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Abstract. Hierarchical reinforcement learning has been proposed as a
solution to the problem of scaling up reinforcement learning. The RL-
TOPs Hierarchical Reinforcement Learning System is an implementa-
tion of this proposal which structures an agent’s sensors and actions into
various levels of representation and control. Disparity between levels of
representation means actions can be misused by the planning algorithm
in the system. This paper reports on how ILP was used to bridge these
representation gaps and shows empirically how this improved the sys-
tem’s performance. Also discussed are some of the problems encountered
when using an ILP system in what is inherently a noisy and incremental
domain.

1 Introduction

Reinforcement learning [15] has been studied for many years now as approach to
learning control models for robot or software agents. It works superbly on small,
low-dimensional domains but has trouble scaling up to larger, more complex,
problems. These larger problems have correspondingly larger state spaces which
means random exploration and reward back-propagation – the key techniques
in reinforcement learning – are much less effective.

Hierarchical reinforcement learning has been proposed as a solution to this
lack of scalability and comes in several forms ([12], [16], [11], [3]). The overarching
idea is to break up a large reinforcement learning task into smaller subtasks,
find policies for the subtasks, then finally recombine them into a solution for the
original, larger problem. The approach examined in this paper, the RL-TOPs
Hierarchical Reinforcement Learning System[13], represents the agent’s state
symbolically at various levels of abstraction. This allows for a unique synthesis
of reinforcement learning and symbolic planning.

Low-level state representation is ideal when an agent requires a fine-grained
view of its world (eg, motor control in robot walking and balancing). In order to
make larger task tractable, however, a higher level of abstraction is sometimes
required (eg, moving the robot through several rooms in an office block). In the
RL-TOPs system the high-level representation of a problem is provided by a
domain expert who defines coarse-grained actions and states for the agent. The
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low-level implementation of the coarse actions are left to the agent to invent
using reinforcement learning.

The high-level states and actions do not always convey every relevant fea-
ture of an agent’s state space to the planning side of the RL-TOP system. The
work presented in this paper shows that by examining the interplay between
the agent’s low-level and high-level actions, new high-level features can be con-
structed using a standard ILP algorithm.

The paper is organized as follows. Section 2 gives an overview of the RL-TOP
system and the planning problem motivating the use of ILP to learn new state
space features. Section 3 details the transformation of the planning problem into
an ILP learning task as well as outlining a method for converting a batch learn-
ing algorithm into an incremental learner. Finally, Section 4 describes a simple
domain used to test the performance of the RL-TOPs system augmented with an
ILP system. An experiment comparing the performance of three reinforcement
learning approaches on this domain is then analyzed.

2 Reinforcement-Learnt Teleo-Operators

The key concept in the hierarchical reinforcement system presented in this paper
is the Reinforcement-Learnt Teleo-OPerator or RL-TOP[12]. It is a synthesis of
ideas from planning and reinforcement learning. Like Nilsson’s teleo-operators
(TOPs)[10], RL-TOPs define agent behaviours by symbolically describing their
preconditions and effects. The main advantage RL-TOPs have over standard
TOPs is that the agent does not need hard-coded instructions on how to carry
out each of its behaviours. Instead, the problem of moving from the set of states
defined by an RL-TOP’s precondition to the states defined by its intended effect
is treated as a reinforcement learning task. This allows a large reinforcement
learning task to be broken down into several easier ones which are combined
together by a symbolic planner.

The use of RL-TOPs in the system presented in this paper is analogous to
the use of options as described by Sutton et al in [15], the Q nodes of Dietterich’s
MAXQ system [3] as well as abstract actions and macro-actions described else-
where in the literature. The RL-TOP approach distinguishes itself from these
other systems by emphasizing the symbolic representation of agent behaviours.

2.1 Definitions and Notation

At any point in time an agent is assumed to be in some state s ∈ S. To move from
one state to another an agent has a finite number of actions A = {a1, . . . , ak}
which are functions from S to S. Actions need not be deterministic.

