
Improving Rule Evaluation Using Multitask
Learning

Mark D. Reid

School of Computer Science and Engineering
University of New South Wales
Sydney, NSW 2052, Australia

mreid@cse.unsw.edu.au

Abstract. This paper introduces Deft, a new multitask learning ap-
proach for rule learning algorithms. Like other multitask learning sys-
tems, the one proposed here is able to improve learning performance on
a primary task through the use of a bias learnt from similar secondary
tasks. What distinguishes Deft from other approaches is its use of rule
descriptions as a basis for task similarity. By translating a rule into a fea-
ture vector or “description”, the performance of similarly described rules
on the secondary tasks can be used to modify the evaluation of the rule
for the primary task. This explicitly addresses difficulties with accurately
evaluating, and therefore finding, good rules from small datasets. Deft is
implemented on top of an existing ILP system and the approach is tested
on a variety of relational learning tasks. Given appropriate secondary
tasks, the results show that Deft is able to compensate for insufficient
training examples.

1 Introduction

Obtaining correctly classified examples for a supervised learning problem is a
crucial but sometimes costly task, especially if experts are required to classify the
examples. This can result in too few training examples for the problem at hand.
In some chemical domains for example, small datasets are “not unusual” since
“data are often sparse, and bioassays expensive” [1]. The goal of the research
presented in this paper is to improve the quality of learning when data is limited
by making use of classified examples gathered for other tasks in the same domain.
This places the research in the field of multitask learning [2].

The main problem when learning from small amounts of data is that many
candidate hypotheses can fit the data equally well. In this situation, a learner
must rely heavily on its inductive bias to decide between them [3]. In rule learn-
ing, these decisions involve the suitability of individual rules for a hypothesis and
the bias of a rule learning algorithm is influenced by several factors. These in-
clude choices that determine which rules are admissible, how they are searched
and what heuristic is used to evaluate and rank them [4,5]. Making the best
choices for a particular learning problem requires expertise in the problem do-
main as well as a good knowledge of rule learning algorithms and can be more
costly than obtaining more classified examples.



Multitask learning eases the burden of choosing a bias for a task with limited
data by assuming that related, secondary tasks are available. The learner uses
these to learn a bias that can improve its performance on the primary task.
Existing multitask approaches for rule learning [6,7,8] have focused on learning
language or search biases. In contrast, the Deft system1 introduced in this
paper is concerned exclusively with improving a learner’s evaluation of rules on
limited data.

The Deft approach is outlined in Section 2 where rule descriptions are
introduced to define classes of similar rules. An assessment of a rule on limited
primary task data can be augmented using the performance of similar rules on
secondary tasks. When the secondary and primary tasks are related the expanded
assessment can improve the reliability of an evaluation metric. Section 3 describes
an implementation of this approach for ILP that uses Aleph [9] as the underlying
concept learner. This implementation is evaluated on a range of datasets and
the results presented in Section 4. Related work from ILP and bias learning is
presented in Section 5 and the paper is concluded with a discussion of future
directions in Section 6.

2 Description-Based Evaluation

The relative quality of rules according to an evaluation metric can be poorly esti-
mated when only a small number of training examples are available. This section
describes a method, called Deft, that improves these estimates by transforming
any evaluation metric into a representation-based one. The transformed metric
bases its evaluation of a rule on the training data for the primary task as well
as the performance of similar rules on other, secondary, tasks. Rule similarity
is defined in Section 2.2 in terms of functions, called descriptors, that are used
to transform a rule into an attribute vector called a description. Section 2.3
shows how classification probabilities can be estimated from a secondary task
based on a rule’s description. These probabilities can be used to create a virtual
contingency table for a rule on a secondary task. Section 2.4 explains how these
can be combined with a rule’s real contingency table for the primary task. The
result can then be fed into an evaluation metric to provide an assessment that
takes into account a rule’s description and its similarity to rules that have been
evaluated on the secondary task.

2.1 Preliminaries

For the purposes of this paper, a supervised concept learning task consists of
an instance space X, a set of class labels Y = {+,−}, and training examples
E ⊂ X × Y for some unknown target concept t : X → Y . A rule r = h ← b
consists of a label h ∈ Y , called the head, and a condition b, called the body, that
can be tested against instances. A rule is said to match an instance x ∈ X if its

1 Description-based Evaluation Function Transfer



body is true for that instance. In this case, the rule classifies the instance with
the label h.

A rule learning algorithm solves a learning task by finding a set of rules
that (ideally) classifies every instance in accordance with the target concept.
Most existing rule learning algorithms adopt a strategy whereby a set of rules
is created by repeatedly finding a single rule that explains some of the training
examples and then removing them from the training set. For a comprehensive
survey of this “covering” approach to rule learning we refer the reader to [5].

Our primary concern is with the assessment of individual rules on the training
examples. In particular, we are interested in “purity-based” evaluation metrics:
those that assess a rule based on the type and number of misclassifications it
makes on the training examples. These are summarised using a contingency table.
The contingency table for a rule r and examples E is written in matrix form like
so

nE(r) =
[

n++ n+−
n−+ n−−

]
.

Each entry nij is a count of the number of times the rule r assigned the label i
to an example (x, j) ∈ E. A matrix containing the relative frequencies of each
type of classification can be derived from a contingency table. We call this a
classification probability matrix (CPM) and define it to be pE(r) = 1

N nE(r)
where N =

∑
ij nij is the number of examples in E. The values pij(r) in a

CPM can be viewed as estimates of the true classification probability of a rule,
Prx∈X(r(x) = i, t(x) = j).

