifier CL1. (2) A second phase, which we call “cal-
ibration,” is then performed using a small amount
of data drawn from the Dtarget distribution, yielding
a classifier CL2 for the target domain. Of course any
testing of CL2 is done using a completely indepen-
dent test set drawn from Dtarget.

Our interest in this particular framework will be ob-
vious to the machine-learning practitioner who has
encountered learning tasks where either the train-
ing or testing data have been systematically per-
turbed. For example, in practical applications a sys-
tem that has been trained in one environment (e.g.,
the help desk at central headquarters) is often in-
stalled and used in a related, but different environ-
ment (e.g., the help desk at a local branch office).
As another illustration, there may be different un-
derlying processes that are responsible for generat-
ing the positive and negative examples in the train-
ing set (e.g., in medical diagnosis, profiles of patients
with and without disease are often obtained from
different sources) that are not reflected in the test
environment.

There is no general solution to the cross-training
problem—any number of relationships might exist
between Dsource and Dtarget. Some problems that have
already been addressed in the machine-learning lit-
erature can be formulated in the cross-training
framework—we discuss this further in a later sec-
tion. In this section we explore the two instances of
the cross-training framework that are relevant to the
skill-mining task. We provide algorithms that are de-
signed to take advantage of these relationships. The
increased complexity of this methodology is justified
by the superior results that this approach yields, as
shown experimentally in a following section.

Figure 2 The cross-training framework
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Dilution cross training. As the name suggests, the tar-
get domain is here a “watered-down” version of the
training domain. This means Dtarget may contain in-
stances for which labels do not appear in Dsource. To
simplify the discussion we assume all such instances
come from the same class, called “other.” We also
assume that dilution does not affect the relative pro-
portions of the classes in Dtarget when compared with
Dsource. This is done to clearly separate the issue of
dilution cross training from the issue of unbalanced
class distributions, which we discuss further under
related work.

We define a cross-training problem’s dilution rate to
be the probability of drawing an instance labeled
“other” from Dtarget. An obvious approach to dealing
with diluted domains is to simply ignore the “other”
class and to apply a traditional learning algorithm.
Since many learning algorithms can handle small
amounts of noise, this approach will yield good re-
sults when the dilution rate is relatively small. Thus
we refer to a problem as a dilution cross-training
problem only in the case that it has moderate-to-high
dilution rates.

To build a classifier for a diluted domain we will re-
quire that any classifier for the training domain must
return a score indicating the relative strength of its
predicted class label. Many standard inductive learn-
ing algorithms are readily adapted to this extended
form: support vector machines, Bayesian algorithms,
decision-tree learners, and neural networks all can
return a prediction score. In the case of decision-
tree learners and Bayesian algorithms, the score pro-
vided is, in fact, the estimated probability of class
membership. The score returned by support vector
machines and neural networks has a less clear in-
terpretation. Nonetheless, all we require of this score
is monotonicity, that is, a higher score indicates a
higher estimated probability of membership in the
predicted class.

We define a threshold td that allows a classifier CL1

for Dsource to be transformed into a classifier CL2 for
a diluted domain Dtarget as shown in Figure 3.

If we consider the target domain as having only two
classes, “other” and “important” (an amalgamation
of the classes in the training domain), then the mem-
bership threshold will control false positive and false
negative rates for the “important” class. Calibrating
the classifier is now a question of selecting an ap-
propriate value for the membership threshold. In
most cases, the false positive and false negative rates

will vary smoothly with td. This means a simple op-
timization technique, such as gradient descent, can
be used over the calibration set to determine an op-
timal value for this parameter.

Grain-size cross training. The grain-size issue arises
when the instances from Dtarget are actually collec-
tions of smaller objects in Dsource, and learning a clas-
sifier for these constituent objects is easier than learn-
ing a classifier for the entire collection. We assume
that the label of the entire collection is a function
of the labels of the constituents. The grain size re-
fers to how many smaller objects from Dsource make
up each instance from Dtarget.

As an example of this, suppose we have a classifier
trained to recognize the presence of any one of a set
of objects in a scene, and we wish to detect which
objects are present in a continuous video stream. If
the objects (or camera) are moving, we cannot sim-
ply combine the images in the stream into a single
image. We need to modulate the predictions made
on each image in the stream in order to generate a
single prediction for the entire stream.

A simple approach to calibration for differing grain
sizes is to try to determine how many grains in the
collection need to have a high-enough score of pre-
dicted class membership in order for the collection
to be in that class. More precisely, we define two
thresholds tg1 and tg2 that allow a classifier CL1 for
Dsource to be transformed into a classifier CL2 for a
domain Dtarget of different grain size, as shown in Fig-
ure 4 (for simplicity we assume two classes).