Given a set of goal states G ⊂ S a reinforcement learning task requires an
agent to come up with a policy π : S → A. A good policy is one that can take
an agent from any initial state, s0 ∈ S, through a sequence of steps, s0, . . . , sn,
such that sn ∈ G. A step is made from si to si+1 by applying the action π(si)
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to the state si yielding si+1. An optimal policy is one that for any initial state
generates the shortest possible sequence of steps to a goal state.

An RL-TOP or behaviour B consists of three components, a precondition,
a policy, and a postcondition (or effect). The precondition, denoted B.pre, is a
set of states in which the behaviour is applicable. The postcondition, B.post,
is another set of states which define a behaviour’s intended effect. An agent’s
behaviour is executed by using its policy, B.π, to move from state to state until
the agent is no longer in that behaviour’s precondition. If, when the execution
of the behaviour terminates, the agent is in B.post the behaviour was said to
be successful. Behaviours are given to the agent by defining its pre- and post-
conditions. Finding good policies for each behaviour then becomes a standard
reinforcement learning task – steps that lead to a successful execution of a be-
haviour are rewarded while steps that leave B.pre without ending up in B.post
are punished. The implementation details of this reinforcement learning is not
sufficiently pertinent to warrant discussion in this paper. We point the interested
reader to [13] and [12].

A finite set of predicates, P = {P1, . . . , Pm}, is called primitive if every state
s ∈ S can be uniquely identified with a conjunction of ground instances of these
predicates. A primitive set of predicates allows subsets of the state space to be
described by new predicates defined in terms of disjunctions of conjunctions built
from elements of P . We call these non-primitive predicates high-level predicates.
In the remainder of this discussion it will be assumed that goals, preconditions,
postconditions and other subsets of S are defined by high-level predicates.

2.2 Planning and the Frame Axiom

The symbolic representation of behaviours’ preconditions and postconditions
provides the link between planning and reinforcement learning. As sets they
define small reinforcement learning tasks and symbolically it becomes possible
to build Teleo-Reactive (TR) plan trees. We will briefly explain their construction
and limitations through a few examples. A more detailed exposition can be found
in [2].

Suppose an agent has a goal G and four behaviours: A, B, C, and D. The
left-hand side of Figure 1 is an abstract representation of the agent’s state space
showing the set of goal states as a shaded rectangle and behaviours as labelled
arrows connecting their pre- and postcondition sets.

Since, as the figure shows, that A.post ⊂ G, it must be the case if the agent
is in A.pre and successfully executes behaviour A it will achieve the goal G. It
is important to note that this subset test is actually performed in the planning
algorithm by testing if the high-level predicate for G subsumes that for A.pre.
The problem of reaching a state in G has now been reduced to getting to a state
in G or getting to a state in A.pre and executing behaviour A. This process is
repeated with A.pre as the new goal and B.pre ∪ C.pre∪ D.pre are then found
to be states from which it is possible to achieve the goal G. The TR tree on the
right of the figure shows which actions the agent needs to successfully execute to
reach the goal. For example, if the agent state is in the set defined by D.pre it
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Fig. 1. The diagram on the left shows four behaviours and a goal in a state space.
On the right is the corresponding TR plan tree. The dashed line represents a
sequence of steps which successfully execute behaviour A

needs to execute behaviour D followed by behaviour A. If an agent moves from
a node of a TR tree into a node which is not the one that was expected a plan
failure is said to have occurred.

The above process for generating TR trees works if the goal state completely
subsumes some behaviour’s postcondition. The goal in Figure 2, however, is a
conjunction of two predicates, G1 ∧ G2, and only one of them, G1, subsumes A’s
postcondition. This means that there are states in A.pre that may not be mapped
into goal states when A is executed. As behaviours can be quite complicated it
is not at all clear which states in A.pre the agent must start in to ensure it ends
up in G1 ∧ G2 after executing A.

The simplest assumption that can be made in this situation is that executing
a behaviour will only make those changes to the agent’s state which are needed
to get from the preconditions of the behaviour to the postconditions. This as-
sumption is known as the frame axiom. Provided this criteria is met we can
use it to restrict a behaviour’s precondition by conjuncting it with those goal
conditions which did not subsume the behaviour’s post condition. In Figure 2
A.pre is intersected with G2. Behaviour D is removed from the TR tree as its
postcondition is no longer contained within the states thought to get the agent
to the goal. The frame axiom is used again to propagate the G2 condition through
behaviour C but is not needed for B since B.post is contained within G2.