2.2 Rule Descriptions

The key to the Deft multitask learning approach is to combine the assessment
of rule on a primary task with the assessment of the same rule on one or more
secondary tasks. The hope is that if the target concepts are similar2 the combined
evaluation will, on the primary task, prefer rules that are similar to those that
perform well on the secondary tasks. A straight-forward way to combine task
assessments would be to treat examples from a secondary task as extra training
examples for the primary task. Caruana’s MTL for decision tree learning [2]
does exactly this when choosing between splits while building a decision tree.
The problem with this approach for evaluating rules is that entire rules are
assessed and not the steps in building them. Consider the rules in concepts A
and D of Fig. 3. While they are quite similar, the first rule of A will not cover any
example covered by the first rule of D. This means the classification probabilities
for the two rules will be quite different even though they “look” the same. The
problem becomes worse when the same representation language is only partially
shared between the tasks. What is required is a looser notion of similarity than
“covering the same examples”.
2 Concept similarity or relatedness is an important but difficult issue in multitask

learning. Space prevents it being discussed here so the reader is referred to [2,10].



We would like to say two rules are similar if they share some salient features
such their length, particular conditions or constants. We call these rule features
descriptors and use them to transform a rule into an attribute-value vector.
More formally, a descriptor d : R → Vd is a function from the set of rules R
to the descriptor values Vd. A collection of descriptors D = {dk}nk=1is called a
descriptor set and induces a function d : R→ Vd1×. . .×Vdn

, called a description,
that maps a rule to a attribute-value vector d(r) = (d1(r), . . . , dn(r)). In general,
rules may share the same description or part description. As a shorthand, we
will write r′ ∈ d(r) when d(r′) = d(r), and write r′ ∈ d(r) when r′ ∈ dk(r)
for all k = 1 . . . n. Treating descriptions as equivalence classes for rules allows
to generalise over them and therefore learn functions of rules based on their
description.

2.3 Learning Classification Probabilities

Given a task with target concept t, classification probabilities for this task can be
seen as functions pij(r) that map rules to values in [0, 1]. As already discussed,
these functions can return very different values for two rules that have a similar
description. One way to fix this is to smooth the functions by averaging them
over rules that share the same description:

qij(r) = Pr
r′,x

(r′(x) = i, t(x) = j|r′ ∈ d(r)).

The matrix q(r) = (qij(r)) is analogous to the CPM p(r) except that the clas-
sification probabilities are based on rule descriptions. It is therefore called a
description-based CPM (DCPM). Using Pr(i, j|d(r)) as a shorthand, the Bayes’
identity and a näıve Bayes’ assumption about the independence of the descrip-
tors di lets us express

qij(r) =
Pr(i, j)
Pr(d(r))

n∏

k=1

Pr(dk(r)|i, j).

If values for Pr(dk(r)|i, j) and Pr(i, j) can be determined, qij(r) can be computed
since the Pr(d(r)) term just normalises the qij(r) so that

∑
i,j qij(r) = 1. The

former terms can be derived from Pr(i, j, dk(r)) so this is what we now focus on
estimating.

The probability we wish to estimate measures the chances of drawing an
instance x ∈ X and rule r′ ∈ R such that r′ classifies x with label i, the target
concept classifies x with label j and that dk(r′) and dk(r) have the same value
v ∈ Vdk

. Given a sample of rules R ⊆ R and a set of examples E, the number of
times this event occurs in these samples can be counted:

s(dk, v) =
∑

r∈R
dk(r)=v

nE(r) (1)

where nE(r) is the contingency table for r on the examples E. The collection of
matrices sD = {s(dk, v) : dk ∈ D, v ∈ Vk} is called a descriptor frequency table



(DFT) for D. By letting sij =
∑

d,v sij(d, v) and s =
∑

i,j sij , a DFT can be

used to estimate the probabilities Pr(i, j) ≈ sij

s and Pr(dk(r)|i, j) ≈ sij(dk,dk(r))
sij

.
The functions qij(r) can therefore be approximated by

qij(r) ≈ sij

s

n∏

k=1

sij(dk, dk(r))
sij

. (2)

In practice, the qij functions are approximated using rules and examples
taken from a secondary task. This requires some way of sampling rules for that
task and is discussed in Section 3.3. The quality of the approximation will depend
on the size and bias of the rule sample and the examples. It will also depend on
the descriptor set used and the validity of the naive Bayes’ assumption for those
descriptors. While all these factors are important, it must be remembered that
the DCPM is only designed to crudely estimate a rule’s CPM on a secondary
task based on its description. We now introduce a method for combining values
in a DCPM with examples from the primary learning task.

2.4 Virtual Contingency Tables

The values qij(r) in a DCPM q(r) express the chances that an example with
label j will be given label i by r based on its description. If the rule was to
classify M examples, the expected number with each type of classification can
be summarised in a virtual contingency table m(r) = Mq(r). This can be used
to increase the number of examples used to asses a rule as follows. If nE(r) is
the contingency table for r on some small set of examples E, we can define its
augmented contingency table n∗(r) = nE(r) + m(r). The relative size of the
number of virtual examples, M , to the number of real examples, N , determines
how much emphasis is given to the assessment of the rule on the primary task
compared to the secondary task that generated q.

An augmented CPM, p∗(r) = 1
N+M n∗(r), can be derived from an augmented

contingency table. The entries in the resulting matrix are

p∗ij(r) =
nij(r) + mij(r)

N + M

and can be seen as “linearly squashing” the values pij(r) towards the priors
qij(r), or equivalently, assuming that the n∗ij(r) values have a Dirichlet distribu-
tion with parameters mij(r) [11, §4.1].