This reduces the problem of cross training a clas-
sifier between domains with differing granularity to
finding a good choice for the parameter values for
tg1 and tg2 that yield good performance on the cal-
ibration set. As an example, suppose we wish to rec-
ognize whether or not a particular object is present
in a sequence of video frames, and we have trained

Given: CL1 a classifier for Dsource
Define: 
 CL2(e) = l
 CL2(e) = “other”
 where e is any instance from Dtarget

if CL1(e) = l with score s>td
otherwise

Figure 3 Dilution cross training
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a classifier that (imperfectly) detects the presence
of the object in any particular frame. Optimally set-
ting tg1 and tg2 for this problem will yield a classifier
that relies on the redundancy in the sequence to ro-
bustly detect the presence of the object.

Skill-mining implementation

Recall that the skill-mining problem is to use train-
ing data consisting of individual labeled messages
taken from skill-specific discussion groups to induce
a classifier for entire collections of personal e-mails.
This presents a combination of dilution and grain-
size problems. Dilution occurs because most of the
messages in the testing set (e.g., messages to friends,
jokes, company-wide memos) do not correspond to
any label in the training set (specific skills from dis-

cussion groups). The grain-size problem occurs be-
cause the skill labels in the training data are assigned
to individual messages, whereas the required skill
predictions must be made on collections of messages.

When testing our solution to the cross-training prob-
lem, we would like to explore its ability to compen-
sate for dilution and grain-size effects. We have skill-
related data in the form of over 30000 skill-related
discussion group messages from over 60 skill cate-
gories, as well as person-related data in the form of
entire e-mail databases for 16 individuals, averag-
ing about 10000 messages per e-mail database. These
data sets display pronounced dilution and grain-size
effects. However, it is not possible to control the di-
lution or grain-size effects within the available per-
son-related data. Indeed, in the case of dilution it
is not even possible to quantify the amount of di-
lution occurring, since we do not have any labeling
at the level of individual e-mail messages.

To address these limitations, we describe a method
for constructing virtual data sets with known and con-
trollable dilution rates and grain size. Each virtual
data set will be a collection of messages represent-
ing an individual, and the final cross-trained classi-
fier will classify these virtual data sets.

Figure 5 shows the skill-mining architecture. First a
message-level classifier must be learned on the skill-
related messages from the discussion groups. This
is done in two steps: extraction to obtain a good set
of features, followed by induction of a simple clas-
sifier. Then this classifier must be “calibrated” using
the virtual data sets to create a person-level classi-
fier. We now describe each module in detail.

Feature extraction. We adopt the common approach
of representing each message by a fixed vector, us-
ing the bag of words approach.6,7 In this represen-
tation, each position in the vector has a binary value
that represents the occurrence or nonoccurrence in

Figure 5 Skill-mining implementation of cross training
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Given: CL1 a classifier for Dsource
 CL1(o) is a score denoting the estimated strength of class membership o.  
 Let e = {e1,...en} be any instance from Dtarget
Define: CL2(e) =  {ei,: CL(ei) > tg1}  > tg2

Figure 4 Grain size cross training; classifier CL2 estimates how many elements need to score well according to CL1.
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the message of a specific word. We limit ourselves
to binary features because of the discrepancies that
exist between skill-related discussion messages and
personal communication messages. Among the dif-
ferences we have observed are: (1) personal com-
munication messages are typically shorter; (2) per-
sonal communications tend to use pronouns in place
of proper nouns more often; (3) words in the mes-
sages have different contexts—the location of a word
within a message, or the function of the message in
which the word appears. These differences skew the
expected feature counts. Compression into binary
features lessens the sensitivity to such discrepancies.

Learning a message-level classifier. Because of the
systematic differences just described, we need a mes-
sage-level classifier that makes few assumptions re-
garding the specific structure of the messages them-
selves, so we focus on the most predictive, isolated
features. We order the terms by information gain,
because the terms with highest information gain tend
to be jargon terms associated with a skill category.

For example, the sidebar shows the best 50 features,
ordered by information gain, for the “Java program-
ming” skill category. Any Java** programmer will
recognize the majority of words in this list as an es-
sential part of his or her vocabulary (although some
are the names of frequent posters to the Java dis-
cussion list!). Using mutual information instead of
information gain produces a very similar list, whereas
using the raw word count results in more terms that
are not jargon being ranked highly.