2.3 Side Effects

The frame axiom does not always hold, especially in complex domains. Primarily,
this is because the domain expert who provides the behaviour definitions to
the agent cannot always foresee how they will affect the agent’s state. If the
successful execution of behaviour A from a state s0 ∈ A.pre ∩ Gi terminates in
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Fig. 2. An example of the frame axiom. Only G1 subsumes A.post so the sec-
ond goal condition G2 must be propagated down the TR tree. The dashed line
represents a sequence of steps which violate the frame axiom

a state st /∈ Gi we say that executing A when in state s0 causes a side effect on
Gi. This is denoted cause(s0, A, Gi). An example of a side effect is shown as the
dashed line in Figure 2.

In order to make effective plans the agent needs to know which states in
a behaviour’s precondition will cause a certain side effect. Precisely, the agent
would need some description of the sets

cause(A, Gi) = {s ∈ S : cause(s, A, Gi)}

for every behaviour B and every goal condition Gi. In Figure 3 the shaded set
labelled cause is the side effect cause(A, G2). Since the postcondition of be-
haviour B falls entirely within this set there is no point considering plans where
the agent begins in B.pre. The agent’s only option from these states is to execute
behaviour B which will terminate at one of the side effect states. By definition,
behaviour A will move the agent outside of the set G2 and hence outside the
goal. The only states which will get the agent to the goal using A are those in
A∧G2∧¬cause(A, G2). This situation is reflected in the new TR tree in the right
of the figure.

The simplest approach to constructing the side effect sets is by adding states
as they are recognized as causing a side effect. This approach has two problems.
Firstly, since the behaviour’s policies are being reinforcement learnt as they are
used, side effects may be generated due to a bad policy rather than a true side
effect of the ideal behaviour. This noise can mean the side effects are over-general
which in turn may prevent good planning. The second and more serious difficulty
with this method is that only those states already seen to have caused a side
effect will be avoided by the agent in the future. If there are regularities across
the states causing a side effect we would like the agent to be able exploit them
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Fig. 3. The side effect set cause(A, G2) is shown as the shaded area labelled
cause on the left. The revised TR tree is shown on the right

and avoid those states before having to test them explicitly. This is the focus of
the next section.

3 Learning Side Effects Using ILP

In his system TRAIL, Benson describes the first application of Inductive Logic
Programming to the problem of action model learning [2]. In his model an agent
is endowed with actions in the form of TOPs. When these are given to an agent
the policies and postconditions of the TOPs are fixed and it is up to the agent
to determine satisfactory preconditions. The TRAIL system employs a DINUS-
like[4] algorithm to induce the preconditions from examples generated from plan
failures, successes and a human teacher. Side effects are recognized as a problem
in TRAIL but are only treated lightly through simple statistical methods.

In the RL-TOP system the focus is on learning the policy for each behaviour
while the pre- and postconditions are assumed to be correct and fixed. Once the
behaviours’ policies are learnt sufficiently well side effects become the primary
source of an agent’s poor performance. Our hypothesis for this paper is that
ILP can be used to improve an agent’s performance by inducing descriptions
for side effects in a manner similar to the way TRAIL uses ILP to learn TOP
preconditions.

The ILP learning task will be to construct definitions for the predicates
cause(s, A, Gi) for various values of A and Gi as they are required. Once these
predicates are learnt the sets cause(A, Gi) can be incorporated into an agent’s
TR tree using the cause/3 predicate as a test for a state’s membership in a side
effect set.
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3.1 Examples and Background Knowledge

Recall that any state an agent is in can be uniquely described in terms of the
primitive predicates P = {P1, . . . , Pm}. In order to record the history of an
agent, the first argument of each Pi will hold a unique state identifier such as
the number of steps the agent has taken since the start of some learning task.
High-level predicates will also be modified in this way.