Any evaluation metric h can be transformed into a description-based metric
h∗ by using classification probabilities from a rule’s augmented CPM. As a spe-
cial case, this transformation can be used to turn the precision metric precE(r) =

pos
pos+neg into the generalised m-estimate [12] gmE(r) = pos+a

(pos+a)+(neg+b) where
a and b are fixed and pos = n++(r), neg = n+−(r). The transformed met-
ric prec∗E(r) is equal to gmE(r) with a = m++(r) and b = m+−(r). Using a
description-based precision metric can therefore be seen as using a generalised
m-estimate where the costs have been learnt from a secondary task.



3 Implementation

This section briefly outlines an implementation3 of Deft for inductive logic
programming using Aleph [9] as the base rule learner. Details of the Aleph
system that are relevant to this paper are provided in Section 3.1 along with the
modification that allows it to use description-based evaluations. A discussion of
the three main procedures required to implement Deft make up the remainder
of this section. These are procedures to: compute rule descriptions (Section 3.2),
build descriptor frequency tables from secondary tasks (Section 3.3), and de-
termine classification priors (Section 3.4). These procedures are applied to an
example domain in Section 3.5.

3.1 The Base and Deft Learners

The ILP system Aleph is designed to replicate the behaviour of many different
kinds of rule learning systems. As the base learner for Deft, however, we are only
interested in its implementation of the inverse entailment algorithm Progol.
Details glossed over in the following summary can be found in [13].

Given a collection of positive and negative ground facts, Aleph induces a
theory as a set of Horn clauses using a covering strategy. Each clause (or rule)
in the theory is found by searching a space of legal rules. Predicates in the
body of a legal rule must come from the background knowledge provided to the
learner. Exactly how they can be combined in a rule’s body is determined by
mode and type constraints. These restrict the ways variables in the rule can
be shared between its conditions. Legal rules are also constrained by an upper
limit on their variable depth. In Aleph, this is controlled by the i setting.
For any positive example there is a most specific legal clause, called the bottom
clause, that entails the example given the background knowledge. Any other legal
clause that is required to cover the same positive example must also subsume
the bottom clause. This fact is used to limit the search to a complete, general-
to-specific, breadth-first search of subsets of the bottom clause that meet the
legality requirements. The search is further restricted by requiring the subsets’
sizes be no larger than the value specified in the clauselength setting. For
efficiency reasons, a limit on the total number of rules examined in a single
search can be controlled by the nodes setting.

By default, Aleph uses the coverage metric4 covE(r) = n++(r) − n+−(r)
to evaluate rules. The rule returned by the search is one that is acceptable and
maximises this metric on the training data. The acceptability of a rule is con-
trolled by the noise and minacc settings. The noise setting is an upper bound
on the number of negative examples covered by a rule while minacc places a
lower bound on the accuracy of a rule.

To use the Deft approach described in the last section, the coverage metric
of the base learner is transformed to cov∗E(r) = n∗

++
(r) − n∗

+−(r), where the

3 The source for the implementation is available from the author upon request.
4 In [12, Theorem 4.1] this metric is shown to be equivalent to the accuracy metric

accE(r) = p++ + p−− and can therefore be defined in terms of a rule’s CPM.



n∗ij(r) are the values taken from the rule’s augmented contingency table. When
the term “Deft learner” is used in this paper, it refers to the base learner with
its coverage metric modified in this way. As well as all the base learner’s settings,
the Deft learner is additionally parameterised by the DFT it uses, the number
of virtual examples M and the functions used to create rule descriptions.

3.2 Clause Descriptions

This paper will only consider two types of descriptors for clauses. The first
type, denoted pred(P/N), tests for the presence of predicate P with arity N
in the body of a clause. The second type, arg(P/N, I, Const), tests whether a
clause has a predicate P/N with its Ith argument equal to Const. Both types of
descriptors are Boolean-valued, returning either “true” or “false” when applied
to a clause. Defining descriptors in terms of types avoids having to explicitly
construct a descriptor set for a task. This is useful when the legal clauses for a
search, and hence their predicates and constants, are difficult to determine in
advance.

Computing values for descriptors is implemented in Prolog by a value/3
predicate that asserts a relationship between a clause, a descriptor, and a value.
The relation holds if and only if the descriptor would return the specified value
when applied to the clause. Each descriptor is also associated with a default
value, implemented by the default/2 predicate. As an example, the implemen-
tation of pred(P/N) is shown in Fig. 1.

default(pred(P/N), false).

value((Head :- Body), pred(P/N), true) :-

lit_list(Body,Lits), member(L,Lits), functor(L, P, N).

Fig. 1: Prolog code for the pred(P/N) descriptor. The predicate lit list/2
takes a goal and turns it into a list of literals.

Due to Prolog’s backtracking behaviour, the value/3 relation can be used to
find all descriptors that would return non-default values on a clause. This allows
for a sparse representation for clause descriptions by assuming any descriptor
not satisfying value/3 takes on its default value.

Using a sparse representation has several advantages. Most importantly, the
time taken to compute a description for a clause can be made a function of
the complexity of clause instead of the description set. This is significant since
Aleph’s general-to-specific search will mainly require descriptions for short
clauses. Computing descriptions for clauses is also crucial for the construction
of descriptor frequency tables from secondary tasks which will be discussed in
the next section.



3.3 Descriptor Frequency Tables

As described in Section 2.3, making a DFT for a secondary task requires rules
to be sampled from that task and evaluated on its training examples, E. The
make DFT(E) procedure in Fig. 2 shows how this is implemented. The clause
sampling procedure scs in line 1 is Aleph’s implementation of the stochastic
clause selection algorithm, described in [14]. In a nutshell, scs(⊥) returns a
clause that entails the bottom clause ⊥ by randomly choosing a subset of its
literals. Efficient techniques are used to ensure the procedure only draws legal
clauses with uniform probability.