Given that our data set has over 100000 unique word
tokens, using a list such as this to drive some form
of feature selection is essential. On the other hand,
we did not find that compensating for strong inter-
actions between jargon terms was necessary for iden-
tifying skill messages with high reliability, so we em-
ploy an “m-of-n” concept in our message-level
classifier. Given this ordered skill-related word list,
the classifier can be expressed as a pair of integers.
A message is considered to be a skill message if at
least m of the first n listed words occurs in that mes-
sage. This classifier is both sufficient for this domain
and allows us to focus on the effects of cross train-
ing. The framework itself, of course, admits the use
of any classifier over the source distribution.

Virtual data sets. For empirical evaluation we require
a source of testing data that has known and control-
lable dilution and grain-size effects. We obtain this
by using both the discussion groups and the e-mail

The 50 terms with the largest information gain for 
the Java programming category
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databases to create virtual data sets with known di-
lution rate and grain size.

To simulate a diluted test set, we first require mes-
sages that are not relevant to the skill we are trying
to identify. Some of the 16 e-mail databases belong
to individuals who, when surveyed, reported that they
were not experts in any of the skill categories. We
therefore assume that the messages in these individ-
uals’ databases are not skill-related. Public discus-
sion forums that are unrelated to the skills in ques-
tion also serve as a source of skill-irrelevant
messages. Collectively, these form a pool of over
30000 skill-irrelevant messages from which we can
draw in order to controllably dilute a set of skill-re-
lated messages.

As an example, constructing a virtual data set with
1000 messages and a dilution rate of 99 percent is
simply a matter of choosing 990 messages from the
pool of skill-irrelevant messages and ten messages
from the pool of skill-related messages. By varying
the percentage of skill-related messages we can con-
trol the dilution rate.

The grain size can be controlled by varying the total
number of messages that make up a single virtual
data set. Thus a set of virtual data sets can be gen-
erated with any dilution rate D and grain size G.

Cross training. The cross-trained classifier operates
on collections of messages. The calibration set is a
small sample of virtual data sets. A virtual data set
is regarded as “negative” if it is composed entirely
of skill-irrelevant messages and “positive” if it con-
tains as many skill-irrelevant messages as indicated
by the dilution rate. For example, a dilution rate of
99 percent means that positive data sets have 1 per-

cent skill-related messages and 99 percent
skill-irrelevant messages.

Given a collection of messages, cross training esti-
mates the “correct number” of individual messages
that need to get a “high-enough” score from the mes-
sage-level classifier. More precisely, let m, n, and o
be positive integers. For each message, we determine
if at least m of the n most-informative features oc-
cur in that message. A collection of messages is clas-
sified as positive if at least o of the messages satisfy
this m-of-n threshold. This is summarized in Figure
6. A simple hill-climbing search is performed to find
values for the thresholds m, n, and o that give the
best performance on the calibration set.

The cross-trained classifier is tested on an indepen-
dently generated sample of virtual data sets. Perfor-
mance is measured as the percentage of the data sets
in this testing set that the system classifies correctly.
Notice that we are not scoring the system on its abil-
ity to classify the messages themselves but rather the
ability to correctly classify the group of messages as-
sociated with a single individual.

Experimental results

Our goal is to measure the performance of cross
training as applied to the skill-mining problem. For
this experiment we chose the “Java programming”
discussion group as our skill category, thus we are
plotting the system’s ability to recognize persons
whose electronic communications involve discussions
of Java programming. Several thousand skill-related
messages drawn from the Java discussion groups and
about 30000 skill-irrelevant messages drawn from
about 60 discussion groups not related to Java are
used to construct the message-level classifier.

Given: W = list of terms ordered by information gain
Let m, n, o be positive integers.
For any message M, let  Mn  denote the number of words appearing in both M and the first n words W.
Let e =  Mr  be a collection of messages.
Define  en

m  = the number of messages in e with  Mn  > m.
Then e is classified positive if and only if  en

m  > o.

Figure 6 The cross-trained classifier for skill mining. Classification at the person level is determined by estimating how 
  many individual messages need to be sufficiently skill-related. The calibration set is used to find optimal values  
  for m, n, and o.
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Experiment 1: Uncalibrated learning. We first use
the virtual data sets to directly test the naive approach
of simply concatenating all of the messages in a vir-
tual data set into a single message and using the
message-level classifier. No correction was made to
compensate for the larger message sizes or the shift
in probabilities. As one might expect, the perfor-
mance of this uncalibrated classifier was quite poor.
Figure 7 shows the performance as a function of grain
size (the number of concatenated messages in each
virtual data set) at a dilution rate of 80 percent.