Given a sequence of agent steps s0, . . . , sn, examples of cause(s, A, Gi) can be
found by locating a subsequence sa, . . . , sb such that for all k = a, . . . , b− 1 each
state sk ∈ A.pre ∧ Gi and sb /∈ Gi. Since each of the states in the subsequence
is one from which A was executed and resulted in Gi no longer holding, each
cause(sk, A, Gi) is a positive example of the side effect. To get negative examples
we need to find states for which the execution of A resulted in Gi holding true in
A.post. All the states in a subsequence sa, . . . , sb such that sk ∈ A.pre ∧ Gi for
k = a, . . . , b − 1 and sb ∈ A.post ∧ Gi are negative examples of cause(s, A, Gi).

As an illustration a hypothetical agent history is shown in Table 1. States
2,3 and 4 are positive examples of the side effect cause(s, A, G2) while state 6 is
a negative example.

Table 1. An example history trace using the TR tree from Figure 2. Steps
marked with ’+’ or ’-’ are positive and negative examples of cause(s, A, G2),
respectively

Step Primitive Description High-level Predicates Behaviour Action

0 P1(0, . . .) ∧ . . . ∧ Pm(0, . . .) B.pre(0) B a3

1 P1(1, . . .) ∧ . . . ∧ Pm(1, . . .) B.pre(1) B a7

+2 P1(2, . . .) ∧ . . . ∧ Pm(2, . . .) B.post(2) ∧ A.pre(2) ∧ G2(2) A a3

+3 P1(3, . . .) ∧ . . . ∧ Pm(3, . . .) A.pre(3) ∧ G2(3) A a2

+4 P1(4, . . .) ∧ . . . ∧ Pm(4, . . .) A.pre(4) ∧ G2(4) A a5

5 P1(5, . . .) ∧ . . . ∧ Pm(5, . . .) A.pre(5) A a3

−6 P1(6, . . .) ∧ . . . ∧ Pm(6, . . .) A.pre(6) ∧ G2(6) A a6

7 P1(7, . . .) ∧ . . . ∧ Pm(7, . . .) A.post(7) ∧ G2(7) ∧ G1(7) A —

The background knowledge for this learning task should, at the very least,
consist of all those primitive predicates used to describe the agent’s state in each
of the examples of the side effect to be learnt. The high-level predicates true in the
example states may also be useful when learning a side effect. Whether or not any
additional relations are required will depend on the agent’s domain. In the above
example cause(3, A, G2) is a positive instance so at least each Pi(3, . . .) should
appear as background knowledge whereas the high-level predicates A.pre(3) and
G2(3) may or may not be useful.
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3.2 Implementation

There are three parts to the RL-TOP hierarchical reinforcement learning system:
an actor, a planner and a reflector.1 Using the high-level view afforded by the
RL-TOPs the planner builds a TR plan tree which is passed on to the actor.
The plan tree is essentially a description of sequences of behaviours the actor
should perform to reach the goal from various states in the state space.

The actor is the agent’s interface with the primitive level of the domain.
After using the TR tree to determine which behaviour is most appropriate, the
agent executes and reinforces its policy. Side effects the agent encounters while
executing a behaviour are indicative of a problem with the actor’s TR tree. When
they occur the actor keeps a record of positive and negative instances of them
and hands these examples to the reflector.

The reflector’s role is to induce descriptions of which states cause side ef-
fects from the examples handed to it from the actor along with any background
knowledge it may have been given. Once a side effect has been learnt its descrip-
tion is passed to the planner. The planner then builds a new TR tree and passes
it to the actor closing the learning cycle.

The induction of side effect descriptions in the reflector is performed by the
ILP system Lime [9]. The deciding factors used to make this choice were speed,
noise resistance and a familiarity with the system.2 It is important the reflector
be reasonably quick since each of the three components of the system run asyn-
chronously. If the reflector runs too slowly the actor and planner will continue
controlling the agent poorly defeating the purpose of learning side effects in the
first place. Also, the examples given to the reflector suffer from a unusual form
of noise. When the agent begins its learning task its policies are random. This
means initially that examples of a behaviours’ side effects are most likely due
to poor execution. As the agent steadily improves its policies the proportion of
noisy examples decreases. Lime proved to be quite robust under these conditions
in addition to being fast enough for our requirements.