Each drawn clause r has its contingency table n computed against the exam-
ples E and added to total. The loop at line 2 then finds non-default descriptor-
value pairs (d, v) for r using the value/3 predicate described earlier, and for each
pair adds the matrix n is added to an accumulation of counts in counts[d, v]. The
whole process is repeated sample cl times per bottom clause, each generated
from one of sample ex positive examples drawn without replacement from E.

The values collected in the structures total and counts are sufficient for
computing the matrices s(d, v) described in Section 2.3, and hence represent
a DFT. Clearly, for any descriptor d in the DFT and one of its non-default
values v, s(d, v) = counts[d, v]. When v0 is a default value for d, s(d, v0) =
total −∑

v 6=v0
counts[d, v]. This can be seen by observing that the sets of rules

Rd,v = {r ∈ R | d(r) = v} partition R for each d. Summing both sides of equa-
tion 1 over v ∈ Vd shows that the matrix total =

∑
v∈Vd

s(d, v) for all d.

3.4 Calculating Classification Priors

A DFT constructed using the make DFT procedure can be used estimate values
for the qij(r) functions of equation 2. The quantities sij and s in that equation
are fixed and can be precomputed once for a DFT since sij = totalij and s =∑

i,j sij . In the worst case, computing the product term would require iterating
through each descriptor d in the DFT, applying it to the rule r and multiplying
together the values sij(d,d(r))

sij
. Since most descriptors will take on their default

value for any given rule, we can precompute a base table b that contains qij

values for the default description vector (where all descriptors take on their
default values) and update it as follows. Letting D denote the descriptors in the
DFT, the values in its base table are

bij =
sij

s

∏

d∈D

sij(d, vd,0)
sij

where vd,0 denotes the default value for d. Given a rule r, qij(r) can be esti-
mated by multiplying bij by uij(d, v) = sij(d,v)

sij(d,vd,0)
for each d and v satisfying

value(r,d,v). The matrices u(d, v) are called the update tables and can also be
precomputed for a DFT. This means the time taken to calculate a prior for a
rule depends only on the time it takes to compute its description and not the
size of the DFT.



procedure make DFT(E)

repeat sample ex times
Select new example e ∈ E and saturate to create bottom clause ⊥
repeat sample cl times

1 Draw clause r using scs(⊥) and compute matrix n = nE(r)
total← total + n

2 foreach d, v satisfying value(r, d, v) do
counts[d, v]← counts[d, v] + n

return total, counts

Fig. 2: Given a set of examples E, make DFT(E) returns a matrix total and a
hashtable counts with descriptor-value pairs as keys and matrices as values.

3.5 Example Tasks

To clarify the procedures described in the previous sections we introduce four
example learning tasks, A, B, C, and D, with target concepts shown in Figure 3.
They are all simple attribute-value concepts represented using Horn clauses and
instances for the tasks take on the values 0,1 or 2 for each of the four attributes
a0, a1, a2 and a3.

A
a(X) :- a1(X,0), a2(X,1).

a(X) :- a2(X,0), a3(X,1).
B

b(X) :- a0(X,0), a1(X,1).

b(X) :- a0(X,1), a1(X,1).

C
c(X) :- a1(X,0), a2(X,0).

c(X) :- a1(X,1), a2(X,1).
D

d(X) :- a1(X,0), a2(X,0).

d(X) :- a2(X,1), a3(X,1).

Fig. 3: Four example concepts.

Intuitively, rules for concepts A and D are most similar due to their shared
predicates and constants while rules from A and B are quite dissimilar. The
descriptors pred(P/N) and arg(P/N, I, Const) are able to express these simi-
larities and are used to construct DFTs from training sets containing 50 positive
and 50 negative examples of each concept. Figure 4 shows the base tables and
some update tables for those DFTs. These can be used to compare the priors
given to a description across the four concepts. The ratio β = u++ : u+− in
an update table indicates how the virtual true positive and false positive rates
for a concept will shift when a description includes the descriptor-value pair for
that table. For pred(a0/2) − true, the values for β on concepts A, B, C and D
are 1.2, 11, 1.83 and 1.8 respectively. A rule containing the predicate a0 will
therefore have a much higher true positive count on a virtual contingency table
for concept B than for A, C or D. This means an evaluation metric modified by
the DFT for B will prefer such a rule more than the same metric modified by
the other DFTs. We now look at how this affects the bias of a rule search.

Table 1 lists acceptable rules for task A, in the order in which they were
tested, during a search using Aleph. The training (resp. test) set for the task



A B C D

b .17 .71
.05 .07

.05 .91

.02 .02
.08 .87
.02 .03

.15 .79

.03 .04

u(pred(a0/2), true) .11 .09
.44 .37

.22 .02

.37 .39
.11 .06
.45 .38

.09 .05

.47 .38

u(pred(a1/2), true) .16 .07
.40 .37

.25 .02

.35 .38
.24 .04
.35 .37

.16 .06

.40 .38

u(pred(a2/2), true) .20 .07
.38 .36

.13 .07

.43 .37
.25 .04
.34 .37

.20 .04

.38 .38

u(pred(a3/2), true) .25 .09
.33 .33

.14 .17

.37 .32
.12 .13
.40 .35

.20 .16

.33 .32

Fig. 4: The base tables and pred(P/N) update tables for DFTs for concepts A,
B, C and D. The update tables have been normalised for easier comparison.

consisted of 10 (resp. 100) examples with equal number labelled positive and
negative. The columns titled “Train” and “Test” show the covE score of rules on
the respective set. Unsurprisingly, rule f has the highest score (32.0) on the test
data as it is one of the target rules for task A. On the training set however, rules
a, b, d, e, f and h all share the highest score (3.0). The search policy employed
by Aleph only replaces its current best rule if another one has a strictly greater
score. This results in rule a being returned, a sub-optimal choice since its test
set score is -8.0.