We note that as the number of messages being con-
catenated increases, performance drops rapidly
toward chance (50 percent). If the grain size is in-
creased further, performance remains at the chance
level. In the next section we consider much larger
(and more realistic) grain-size shifts of 10000. As we
see from this graph, uncalibrated performance in that
range would be useless.

Experiment 2: Cross training. In this experiment we
use the cross-trained classifier defined in Figure 6
to classify the virtual data sets. We fix the grain size
parameter G at 10000 messages in each virtual data
set. This is the average size of the actual e-mail da-
tabases that we have collected—it is also large
enough to allow us to explore very high dilution rates
while keeping some skill-related messages in the data
set. We varied the dilution rate from 90 to 99.9 per-
cent, much higher than the 80 percent dilution rate
of Experiment 1.

Figure 8 shows the results of the experiment; each
point is an average of ten runs. In each run, calibra-
tion was done using 20 virtual data sets and testing
on a different set of 20 such data sets. The x-axis
shows the dilution rate (the percentage of skill-ir-
relevant messages in the positive data sets) varying
nonlinearly from 100 percent down to 90 percent.
The y-axis shows the percentage of data sets correctly
classified.

The x-axis is displayed on a nonlinear scale in order
to reveal the effects of even a vanishingly small num-
ber of skill-related messages. Note, for example, that
at a dilution rate of 99.8 percent each positive data
set contains only 20 skill-related messages out of a
total of 10000, yet the classifier is already scoring
significantly above chance. The cross-trained clas-
sifier achieves perfect accuracy at 95 percent dilu-
tion, that is, out of 10000 messages in each data set
only 500 are skill-related.

Analysis

The poor performance in Experiment 1 occurs be-
cause the uncalibrated classifier maximizes predic-
tive accuracy at the message level, not the person
level. It implicitly balances the cost of false positives
evenly against the cost of false negatives at the mes-
sage level. When using cross training to classify groups
of messages we search for the optimal threshold; this
effectively permits the cross-trained classifier to op-
timally balance false positives against false negatives
at the person or data set level instead of the mes-
sage level. This is the key to the uncalibrated clas-
sifier’s difficulty. False positives are expected to be
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Figure 7 Uncalibrated learning performance vs grain size 
 (number of messages in each data set). 
 Performance tends rapidly to chance (50 percent)
 as grain size increases. The dilution rate (the  
 percentage of skill-irrelevant messages in each 
 data set) is 80 percent.
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Figure 8 Cross-training performance vs dilution rate at 
 a grain size of 10000. Note the nonlinear scale 
 along the x-axis. The classifier does well with 
 even an extremely small number of skill-related
 messages.
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much more expensive than false negatives in the tar-
get domain, yet the uncalibrated classifier is unaware
of this and has no basis to adjust its trade-off at the
message level.

To understand the asymmetry in costs between false
positives and false negatives at the message level,

consider that there are many messages related to any
given individual. Thus the cost of misclassifying a
skill-related message (that is, generating a false neg-
ative) is relatively low, since other correctly classi-
fied skill messages will still provide the evidence
needed to identify possession of the skill. The num-
ber of skill-irrelevant messages for an individual,
however, far outstrips the skill messages, so even low
rates of false positives will be very damaging. At a
99 percent dilution of 10000 messages, even a 50 per-
cent false-negative rate would still leave 50 correctly
identified skill messages. A false positive rate of as
little as 10 percent, on the other hand, will yield 1000
false-positive messages. These false positives com-
pletely overshadow the true positives, making iden-
tification impossible.

Cross training, on the other hand, explicitly trades
off false-positive and false-negative rates at both the
message level and the person level. Direct compar-
ison between the cross-trained and uncorrected clas-
sifiers is therefore in a sense unfair because the cross-
trained classifier is “aware” of the relative impor-
tance of false positives at the message level. This in-
sight highlights the essence of the cross-training
methodology, namely: being aware of, and compen-
sating for, differences between the training and testing
distributions. Our experiments quantify the impor-
tance of explicitly making these corrections in the
skill-mining domain.

To summarize the analysis, false positives are quite
damaging at high dilution rates. Cross training is pos-
sible in this case because it is possible to achieve very
low false-positive rates. If this were not possible it
would affect the ability of cross training to compen-
sate for large grain size and dilution rates.

Related work

It may be possible to characterize existing work as
grain-size or dilution cross training, as described in
this paper, but these are not the most common forms
of cross training that have been reported in previ-
ous work. Below we list two very general and very
common adaptations of learning that have been com-
monly reported in the literature.