3.3 Batch Learning from Incrementally Generated Examples

Reinforcement learning relies heavily on repetition. In order to learn a control
model for a problem an agent must repeatedly attempt to reach a set goal. Side
effect examples are therefore generated by the actor incrementally. Since Lime
is a batch learner we will briefly discuss a method of converting an incremental
learning problem into a batch learning problem.

Each time a new side effect is encountered by the actor a example pool for
that side effect is created. As examples of the side effect are generated they are
added to the pool. Before any induction is performed the pool must contain at
least E+

min positive and E−
min negative examples. This is to stop the reflector

1 This is the part of the system which looks back, or reflects, on the actions and plans
of the other two parts

2 Foil and Progol were also briefly tried as induction engines for the reflector however
Lime showed more promise during our early tests
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attempting to induce side effects from insufficient data. Once these lower limits
are both met E+

min positive and E−
min negative examples are randomly sampled

from those in the pool and passed to Lime.
As the reflector can only learn one side effect at a time those side effects with

a sufficient number of examples are queued. Each time a side effect is learnt it is
placed directly on the back of the queue to be re-examined at a later date. This
process is an attempt to spread the reflector’s attention evenly over its various
tasks. When a side effect is learnt for the second time a choice must be made to
keep the new definition or discard it in favour of the old. In this situation both
versions are tested for accuracy on all the examples currently in the side effect’s
pool and the better one is kept.

The pool also has upper limits to the number of examples it can hold: E+
max

and E−
max specify the maximum number of positive and negative examples that

can be stored. When one of these maxima is reached any further example of the
same sign randomly replaces a like example already in the pool.

When a side effect gets used by the planner the agent will avoid the area it
defines. This means there will be a sudden change in the distribution of examples
for that side effect. In particular, the number of positive examples generated for
a side effect tends to drop drastically after it is learnt for the first time. The
random replacement of old examples with new ones is an attempt to smooth out
any drastic changes in the example distributions.

The implementation of the reflector used in the experiment described in
Section 4 had example pools defined by E+

min = 100, E−
min = 1000, E+

max = 1000,
and E−

max = 10000. Having ten times as many negative examples as positive was
made to help prevent overgeneralisation as well as reflect the actual ratio of
examples being generated.

4 Experimental Results

Standard, non-hierarchical reinforcement learning techniques, such as Q-learning,
can be shown to converge to optimal policies, given some fairly natural assump-
tions [15]. This convergence, especially for large state spaces, can be very slow.
Hierarchical reinforcement learning trades optimality for speed hoping to find
good solutions quickly by breaking a monolithic reinforcement learning task into
smaller ones and combining their solutions. Early versions of the RL-TOP hier-
archical reinforcement learning system did not have a reflector and so could not
identify and avoid side effects. It was believed that this was the cause of some of
the early system’s sub-optimality. The experiment reported in this section was
designed to test if adding the ability to recognize side effects meant the RL-TOP
system could match the performance of monolithic reinforcement learning in the
long term while retaining the speed gained through the hierarchical approach.

4.1 The Mudworld

The test domain for our experiment, dubbed “The Mudworld”, was chosen to
best illustrate the impact of side effects on the agent’s performance. It is small
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enough to be monolithically reinforcement learnt in a reasonable amount of time
but large enough for hierarchical techniques to show a speed improvement. The
other advantage to using this artificial domain is that the side effects the agent
will encounter are quite obvious. The side effect descriptions generated by the
reflector can therefore be checked for their pertinence.

As seen in Figure 4 the Mudworld lies on a 60-by-60 grid which is partitioned
into seven rooms. The agent’s task in this domain is to build a control model
which will move it from any starting position in Room 2 to any square Room 6
without being muddy. The agent becomes muddy by stepping into the rectan-
gular patch of mud in Room 4. Once this happens the agent can only become
clean again by stepping into the square of water in Room 6. If the agent avoids
the mud entirely as it moves from Room 2 to Room 6 (via Rooms 1, 4 and 5, for
example) the goal condition of being clean in Room 6 is met as soon as the agent
is inside the door to Room 6. If the agent moves through the mud (by choosing
to go through Rooms 1, 4 and 7) it does not reach a goal state until it steps
in the water near the centre of Room 6. This ensures there is a performance
penalty of around 20 steps for a bad choice of route from Room 2 to Room 6.