The last three columns in the table show the score given to the rules by
coverage metrics modified using DFTs for tasks B,C and D, all using an M
parameter set to 10 (equal to the training set size). When B and C are used
as secondary tasks, the rule returned by the search is d. The correct rule, f, is
returned when D is the secondary task but is assigned the lowest ranking by
B’s DFT. Since the ranking of rules in column D are closer to that in the Test
column, we would expect a learner to perform better when using an evaluation
metric modified by D and worse when modified by B.

4 Empirical Results

To test whether Deft can improve learning performance on small datasets it
needs to be compared to a baseline learner in an environment of two or more
related learning tasks. This section assesses Deft on a number tasks of varying
size drawn from three different environments.

The first environment, used in Section 4.1, consists of the four concepts A, B,
C and D introduced earlier. The results demonstrate that learning performance
on tasks for A can be improved when using DFTs from concepts C and D.
However, using a DFT from concept B is shown to harm generalisation accuracy.

Section 4.2 tests Deft on a chess movement environment that has been used
by other researchers to test relational multitask learning systems [15,6,7]. The
experiments on this domain compare Deft to the “Repeat Learning” system
described in [7]. The results show that Deft can improve generalisation accuracy



Table 1. Comparison of scores given to acceptable rules for task A.

Coverage Deft Coverage

ID Rule Train Test B C D

a t(A) :- a0(A,2) 3.0 -8.0 2.71 1.22 2.05

b t(A) :- a2(A,0) 3.0 14.0 0.72 3.72 4.69

c t(A) :- a0(A,2), a1(A,2) 1.0 -4.0 3.21 1.30 0.81

d t(A) :- a0(A,2), a2(A,0) 3.0 2.0 3.34 3.74 3.99

e t(A) :- a0(A,2), a3(A,1) 3.0 11.0 1.48 1.86 2.86

f t(A) :- a2(A,0), a3(A,1) 3.0 32.0 -0.02 3.37 5.12

g t(A) :- a1(A,2), a2(A,0) 1.0 9.0 1.47 3.29 2.54

h t(A) :- a0(A,2), a2(A,0), a3(A,1) 3.0 10.0 2.77 3.14 3.60

i t(A) :- a0(A,2), a1(A,2), a2(A,0) 1.0 2.0 1.88 1.78 1.32

j t(A) :- a0(A,2), a1(A,2), a3(A,1) 1.0 4.0 1.67 1.05 1.09

k t(A) :- a1(A,2), a2(A,0), a3(A,1) 1.0 15.0 0.78 1.72 2.07

across these tasks. Furthermore, a combination of Deft and Repeat Learning
is tested and shown to outperform both.

The final environment (Section 4.3) consists of the mutagenesis [16] and
carcinogenesis [17] problems from molecular biology. While the results show no
significant advantage in using Deft across these tasks, they do suggest the
usefulness of Deft in this environment.

For reference, a summary of the systems’ settings used in each environment
is provided in Appendix A.

4.1 Example Environment

The experiment in this section tests whether Deft can exploit the apparent sim-
ilarities between concept A and concepts C and D to improve the base learner’s
generalisation accuracy on small datasets. Concept A was used to generate pri-
mary tasks with training sets of size N = 4, 6, 8, 10, 14, 20, 30. Twenty tasks were
created for each N , each with an equal number of positive and negative exam-
ples. Four more tasks with 100 examples and balanced class labels, one for each
of concept A, B, C and D, were also created. The task for concept A was used
as a test set while the make DFT procedure was applied to the others to create
DFTs using the pred(P/N) and arg(P/N, I, Const) descriptors.

The learner was run on each primary training set E with four different eval-
uation metrics: the standard coverage metric, covE , and covS

E for S ∈ {B,C,D}.
Each covS

E is a coverage metric modified by Deft using the DFT for the sec-
ondary concept S and Deft’s M parameter set to the size of E. The performance
for each evaluation metric on datasets of size N was quantified by averaging the
test set accuracies using that metric on all the training sets of size N . The results
are summarised in Fig. 5.

The results show that the improvement obtained when using Deft concurs
with our expectations in Section 3.5 regarding the relative similarity of concepts



0 5 10 15 20 25 30
Training Set Size

0.5

0.6

0.7

0.8

0.9

1

T
es

t S
et

 A
cc

ur
ac

y
Base Learner
DEFT B
DEFT C
DEFT D

Fig. 5: Average generalisation accuracy on tasks for Concept A using the stan-
dard coverage metric and the coverage metric modified by DFTs created by
Deft from tasks for concepts B, C and D. Error bars show the sample standard
deviation.

B, C and D to concept A. Using the most similar concept (D) as a secondary
task results in large accuracy gains over the base learner while using the least
similar (B) harms its learning performance.

4.2 Chess Environment

The chess movement tasks involve learning rules to describe the legal moves
of King and Knight pieces on an empty board. These can be seen as similar
concepts since both types of movement are short-range and have an eight-fold
symmetry. Each example in a King or Knight task specifies the rank and file
for the start and end positions of a move and whether or not it is legal for that
piece. Background predicates rdiff/3 and fdiff/3 allow rules to determine
differences between two ranks or two files.

The background and example sets used in this section are the same as those
in [7] and consist of 140 training sets - 20 each of size 10, 20, 30, 40, 60, 80 and
160 - and each with balanced class labels. The supplied test sets, one for each
piece, have the 642 possible chessboard movements classified according whether
they are legal for the piece in question. These datasets were originally used to
demonstrate the effectiveness of Repeat Learning (RL) as a bias learning method.
The basic idea of RL (details are in [7]) is to invent predicates when learning
on a secondary task and then use those predicates as background when learning
on the primary task. On the King and Knight problems, the predicates invented
by RL allow several file or rank differences (e.g., -1, 0 and 1) to be expressed in
a single rule, thus the learner can express the target concept with fewer rules.
This change of representation overcomes the small disjunct problem [18] in which
rules with small extension do not have any representatives in a small example
set.