Nonrepresentative class distributions. Examples of
nontrivial cross training already exist in the machine-
learning literature. One example is the class imbal-
ance problem, where in the training set “one class is
represented by a large number of examples while the
other is represented by only a few.”9 A learning al-
gorithm that minimizes classification error on such
a domain will tend to induce classifiers that perform
well on the larger classes but poorly on the smaller
classes. Several techniques have been proposed to
counter this problem,9–11 most of which involve over-
sampling from the smaller classes or undersampling
from the larger ones. This difference between the
source and target domains falls into the cross-training
framework.

It is interesting to note that the solution to the non-
representative class problem explicitly alters the false
positive/negative trade-off made by the underlying
classifier.12 In our case, however, we cannot explic-
itly measure any shift in the relative frequency of the
classes. Instead, in the skill-mining domain we com-
pensate through the underlying asymmetrical cost
of the different types of errors.

In nonrepresentative class distribution problems
there is an easily determined transformation from
the source to the target domain. The relative pro-
portion of each class can be estimated for both do-
mains and any difference can be accounted for when
applying the classifier. Weiss and Provost12 explic-
itly describe how to modify class probability estimates
for the leaves of decision trees. This is probably the
clearest existing example of cross training we have
found.

Indeed we can view dilution cross training as a gen-
eralization of the nonrepresentative class distribu-
tion in which we assume that relative class proba-
bilities have been altered by adding a previously
unobserved “other” class. Unlike the nonrepresen-
tative class distribution problem, this “other” class
may asymmetrically affect the false-positive/false-
negative rates for each of the originally trained

The essence of cross training is
to be aware of, and compensate for,

differences between the
training and testing distributions.
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classes. This places dilution cross training between
nonrepresentative class distributions and direct
learning on the target distribution.

Nonstationary target distributions. Training against
a nonstationary target distribution is another well-
studied case where the source and target domains
differ systematically. Because the target distribution
is changing over time, the distribution of examples
drawn previously from the source distribution is sys-
tematically distorted. This temporal information
must be used to decrease the importance of older
training examples. Methods that address this include
windowing techniques, where only recent examples
are used for training, and example-ordering tech-
niques for order-sensitive learners such as neural net-
works.13

Future work

In the skill-mining domain, cross training can com-
pensate for a large number of irrelevant messages
and identify skills based on a relatively small num-
ber of skill messages. To understand this success, it
is instructive to consider the message-level classifier
induced in the first step of cross training. This clas-
sifier was able to identify many jargon terms that oc-
cur infrequently or not at all in Java-irrelevant mes-
sages (see sidebar, shown previously). Indeed, many
of the terms with highest information gain are Java-
related, non-English terms such as: “jdk,” “jvm,”
“jni,” “awt,” “javac,” and “jre.” This suggests that
our approach to skill mining will be successful in
other cases where at least some small amount of skill-
related messages are present in each person’s elec-
tronic communications, provided that the skills be-
ing identified have some unique vocabulary terms.

An interesting direction for future work is to eval-
uate the scope of this approach by applying it to a
variety of types of human skill categories and mea-
suring its performance as a function of the jargon
terms identified by the message-level classifier.
Regardless of that outcome, there are a large num-
ber of technical skills that share Java programming’s
use of skill-specific language. Our cross-training ap-
proach is ideally suited to mining those skills.

We believe the instances of cross training addressed
in this paper and previous work merely scratch the
surface of interesting source/target discrepancies.
Many practical learning applications also involve sys-
tematic biases on the available training data and dif-
ferent biases in the testing environment. We believe

that developing techniques that explicitly compen-
sate for these differences is one way to significantly
improve classifier performance. An exciting direc-
tion for future work is to identify and address new
instances of the cross-training framework.

Conclusions

The real world is always more complicated than our
models of it. In particular, practical applications of-
ten manifest differences between the training and
testing distributions, thereby falling outside the tra-
ditional classification learning framework. Motivated
by such a discrepancy in the problem of automatic
skill detection from e-mail, we developed the gen-
eral cross-training framework. The skill detection
problem, and certain other work considered previ-
ously in the literature, are instances of cross train-
ing. Although we have only begun to explore the im-
plications of the framework, the formulations of
dilution and grain-size cross training allowed us to
demonstrate the efficacy of this approach for the skill
detection problem, yielding good performance given
only small amounts of skill-related e-mail.

**Trademark or registered trademark of Sun Microsystems, Inc.
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