Room 1 Room 5

Room
Room 2 Room 6

Room 7Room 3

4

Fig. 4. The Mudworld consists of 7 rooms, connected by doors, on a 60 by 60
grid. The top left of the grid is position (0,0). There is mud in Room 4 (dark
grey strip) which can only be cleaned off by the water in Room 6 (light grey
square). The agent is started in a random position in Room 2 and its goal is to
be clean in Room 6
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The agent’s primitive state in the Mudworld is described by two primitive
predicates: position(S, X, Y ) specifying the agent’s X and Y coordinate on the
grid in state S, and muddy(S) which is true only when the agent is muddy in
state S. The agent’s primitive actions enable it to move from a grid position to
any of its eight adjacent grid positions, walls permitting.

A high-level predicate in room(S, R) is defined using the primitive predicate
position/3 and the “less than” relation <. The clause defining all the states in
Room 1 is:

in room(S, 1) :- position(S, X, Y ), X < 25, Y < 15.

The other rooms are defined similarly. Sixteen RL-TOPs are given to the agent
specifying the pre- and postconditions for behaviours which move the agent from
one room into an adjacent room. All of these behaviours can be summed up with
the following template:

go(R1, R2).pre = in room(R1)
go(R1, R2).post = in room(R2)

The mud in the middle of Room 4 makes planning difficult with the above
RL-TOPs. Every plan capable of getting the agent from the left-hand side of
the map to the right-hand side must, at some point, pass through Room 4 into
either Room 5 or Room 7. Since the only high-level predicate the planner has
to describe the agent’s state in Room 4 is in room(4) it has to make a choice
between telling the agent to use go(4, 5) or go(4, 7) at this point in the plan.
Neither of these behaviours are ideal. If the agent is in the upper half of Room
4 executing the go(4, 7) behaviour will move the agent through the mud causing
a side effect. Similarly, if the agent is the the lower half of Room 4 the go(4, 5)
behaviour will cause a side effect.

In a sense, the planner’s high-level representation of the agent’s state is not
rich enough to come up with a plan that will always avoid getting muddy. The
job of the reflector then is to define new high-level terms which give the planner
a better description of the agent’s world. The definitions that will do this job in
the above situation are:

cause(S, go(4, 5), muddy) : − position(S, , Y ), 30 < Y.

cause(S, go(4, 7), muddy) : − position(S, , Y ), Y < 29.

For comparison, Figure 5 shows a set of clauses the reflector had generated
for the planner at the end of one of experiments described in the next section.
As can be seen the last two clauses in the figure are quite similar to the ideal
definitions given above although the last clause is a little over-general. The first
two clauses in the figure describe “causes of causes”. For example, the first clause
states that if an agent is going out of Room 1 it will be in the side effect area
for getting muddy when executing go(room(4), room(7)).
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cause(A, go(room(1),_), cause(go(room(4),room(7)),muddy)) :-

in_room(A, room(1)).

cause(A, go(room(3),_), cause(go(room(4),room(5)),muddy)) :-

in_room(A, room(3)).

cause(A, go(B,room(5)), muddy) :-

in_room(A, B),

satisfy:not(user:muddy(A)),

position(A, _, C),

greater_than(A, C, 30).

cause(A, go(B,room(7)), muddy) :-

in_room(A, B),

satisfy:not(user:muddy(A)),

position(A, _, C),

less_than(A, C, 38).

Fig. 5. Output from the reflector after one run of the experiment. The planner
uses these definitions to rebuild the TR tree

4.2 Experimental Setup

A standard measure of agent performance in reinforcement learning is trial
length. In this experiment a trial begins with the agent starting clean and at
some random position in Room 2. The trial comes to an end when the agent is
clean and in Room 6. The number of primitive actions, or steps, the agent takes
to reach the goal from the starting state is the trial’s length. After each trial the
agent updates its policies, behaviours and plans if necessary and is restarted.
In order to assess an agent’s long term performance it needs to be allowed to
improve over many trials. We therefore define a run to be a sequence of 10000
consecutive trials.