The effect Deft and RL have on a learner’s bias are more or less indepen-
dent: the former modifies its search bias while the latter weakens its language



bias. A search using RL invented predicates can be guided by an evaluation func-
tion modified by Deft. This combination was tested along with each method
individually on primary tasks for the King movement problem. A Knight task
with 160 examples was used as a secondary task by RL to invent predicates.
The same task was used by Deft to construct a DFT using the pred(P/N) and
arg(P/N, I, Const) descriptors. The base learner Aleph was run four times on
each primary task, once without any modifications, once using the invented pred-
icates as background, once using an evaluation metric modified by the Knight
DFT and once using both the invented predicates and modified metric. The per-
formance of each approach was assessed using the same balanced test accuracy
(BTA) measure as [7]. This is the mean of the true positive and true negative
rate of a theory on the test set5. For each training size N , the BTA of each theory
induced was averaged over the 20 datasets of size N . The results are presented
in Table 2.

Table 2. Comparison of balanced test accuracy for the Base learner, Deft, Repeat
Learning (RL) and both Deft and Repeat Learning (Deft+RL) on the King move-
ment problem. Bold entries are different from the Base entries at the 0.05 level of
significance using a paired t-test. Entries for Deft+RL with a R (resp. D) are signifi-
cantly better than RL (resp. Deft) alone.

Training Size
10 20 30 40 60 80 160

Base 61.3 (1.1) 72.4 (1.4) 77.5 (1.0) 84.9 (1.1) 91.2 (1.3) 95.6 (1.0) 99.6 (0.2)

Deft 71.1 (1.4) 79.8 (1.6) 87.3 (0.9) 89.1 (1.1) 93.8 (1.0) 96.3 (0.8) 99.3 (0.5)

RL 66.3 (2.0) 77.8 (2.2) 83.7 (1.0) 92.0 (1.3) 95.5 (1.3) 98.9 (0.5) 99.8 (0.2)

Deft+RL 72.3 (1.5)R 80.8 (1.7) 88.6 (0.9)R 90.5 (1.1) 96.5 (0.8)D 98.5 (0.5)D 99.6 (0.2)

The results show that Deft improves on the base learner to a greater degree
than RL on very small datasets. To a lesser degree, this situation reverses when
datasets become larger. The DFT used in these experiments has high β values
(between 2 and 6) for descriptors arg(P/3, 3, C) where P is rdiff or fdiff
and C is ±1,±2. Even when few negative examples are available, the modified
evaluation metric prefers rules with those predicates whenever it does not harm
their real true positive rate too much. This reduces the real false positive rate
since the induced theories have several specific clauses rather then only a few
over-general ones plus ground facts for the exceptions. On the other hand, the
invented predicates used by RL are helpful when there are sufficient negative
but too few positive examples as each rule using the extra predicates can cover
what would require several small disjuncts without them. The two approaches
therefore complement one another. RL compensates for missing positive exam-
ples when there are sufficient negative ones available, while Deft compensates
5 A preferable measure to standard accuracy since the positive to negative example

ratio on the test set is 1:8.



for missing negative examples. The accuracies for the combined approach reflect
this.

4.3 Molecular Environment

This section reports the use of Deft on a pair of benchmark ILP problems
- mutagenesis [16] and carcinogenesis [17]. Both require the learner to predict
cancer-related properties of organic molecules so it is reasonable to believe that
one may act a useful bias for the other.

The background knowledge used by the problems to describe molecules can
be partitioned into several groups concerning their atoms and bonds, chemical
features, and three-dimensional structure. Only the atoms and bonds group is
used here as its predicates (atm/5, bond/4, gteq/2, lteq/2, =/2) are common
to both domains6. There are a total of 125 positive and 63 negative examples
for the mutagenesis task and 182 positive and 148 negative for carcinogenesis.
The carcinogenesis concept proved too difficult to learn using only this group
as background (theories returned by the base learner and Deft were no better
than the majority class classifier) so we therefore focused on mutagenesis as the
primary task. The complete mutagenesis and carcinogenesis datasets were used
to construct two DFTs: Mut and Carc. Both types of descriptors, pred(P/N)
and arg(P/N, I, Const) were used in the construction.7

Ten-fold cross-validation was used to determine generalisation accuracy for
this task. Each fold holds out 10% of the data while the other 90% is used for
training. In order to test Deft’s performance on small datasets in this domain,
the 90% sets were randomly sub-sampled once on each fold to create example sets
with 24 positive and 12 negative examples - roughly 20% of the original dataset.
On both the 90% and 20% datasets, the base learner’s minacc parameter was
varied over the values 0.7, 0.8, 0.9 and 1.0 to assess the performance of the learner
over a range of classification costs. The value for M was set to the training set
size, M = 36 on the 20% tasks and M = 162 on the 90% tasks. The resulting
ROC curves [19] on the two dataset sizes are shown in Fig. 6 for an unmodified
base learner as well as a Mut-modified and Carc-modified learner. The test
accuracies for each point in the figure are given in Table 3.

The use of the Mut DFT on the mutagenesis tasks is, in a sense, “cheating” as
it indirectly gives the learner access to extra mutagenesis examples it otherwise
would not have. The results in these best-case scenarios are not intended as proof
of Deft’s effectiveness, but rather to remove possible explanations of the poor
performance of Deft when using the Carc DFT. If no improvement was seen
when using the Mut DFT for mutagenesis (where the primary and secondary
tasks are decidedly similar) then fault would lie with the Deft algorithms or
the choice of descriptors. However, the improvement was significant when using
the Mut DFT while none was seen when using the Carc DFT, warranting a
closer look at which rules are preferred in each case.
6 These are called the M0 and C0 predicate groups in [19].
7 One detail about the arg descriptors is pertinent here: the Const parameter cannot

take on floating point values. Descriptors with specific floats match very few rules.