Our Mudworld experiment compares three different approaches : a mono-
lithic reinforcement learning task in which a single policy is learnt for the entire
Mudworld (the MRL approach), an RL-TOPs-based hierarchical reinforcement
learning approach that does not use a reflector (the RHRL approach), and the
same behaviour-based approach incorporating a reflector to learn side effects
(the RHRL+R approach). The testing of each approach consists of twenty in-
dependent runs. When we speak of average trial length the averaging is done
across these twenty runs.

The results of this experiment are summarized in Figure 6. The agent’s prim-
itive actions are considered to be atomic and so are used as a unit of time along
the horizontal axis. Each curve shows how the average trial length changes over
one run of an approach. Each point’s horizontal coordinate represents when one
(average) trial ends and the next begins. Thus, the right-hand end of each curve
gives an indication of how long it takes each approach to perform 10000 trials.
The vertical value of each point would ideally show the average trial length but
this value is far too erratic, especially in the early stages of a run. To get a
clearer, qualitative picture the curve is smoothed by averaging the average trial
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Fig. 6. A comparison of three approaches to learning a control model for a
Mudworld agent. Each curve shows how average trial length decreases as the
agent becomes more experienced over time

length over a 100-point window about each point. For further clarity the error
bars, representing one standard deviation, are only shown every 100000 points.

4.3 Analysis and Conclusions

The most interesting features in Figure 6, in light of our hypothesis, are the
relative performances of the three approaches at the end of a run and their
convergence rates.

The two hierarchical learning approaches, RHRL and RHRL+R, both show
a large improvement in convergence rate compared to the MRL approach which
took almost five times as many steps to reach the same level of performance.
While the addition of a reflector to the RL-TOPs system was not detrimental to
its convergence rate it is unclear from the current data whether or not it offers
any improvement.

Figure 7 compares the performance of each of the three approaches after they
have converged. Each point on the graph shows the mean final trial length for
each run in the experiment (20 runs for each of the MRL, RHRL and RHRL+R
approaches). It is calculated by averaging the number of steps per trial over the
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Fig. 7. The mean final trial length (averaged over the final 500 trials) shown for
each approach’s 20 runs. All of the MRL runs have a final average between 65
and 75 steps per trial. RHRL and RHRL+R runs lie in the ranges 80–117 and
118–135 respectively. The error bars show 99% confidence intervals

last 500 trials in a run. We are assuming that there is no significant improvement
taking place between these final trials and therefore the mean is essentially over
500 independent trials of a well-trained agent.

As expected, the performance of monolithic reinforcement learning (MRL)
was significantly better than either of the other two approaches. All of its twenty
runs had final trial lengths between 65 and 75 steps per trial while the best
RHRL+R and RHRL runs were at 80 and 118 steps per trial respectively. A
striking feature of the graph is the spread of final trial lengths for the RHRL+R
approach. Fourteen of the RHRL+R runs had final trial lengths between 80 and
90 steps per trial while three of its runs were statistically indistinguishable from
the best RHRL run at 99% significance. The spread of results for the RHRL+R
approach is due to the reflector not always inducing good definitions for side
effects. We will be looking into ways of addressing this problem in the future.

As can be seen, there is some sacrifice of optimality for better convergence
speed. Even the best RHRL+R run had a higher mean final trial length than the
MRL approach. This is because in the reinforcement learning in the RHRL+R
approach improves agent policy locally whereas the MRL can optimize over the
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entire problem. For example, if the agent starts in the middle left of Room 2
the best policy for the long-term goal (being in Room 6 without being muddy)
is to head diagonally towards the door closest to Room 4. However, there is
a different best policy for the short-term goal (moving into Room 1). Namely,
going through the leftmost door. These inefficiencies are slight compared to the
large gain in convergence speed afforded by RHRL+R.

We consider these results to be evidence supporting our hypothesis: that us-
ing ILP to predict side effects can improve the long-term performance of the
RL-TOP hierarchical reinforcement learning system. This performance is, more
often than not, much better than the long-term performance of hierarchical re-
inforcement learning without a reflector and is comparable to the performance
of monolithic reinforcement learning. Furthermore, both heirarchical reinforce-
ment learning methods show a drastic improvement over standard reinforcement
in the time it takes to converge to a good policy.

5 Conclusions, Discussion, and Related Work

The work presented in this paper is synthesis of ideas from several areas in ar-
tificial intelligence. By representing an agent’s state symbolically RL-TOPs are
able to forge a link between reinforcement learning and planning. This link is
not perfect, however, since the acting and planning sides of an RL-TOP agent
represent its world at different levels of abstraction. Watching what happens at
these different levels simultaneously is essential to an agent’s overall improve-
ment. Inductive logic programming realizes this improvement by allowing the
agent to construct new state abstractions which can be used to avoid side effects
during the execution of its plans.

This is not the first time ILP has been used in conjunction with reinforcement
learning or planning. In [5], Džeroski et al introduce relational reinforcement
learning and show that a simple planning task – block’s world – can be solved in
their framework. The use of ILP in their work differs from that presented here.
Rather than inducing descriptions for subsets of the state space as we do here,
relational reinforcement learning uses ILP techniques to help learn a Q-tree, a
variation of classic reinforcement learning’s Q-function.

Inductive and analytic learning algorithms have been used in the past to
improve planning and problem-solving. A good overview of work in this area
can be found in [8]. However, the focus of much of this is on learning how to
improve search heuristics used to generate plans which will take an agent from its
current state to a goal state. When generating TR trees in the RL-TOPs system,
the planner does not assume the agent is in any particular starting state. Instead,
it generates many plans which lead to the goal from various parts of the state
space. The aim of this search tree is to be as exhaustive as possible so learning
heuristics to prune the search would not be useful in the present system.

Early work in action-model learning in planning, such as Shen’s LIVE sys-
tem [14] and Gil’s EXPO system [6], used inductive learning algorithms to refine
models of action pre- and postconditions. Their work is restricted to domains
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in which the agent’s actions must be atomic and deterministic. These assump-
tions cannot hold in our RL-TOP framework. Firstly, our agent’s behaviours
are durative since they are executed by following policies involving many atomic
actions. Also, these behaviours are inherently non-deterministic since they are
being continually improved by reinforcement learning techniques.

As mentioned in Section 3 our system draws inspiration from Benson’s TRAIL
system for learning action models for autonomous agents in which ILP is used to
find preconditions for TOPs. Benson’s work addresses some of the short-comings
in Shen and Gil’s systems as actions which are non-deterministic and durative
(instead of atomic) can be modeled in TRAIL.

Unlike all of these systems that combine learning and symbolic planning,
the basic planning unit in our system, the RL-TOP, becomes more effective by
improving the execution of its behaviour. Since the pre- and postconditions of
each behaviour are given in advance and fixed we have adapted some of the ILP
ideas found in Benson’s work to the problem of inducing side effect definitions.
The result is an agent with finely-tuned, reusable, high level actions that enable
it to move between fixed, user-defined portions of its state space. Each action’s
collection of side effects describes how subsets of its pre- and postconditions are
related by its policy. With this more detailed view of its actions the agent is able
to plan their use more effectively.

The ILP system Lime [9] was chosen to implement the side effect learning in
our system due to its noise handling ability and speed. One difficultly with this
choice that had to be overcome was that of using a batch learner in an incre-
mental setting. Our fairly straightforward solution proposed in this paper was
to pool examples as they were presented incrementally. Once enough examples
were collected they could be passed onto Lime as a batch.

The noise resistant, incremental ILP system HILLARY[7] was brought to our
attention some time after we were successfully using our example pool approach
with Lime. Once we have a running version of HILLARY we hope to compare
its performance as a reflector against our present setup.

Other future work will include applying side effect learning to domains more
complicated than the Mudworld task presented here. Our long term goal and
original motivation for side effect learning is the “Learning to Fly” behavioral
cloning task[13]. Although the RL-TOP system has had some success with learn-
ing to fly, finding an ILP system capable of handling the complexity of the side
effects involved will not be easy. We will also be investigating whether side effect
learning is relevant to other hierarchical reinforcement learning systems (eg, [16],
[11], [3]).
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