0.7

0.8

0.91

0.7

0.8

0.9
1

0.7
0.8

0.9

1

0 0.5 1
False Positive Rate

0

0.5

1

T
ru

e 
Po

si
tiv

e 
R

at
e

Base Learner
DEFT (Mut.)
DEFT (Carc.)

(a) 20% of Training Set

0.7

0.8

0.9

1

0.7

0.8

0.9

1

0.7

0.8

0.9
1

0 0.5 1
False Positive Rate

0

0.5

1

T
ru

e 
Po

si
tiv

e 
R

at
e

(b) 90% of Training Set

Fig. 6: ROC curves showing the performance of the base learner and Deft on
the mutagenesis domain for two training set sizes. Two Deft curves are shown
per graph, one using the Mut DFT and the other the Carc DFT .

The Mut DFT has high β values (2200, 7100, 47, 55) for rules that mention
an an atom of certain types (195, 28, 49, 51). The main improvement in the
generalisation accuracy on the 20% task is due to an increase of the true positive
rate. Like the chess tasks, this is due to the DFT-modified metric preferring many
specific rules over a few general ones and several ground facts.

While there is also an improvement in the true positive rate when using
the Carc-DFT, it comes as a trade-off for a higher false positive rate. This is
because the Carc-modified evaluations also prefer rules over ground facts but
the preferred rules generalise badly. The explanation is that the descriptors with
high β values for the Mut-DFT either do not appear in the Carc-DFT (atom
type = 195, 28) or are given indifferent scores (type = 49, 51 both have β around
1). Furthermore, some high β descriptors for Carc (type = 94 : β= 6) have low
scores (β= 0.5) on Mut. The few descriptors both DFTs prefer (type = 29,
52) are responsible for the slight gains on the 20% task but cannot overcome
their differences which have a detrimental effect when 162 virtual carcinogenesis
examples are used with the 90% task.

The conclusion to be drawn from these results is that, as suggested by the
Mut DFT results, Deft could improve learning from small datasets in this
domain. However, carcinogenesis appears to have a very different set of high
performing clauses and so was not useful as a secondary task for mutagenesis.8

8 This is consistent with another researcher’s attempt to exploit the apparent similarity
between the domains. [20] notes “that the data were about such different sets of
chemicals that this was not really the case”.



Table 3. Test accuracies on the mutagenesis tasks for the base learner and Deft using
the Mut and Carc DFTs. Bold entries differ from the Base figures at a significance
level of 0.05 using a paired t-test.

train size 20% 90%

minacc 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0

Base 70.6 (3.0) 68.5 (3.3) 68.0 (4.0) 66.8 (4.1) 77.1 (2.4) 77.6 (2.1) 75.5 (2.8) 73.4 (3.1)

Mut 75.2 (2.3) 77.2 (2.3) 74.9 (2.7) 73.8 (2.3) 78.8 (2.4) 81.4 (2.5) 74.6 (2.9) 63.3 (3.0)

Carc 68.5 (3.4) 72.9 (2.5) 71.1 (3.5) 70.0 (3.7) 73.9 (1.6) 77.7 (2.1) 70.4 (3.1) 70.3 (2.7)

5 Related Work

The role of evaluation metrics in rule learning and the relationships between
them has been a topic of interest recently [21,22,12]. Adding values to entries
in a contingency table is a general way of parameterising evaluation metrics of
which the Laplace and m-estimates [23] are special cases. The Deft method of
learning those parameters can be seen as a special case of Bayesian approaches
to learning to learn [24,25]. Deft’s use of priors for rules is similar to those
in positive-only learning [13,26] and Lime [27]. Those systems randomly gener-
ate unlabelled examples (as opposed to using labelled examples from secondary
tasks) to estimate the size of a rule’s extension. This helps rule evaluation when
negative examples are scarce or unavailable.

Unlike Deft, other attempts at multitask learning in ILP have not consid-
ered learning evaluation bias. The MFocl system [6] is similar to the Repeat
Learning system [7] described in Section 4.2. Its “concept sharing” approach
reuses rules and parts of rules from concepts learned on secondary tasks in the
same manner as the invented predicates in RL. Since MFocl’s base learner per-
forms a greedy search, the new predicates allow it to avoid local minima. This
is also the motivation for the Cluse/XFoil system [8] in which Cluse uses a
“contextual least-general generalisation” procedure on secondary tasks to learn
relational clichés. These combinations of literals expand the actions available to
the greedy search used by its Foil variant.

Descriptors are similar to first-order features used by systems to transform
relational problems into propositional ones (e.g., [28]). The main difference is
that the latter is a transformation on examples, allowing a search of propositional
rules, whereas descriptors act on first-order rules and are used to improve their
evaluation. However, it would be possible to apply Deft to the propositional
rule learners used in such systems to help their rule evaluation on limited data.

6 Conclusions and Future Work

Evaluating rules when there is only a small amount of data is an intrinsically
difficult problem. It is also an important one, especially when classified data is
expensive or difficult to obtain. Deft, the multitask approach presented here,
demonstrates how the evaluation of rules can be modified so as to take into



account the performance of similar rules on secondary tasks. Rule descriptions
are introduced as a general way to define rule similarity. This forms the basis
of a simple Bayesian technique to calculate classification priors for rules. These
are used to improve estimates of classification probabilities from small datasets.
Evaluation metrics that are functions of the improved estimates provide more
reliable assessments of rule quality.

Deft was tested empirically on three environments. The first, a toy envi-
ronment, confirmed that the approach can improve learning performance when
the primary and secondary tasks are “intuitively” similar. This was the case
again on the chess movement environment. Furthermore, Deft was successfully
combined with a different, predicate invention-based approach that had previ-
ously been used on the same tasks. Results on the third environment were less
conclusive but strongly suggested that description-based evaluation could with
help learning in biological domains.

Future work on the theoretical front will include a better characterisation of
similarity in terms of descriptions and descriptor tables and investigate links with
existing work on representation-based metrics, especially those using MML/MDL.
Improvements to the current implementation of Deft will include adding more
sophisticated descriptors and statistical pruning techniques to manage larger
DFTs more efficiently. The impact of these new descriptors will need to be thor-
oughly empirically tested, as will Deft’s sensitivity to its M parameter and the
secondary tasks used to create DFTs.

7 Acknowledgements

The author thanks Ashwin Srinivasan for his help with Aleph and discussions
about the molecular datasets. Thanks also to Claude Sammut for his feedback
on this paper. Suggestions from the anonymous reviewers were also valuable.

References

1. Srinivasan, A., King, R.D.: Feature construction with inductive logic program-
ming: a study of quantative predictions of biological activity aided by structural
attributes. Data Mining and Knowledge Discovery 3 (1999) 37–57

2. Caruana, R.: Multitask learning. Machine Learning 28 (1997) 41–75
3. Mitchell, T.M.: The need for biases in learning generalizations. Technical Report

CBM-TR-117, Rutgers University, New Brunswick, New Jersey (1980)
4. Nédellec, C., Rouveirol, C., Adé, H., Bergadano, F., Tausend, B.: Declarative bias

in ILP. In: Advances in ILP. Volume 32 of Frontiers in AI and Applications. IOS
Press (1996) 82–103

5. Fürnkranz, J.: Separate-and-conquer rule learning. Artificial Intelligence Review
13 (1999) 3–54

6. Datta, P., Kibler, D.F.: Concept sharing: A means to improve multi-concept learn-
ing. In: Proc. of the 10th ICML. (1993) 89–96

7. Khan, K., Muggleton, S., Parson, R.: Repeat learning using predicate invention.
In: Proc. of the 8th ILP, Springer (1998) 165–174



8. Morin, J.: Learning Relational Clichés with Contextual Generalization. PhD thesis,
School of Information Technology and Engineering, University of Ottawa, Canada
(1999)

9. Srinivasan, A.: ALEPH: A learning engine for proposing hypotheses. Prolog code
(2001) http:// www.comlab.ox.ac.uk/ oucl/ research/ areas/ machlearn/ Aleph/.

10. Silver, D.: Selective Transfer of Neural network Task Knowledge. PhD thesis,
Graduate Program in Computer Science, University of Western Ontario, London,
Ontario, Canada (2000)

11. Good, I.J.: The Estimation of Probabilities: An Essay on Modern Bayesian Meth-
ods. MIT Press (1965)

12. Fürnkranz, J., Flach, P.A.: An analysis of rule evaluation metrics. In: Proc. of the
19th ICML, AAAI Press (2003) 202–209

13. Muggleton, S.H.: Inverse entailment and progol. New Generation Computing 13
(1995) 245–286

14. Srinivasan, A.: A study of two sampling methods for analysing large datasets with
ILP. Data Mining and Knowledge Discovery 3 (1999) 95–123

15. De Raedt, L., Bruynhooghe, M.: Interactive concept-learning and constructive
induction by analogy. Machine Learning 8 (1992) 107–150

16. Srinivasan, A., Muggleton, S., King, R.D., Sternberg, M.J.E.: Mutagenesis: ILP
experiments in a non-determinate biological domain. In: Proc. of the 4th ILP.
(1994)

17. Srinivasan, A., King, R.D., Muggleton, S., Sternberg, M.J.E.: Carcinogenesis pre-
dictions using ILP. In: Proc. of the 7th ILP. (1997) 273–287

18. Holte, R.C., Acker, L.E., Porter, B.W.: Concept learning and the problem of small
disjuncts. In: Proc. of the 11th IJCAI. (1989) 813–818

19. Srinivasan, A.: Extracting context-sensitive models in inductive logic program-
ming. Machine Learning 44 (2001) 301–324

20. Srinivasan, A.: Personal communication. Email regarding chemical data (2002)
21. Lavrač, N., Flach, P., Zupan, B.: Rule evaluation measures: A unifying view. In:

Proc. of the 9th ILP, Springer (1999) 174–185
22. Vilalta, R., Oblinger, D.: A quantification of distance-bias between evaluation

metrics in classification. In: Proc. of the 17th ICML. (2000) 1087–1094
23. Cestnik, B.: Estimating probabilities: A crucial task in machine learning. In: Proc.

of the 9th European Conference on AI, Pitman (1990) 147–149
24. Baxter, J.: A model of inductive bias learning. Journal of Artificial Intelligence

Research 12 (2000) 149–198
25. Heskes, T.: Empirical bayes for learning to learn. In: Proc. of the 17th ICML,

Morgan Kaufmann (2000) 367–374
26. Cussens, J.: Using prior probabilities and density estimation for relational classi-

fication. In: Proc. of the 8th ILP, Springer (1998) 106–115
27. McCreath, E., Sharma, A.: LIME: A system for learning relations. In: Proc. of

the ALT-98. (1998) 336–374
28. Lavrač, N., Flach, P.A.: An extended transformation approach to inductive logic

programming. ACM Trans. on Computational Logic (TOCL) 2 (2001) 458–494

A Experimental Settings

clauselength i nodes noise minacc sample ex sample cl

Toy 4 2 200 0 - 40 100

Chess 6 3 200 0 - 40 100

Molecular 4 2 10000 - 0.67-1.0 100 50


